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Conductance calculations with a wavelet basis set

K. S. Thygesen, M. V. Bollinger, and K. W. Jacobsen
Center for Atomic-scale Materials Physics, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
(Received 30 August 2002; published 12 March 2003

We present a method based on density functional thé@Bf) for calculating the conductance of a phase-
coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated
on the same footing taking their full atomic and electronic structure into account. The linear-response conduc-
tance is calculated from the Green’s function which is represented in terms of a system-independent basis set
containing wavelets with compact support. This allows us to rigorously separate the central region from the
contacts and to test for convergence in a systematic way. The method supports the use of both norm-conserving
and ultrasoft pseudopotentials. We use the method to study the effect of adsorbates on the conductance of an
infinitely long, atomically thin Al wire, and find that hydrogen and oxygen effectively reduce the conductance
of the wire by one and two conductance quanta, respectively.

DOI: 10.1103/PhysRevB.67.115404 PACS nuni§er73.63—b, 72.15-v, 71.15—m, 85.35-p

[. INTRODUCTION within the nonequilibrium Keldysh formalisth.This ap-
proach requires an explicit separation of the system into
The study of electron transport in atomic scale systems ifeads and a scattering region, and the conductance is then
becoming increasingly important as the miniaturization ofexpressed exclusively in terms of the Greens’s function for
electronic devices proceeds. It is thus of great relevance tthe scattering region. The properties of the leads enter only
establish the connection between the microscopic charactethrough self-energy corrections to the Hamiltonian of the
istics of an electronic system, such as the atomic configurascattering region. The approach has been used extensively in
tion and electronic structure, and transport properties such aonnection with tight binding models, where it is straightfor-
the electrical current and conductance. Owing to the comward to divide up states as belonging to either leads or scat-
plexity of the problem, such studies are strongly dependertering region’ *°Recently the Green'’s function approach has
on the existence of reliable numerical treatments based oalso been combined with DFT with the aim of calculating
first-principles approaches. currents and atomic/electronic structures fully self-
In this paper we present a numerical approach to the cakonsistently in the presence of an applied bias voltage. The
culation of the conductance of a phase-coherent systemntire system is then described within DFT, using localized
based on density-functional theory. In the past decade a felasis sets consisting of either atomic orbitatd or
different approaches to this problem have been suggestetaussians®
They all rely on or are equivalent to the Landauetier In this paper we present a numerical way of calculating
description of the electronic transport in which the conduc- the scattering Green’s function and the conductance within
tance is obtained from the transmission matrix for a scatterthe DFT framework. The main difference between our
ing region connecting two ballistic leads—and our method ismethod and those of Refs. 11-13 lies in the choice of basis
no exception in this respect. set. While Refs. 11-13 use localized orbital functions cen-
One approach to the scattering problem is to directly caltered on the atoms we use a system-independent basis set in
culate the scattering states from which the transmission cahe transport direction consisting of wavelets. For the trans-
efficients can be obtained. This is, for example, the case inerse degrees of freedom a basis set consisting of solutions
the method developed by Lahghere the scattering states to the two-dimensional Kohn-Sham equation is used. The
for a scattering region connecting two free-electron elecwavelets have compact support making the separation of
trodes are calculated from the Lippman-Schwinger equatiorieads and scattering region very simple. Furthermore they
The electronic scattering potential is identified with the ef-allow for multiresolution analysis and for a systematic check
fective potential as defined in density-functional theoryof basis set convergence.
(DFT), and this potential is then determined self-consistently The method has been implemented in the low-bias linear-
together with the electron density. The scattering states camsponse regime and tested on atomically thin metal wires. In
alternatively be calculated using a recursion-matrix methogbarticular we have studied how the adsorption of gas atoms
as demonstrated by Hirose and Tsukadausing a wave- modifies the conductance of an Al wire. Adsorption of both
function-matching approach as shown by Choal*° The  hydrogen and oxygen is seen to strongly affect the conduc-
scattering-state approach provides a direct real-space pictutance.
of the scattering processes, however, only in a few cases a The paper is organized as follows. In Sec. Il we introduce
more realistic atomic and electronic structure of the leads hathe Green’s function formalism and the expression for the
been taken into accoufit. conductance. A general introduction to wavelets including a
The conductance can alternatively be calculated within aiscussion of the third-order interpolating wavelet used in
Green’s function approach. The relation between the condudhe present approach is given in Sec. Ill. We then describe
tance and the Green’s function has for example been deriveldbw to generate the basis functions in Sec. IV, and explain in
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FIG. 1. Schematic setup of the system. It is divided into three G G5 G 1, 0 O
regions: the scattering regior8), and the left(L) and right lead GR R cR.l=|l 0o 1. 0
(R). The leads connect the scattering region with two thermal res- X PsL Ps BRI = S . @
ervoirs that are maintained at the chemical potentiajsand . GR. GRs GR 0 0 Ix

The numbering of the leads refers to the division into principal

layers. where theS are overlap matrices amtd=¢+in, » being a

positive infinitesimal. With this definition the matrix Green'’s

detail how the connection to DFT is established and in parfunction in general differs fronfi|[ (s +i7)1—H]""[j), but
ticular implemented in Sec. V. Some tests and application§e two quantities are related through

are presented in Sec. VI, and finally a summary is given in ) s A R
Sec. VII. (il[(e+im)1=H]Yj)=(S GC(e)9);. (3)

For an orthogonal basis set the matrix Green’s function be-
Il. GENERAL THEORY comes equal to the left hand side of Eg) and the distinc-

. . i . ) tion becomes irrelevant.
In this section we describe the theoretical basis for the The current due to noninteracting electrons moving in a

conductance calculations. The general system setup and tk‘ﬁﬁean-field electron potential is then given By
conductance formula are presented, and we discuss how the

coupling to the leads is taken into account. 2e s A
| = FJ de Tr{Gg(e)I' (e)Gg(e)I'r(e)]

A. System setup and conductance formula

, . : . X[ne(e = pm1) —Ne(e = pa) ], 4
We consider the transport of non-interacting electrons in a
system which can be divided into three regidsee Fig. 1: ~ Where ng(e) refers to the equilibrium Fermi distribution
A scattering region$), a left lead (), and a right leadR). function and the trace runs over the scattering region only.
The leads are metallic and connect the scattering region withhe central quantity of this relation is the Green’s function
two thermal reservoirs that are maintained at the chemicdbr the scattering regio®5(«)
potentialsu, and u,. The electrons injected from the reser- R ) R R —1
voirs move ballistically through the leads and all scattering Gs(e)=[(e+in)Ss—Hs—2(e)—2g(e)] 7, (53
events are thus taken to occur in the scattering region. Only_ . ) ()R ) N "
elastic scattering is considered and hence the electrons movesi (8)=[(e+i7)Ssi—Hsilg™ " (e) X[ (& +i7)Sg;— Hg;]

coherently between the reservoirs. The left and right leads (5b)
are assumed to couple only indirectly via the scattering re- (0)R . o
gion and the Hamiltonian matrix of the entire system there- g "(e)=[(e+inS—H] "i=(LR), (50)

fore takes the form WhereEiR(s) is the self energy due to the left=€ L) or right

(i=R) lead andg{”)'R(¢) is the Green’s function of the iso-

N
Ho Hg. O lated left or right lead. In Eq4) the advanced Green'’s func-
b—| Hst Hs Hsr (1)  tonis given by the usual relatioBs(e) =[GS(&)]" and the
o Ht He ' I';(e) matrices are obtained from the self-energies
SR

Ti(e)=i(2f(e)—[ZR(e)1M). (6)

e current formula in Eq4) is seen to be on the same form
the original expression for the current derived in Ref. 6.
he difference is, however, that E@G) is strictly a matrix
expression and is derived for the general case where the sub-
gpaces of the two leads and the scattering region are allowed

where theH; themselves are matrices. The vanishing COoU-rp
pling between the two leads is obtained by using a basis sels
with compact support in the direction of the electron trans-r
port, thez direction in Fig. 1. Furthermore the scattering
region has to be large enough so that nonlocal contribution
to the Hamiltonian(from, for example, nonlocal pseudopo- to be nonorthogonal
tentialy do not cause a direct coupling. . . The relation between the current formula E4). and the
We shall not assume, however, that the basis functions are, - 1o - Btiker approach can be established by noting
orthogonal. The nonorthogonality has been taken explicitly{hat the transmission matrixe) is given by®
into account in a recent derivation of the conductance for-
mula presented in Ref. 13, where the following definitions t(S):[FR(S)]llng(s)[FL(S)]llz. )
and formula are explained in greater detail.
The matrix representation of the retarded Green'’s functiorSubstituting this expression into E() leads to the well
GR(¢) is defined a¥' known Landauer-Bttiker formula
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2¢e multiresolution analysiSMRA). This construction makes
I = Ff de Tt't][Ne(e— 1) —Ne(e—p2)]. (8 precise the idea of analyzing functions on different scales
and it offers a natural framework for the discussion of wave-

The current formula in Eq) is also valid for nonequi- |€ts. After this general introduction, we consider a specific
librium electron transport. However, this property will not be MRA, namely, théa one associated with the third-order inter-
utilized in the present treatment where we shall focus on th@0lating wavelet® This is the wavelet underlying the basis

linear response conductance. Assuming the difference b&et employed in the present treatment. We end the section
tween the chemical potentiajs; and u,, to be small, the With a discussion of some desirable features of this wavelet.

current in Eq.(4) becomes linear in the applied voltage) A more detailed introduction to wavelets can be found in
=(m1— m2). The conductanc&=1/U is then given by Ref. 20.

Let ¢(x) be a localized function satisfying
2

2e
G=—-TGS(e)I(e)G3(e)TR(e) emepr  (9) $00=3, ab(2x-i). 10

where the Green's functions are now (o be evaluated at th5\/e say thatp(x) satisfies a two-scale relation with two-scale
Fermi energye . Equation(9) represents the starting point coefficients{a;}. From ¢(x) we can define a sequence of
it

for the present approach. From E§) it is seen that in order b b
to obtain the Green’s function of the scattering region one>uPsPaces by
needs to calculate the self-energies due to the leads. The Vq=sparf¢(29x—i):i e 7}. (11)
calculation of these quantities and in particular the problem

of coupling the semi-infinite leads to the scattering regionThe integerq is referred to as the level of the subspace. To
will be addressed in the next section. characterize these subspaces further, we note that a function

f(x) belongs toV, exactly whenf(29) belongs toV.

Furthermore it follows from Eq(10) thatV,CV,, whenever

. g=q’'. The subspacepV,} provide an increasing sequence
In the present treatment each of the leads will be taken t@f approximation spaces: projecting a functioonto theqth

be semi-infinite. Since the electrons move ba”iStiCﬁ”ysubspace produces an approximation’ which Convergés to

through these regions the leads must be periodic and r&rsg— 0. The family of subspace@/,} constitutes an MRA

semble the bulk metal. As a consequence the scattering rgyith scaling functiong(x). If h denotes the width of, the

gion should be chosen sufficiently large so that it comprisegpproximation spac¥,, will be capable of resolving details

all the perturbations on the electron system due to the pregfown to a length scale of the order %h.

ence of scatterers. In practice such perturbations are rapidly sypposey(x) is a function inV; such that the subspace

screened by the electron gas and the mean-field electron pgy, — spary(x—i):i e Z} fulfills the conditions

tential is expected to decay to its bulk value over a few

B. Coupling to leads

atomic layers. In the leads the electron potential will have the Vot+Wp=V4, (12
periodicity of the underlying bulk crystal but in order to
calculate the isolated lead Green's functigii (), one VoNWy={0}. (13

still needs to invert matrices of infinite dimension. This prob-
lem is solved by the use of localized basis functions thal
allows us to divide the leads into so-called principal

Pefining the subspacgdV,} according to Eq(11) with ¢
replaced byy, the following general relations can be shown

layers!®!’ see Fig. 1. The length of such a layer should be A0 hold

multiplum of the bulk lattice constant and chosen large Vgt+Wy=Vg, 1 (14)
enough so that each layer only couples to its two neighboring e Ay

layers. This also implies that the scattering region will only VNW,={0}. (15)

interact with the first principal layers of the leads, labeled 1

in Fig. 1. The problem of finding{® (&) is thus reduced to  Clearly, the subspac#/, contains the details 0¥/, not
that of finding the surface Green’s function of the isolatedc@ptured byVg. For this reason\, is referred to as the
leads, i.e., the Green’s function of the first layer. In practicedetail space at level. By applying these relations repeatedly
we do ?{iss by using the efficient iterative decimation We obtain the decompositiom ¢ qp):

technique:® More details on the calculation of the lead

Greengs functions are given in Appendix A. Va=Vaot Woy+ Wegrat -+ +Wo-q, (16)

where all subspaces on the right hand side are mutually dis-
[ll. WAVELET THEORY joint in the sense of Eq15). The functiony is called the
wavelet of the MRA. Employing the decomposition Et6),
This section serves as a brief introduction to the mostny functionf, in V4 can be written as a sum of functions
basic concepts of wavelet theory and multiresolution analyeach carrying the details df, at a fixed scale:
sis. The discussion will be limited to the one-dimensional
case, however, the theory is readily extended to higher di-  fq(X)=fq (X) +9q (X) +gq +1(X) + - - - +gq-1(X).
mensions. We begin by defining the general concept of a a7
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Ti,j=To,j,i=f ()T x—(j—i)]dx. (21)

The numerical values of these matrix elements have been
tabulated by Aria¥ for operatorsT=1, T=d/dx and T

=d?/dx2. In the case of a multiplication operatdvi; the
matrix elements take the form

(Moi,,:f SO-DI0Sx—Ddx. (22

2 The lack of a closed analytic expression #yrenforces us to
. . ; . - introduce an approximation at this point. Thus we invoke the
-3 -2 -1 0 1 2 3 identification
FIG. 2. lllustration of the decomposition expressed by the two- 1
scale relation Eq(10). The third-order interpolating scaling func- d(X—=)f(X)p(Xx—])=~ Ed)(x—i)f(j)(b(x—j)
tion (full line) is expanded in terms of its level 1 translatdstted
line).

1
5= d(x—]), (23
We have based our numerical scheme on the third-order
interpolating scaling functior(interpole} defined and dis- which is clearly a good approximation whéis slowly vary-
cussed in detail in Refs. 19,21. The relation between thisng over the support of the interpolet. Within this approxima-
scaling function¢ and its corresponding wavelet is par-  tion we obtain for Eq(22)
ticularly simple:#(x)= ¢(2x—1). Figure 2 shows the form
of the interpolet and its decomposition as expressed by the
two-scale relation. Apart from fulfilling a two-scale relation,
the interpolet has some nice properties:compact support, ) . )
(b) cardinality, and(c) third-order interpolation. Each of WhereS ;=(#(x—i),#(x—j)) is the overlap matrix.
these has useful implications. Propefdy renders the matrix
representation of any local operator sparse. Furthermore, it IV. THE BASIS SET
provides a means for decomposing the underlying function
space into subspaces containing functions with support in &
fixed region of space. This latter point is crucial in our case
since it allows us to separate the scattering region from th
leads. Propertyb) means that

1
(M) j=5[F(H+F(DIS (24)

The general Green’s function framework introduced in
c. Il relies on a basic assumption, namely on the compact
support of the basis functions in tlzadirection. In order to
facilitate this requirement we introduce the basis functions

z
¢(i)= 6.l €. (18) |in>:¢<d_z_i))(i,n(ri)u (25

Finally (c) ensures that any third order polynomial(x), where ¢ is the third-order interpolating scaling function and
is exactly reconstructed by an interpolation in terms ofd, is a characteristic length which is roughly given by the
¢(x—1) and its integer translates to scale on which the electron potential varies, see Sec. V. The
connection with the theory presented in the preceding section
) ) is then established by rescaling thexis byd,. The trans-
p(x):;z p(i) p(x—1i). (19 verse functionsy; , must be linearly independent for fixeéd
. but otherwise the method does not rely on their specific
For any function,(b) and (c) together imply that the expan- form_. Ideally, we would _prefer the_ transverse fu_nctions to
sion provide the same resolution as the interpolets do in the trans-
port direction. Depending on the boundary conditions, this
could be achieved by two-dimensional interpolets or plane
f(x)= E f(i)p(x—i) (20) waves. However, using such a basis set the size of the Hamil-
¥4 tonian matrix quickly exceeds the limits of what is compu-
tationally tractable. Consequently, we need a way of identi-
is exact at the integer points, and estimatés) to third  fying the most important parts of the transverse subspaces
order at noninteger points. with respect to transport properties.
In the fOIIOWing we consider the prObIem of Obtaining a |nspired by the adiabatic approxima‘l:iaﬁzl:3 we have
matrix representation of certain operators which are relevargdopted the following procedure. Lefiu)=¢(z/d,
for applications within quantum mechanjcs. The representa-_i)XM(ri), where they,, (not to be confused withy; ;)
tion of a translationally invariant operatdr with respect to  constitute a complete set of transverse functions. For each
the basig ¢(x—1i)}i.7 is determined by the matrix elements we set up the transverse Hamiltonian and overlap matrices

115404-4
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N AT I, i & the involved matrices. Consequently the Hamiltonian and
H, . (uHlip'), S'ML, (iu|Slip'). In the case of an

ultrasoft pseudopotentfdithe operatof includes a nonlocal overlfalp Am'atrlces er.lterlng qu) take the form<|n|H|jm>
part due to an augmentation charge, see Sec. , but otherwid@gd(in|S[jm). As discussed in Sec. | we are treating a sys-

5=1. Given these matrices we then solve the generalize m of noninteracting electrons moving in an effective mean-
eigeﬁvalue problem leld potential, and the Hamiltonian operator then takes the

single-particle form

H.cl=¢'S.c (26) 1
~ ) -
to obtain the lowesN,, transverse eigenstates. The full basis H=-— EV +V(N)+ Vi, (30)
set then consists of the functions of E@5) with the trans- .
verse functions at sitegiven by these eigenstates, i.e., where V(r) +Vy_ represents the mean-field potential with
\7NL denoting a nonlocal pseudopotential.
Xi,n(ri)zz Cin,MXM(U)' n=1,...N,. (27 In thg 'following we present the calculational procedure
© for obtaining the transverse functiong,,(r, ). We then pro-

ceed to describe how the effective DFT potential enters the

A nice feature of the basis set introduced above, is itg,ngctance calculations in practice. Finally a summary is
ability to capture the exact scattering states for the case of Given

conductor having a slowly varying potential in the transport
direction. For such systems we can apply the adiabatic ap-

proximation, which states that a scattering state at engrgy A. Transverse eigenfunctions

takes the forrff> In order to calculate the set of transverse functions
Xin(r.), we need for eachto solve the eigenvalue equation
Wen(Z,r)= e n(2) xzn(rL), (28)  given in Eq.(26). With the Hamiltonian of Eq(30) the ei-

where x, , for eachz is the nth eigenfunction of the trans- 9€nvalue problem becomes reminiscent of the two-
verse HamiltonianHZ= _%arz +V(z,r,). Within this ap- dimensional single-particle Schdimger equation. We apply
€L

. ) ) the supercell approathin the transverse plane. The system
proximation, the family of transverse modgs,, for a given

X _of interest then constitutes a single cell which is repeated
n constitute a so-called conductance channel. The slow Va”‘?ﬁfinitely. In this way a two-dimensional superlattice is

tion of the scattering potential implies that an electron i”i'formed, and both the potentis{r) and the nonlocal pseudo-
tially injected in a given channel remains in that channel

upon traversing the conductor, i.e., no scattering between t ct):ii r;tlefll_hoepzrda\:glri]/t,\; ge(;omii gen?g;ccgv Iitsh tLeaStpi(taillfthI?or
channels is induced. Since the conductance is determined j 9 PP

the scattering states at the Fermi level, the ability of th
applied basis set to represent these is expected to be an ig
sential issue. In the adiabatic limit we have the following
expansion:

e modeling of both surfaces, interfaces, and finite systems.

_the latter case one just has to make sure that a sufficient

amount a vacuum is added between the repeated structures.
Using the supercell construction described above we can

write the eigenfunctiong; (r,) as Bloch states

Ve, n(210)=2 v, alid)]i ), 29 Xink, (F)=€50uly (1), (31)

which follows from the interpolating property @ and the where ulnv'&(ri) is a periodic functionk, belongs to the
fact that|i,n) is a product of¢ and thenth eigenfunction of ~two-dimensional first Brillouin zone, and may be consid-
the transverse Hamiltonian at=id, . ered as a conductance channel index. Due to the discrete

In the general treatment of realistic atomic scale systemdranslational symmetry defined by unit vectors of the super-
the scattering between different channels implies that a scagell k, is conserved and the Hamiltonian and overlap matri-
tering state can no longer be identified by a single mode, angies are diagonal with respect to this variable. This in turn
the number of modesl,, which should be included in the implies that the Green’s function is diagonal with respect to
basis is not known in advance. It is, however, expected thdf. , and for a giverk, we can then independently calculate
low-energy modes are more important than high_energyhe conductanc&(k, ). The total conductance can finally be
modes. Thus by increasindy, the basis set expands in a well found by integrating over the two-dimensional Brillouin
controlled and physically meaningful manner. Moreover, thezOne
small overlap between neighboring interpolets and the fact
that (xi ol xi m)= Sn.m, €nsures that the basis set is almost G= f &G(k ) 32)

. . . et )

orthogonal, thereby preventing numerical instabilities. Qpz

whereQ g is the area of the first Brillouin zone. In practice
the integral is carried out by converting it into a finite sum
We use the trace formula given in E@) to calculate the Jdk, /Qgz— = w(k,), wherew(k,) represent the weights
conductance, and in Sec. IV it was argued that) of the discretek, points. For a given system the applied set
=¢(z/d,—1)xi n(r,) is a suitable basis set for evaluating of k, will depend on both the size and the shape of the

V. IMPLEMENTATION
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supercell and their number can often be significantly reduced Within the conductance calculations the effective DFT po-

by symmetry operations, see, e.g., Ref. 26. tential Ve is represented on a discrete real space grid. For
The next step is to select a suitable basis set for the evaldhe plane wave DFT calculation such a representation of the

ation of u'nki(rl). The basis set should span the space opotential is readily obtained using the discrete Fourier trans-

two-dimensional functions having the periodicity of the su-form. The real space resolution @f" in turn determines the
per lattice. In the current implementation plane waves aréumber and width of the basis functions given in E2f).
used but we stress that this choice is not unique. A differenfOr the transverse eigenfunctions,, (r.). the discrete
basis set, e.g., two-dimensional, periodic interpolets, couldeal space representation is chosen to have the same form as
also be applied. Now, expanding the transverse eigenstatestine transverse part of the effective potential thus the same
plane waves we obtain plane wave expansion is applied to the transverse eigenvalue
problem as in the DFT calculation. For the parallel basis
; functions we initially associate an interpolet with each grid
Xi’“vkl(rL):GE CL,‘&(GL”GL i) (33 point of V™ along thez-direction. The space spanned by the
) interpolets localized within the scattering region and the two
where|G, |k, )=(1/yA)e ki *CI" G, is a vector belong- first principal layer of the leads, i.e., the shaded region in
ing to the two-dimensional reciprocal lattice, aAdis the  Fig. 1, can be written as
area of the supercell. It is noticed that the expansion coeffi-
cientsc'n’ki(Gl) in Eqg. (33) can be identified with the vector

¢ appearing in Eq(26). The associated Hamiltonian and V0=spar{¢
overlap matrices are then obtained by replacipg with

|G, .k, ). In order to make the eigenvalue problem compu-yhereN, is the finite number of discrete real space points

tationally tractable the plane wave expansion needs to be R
. . L along thez direction. V, is, of course, a subspace of the
truncated. We do this by including in the plane wave expan-

sion only theN; smallest wave vectors along the direction of spacev, spanned by the interpolets Ioca}llzed alonglagis

. . . of the full system. We let these function spaces represent
each of the two reciprocal lattice vectdgs. In this way Eq. level 0
(26) has been reduced to Ay - N, d"?"e”S'O”?' matrix el- From Eq.(34) it is also seen that the number of scaling
genvalue problem and due to its scaling the eigenvectors can

) A o nctionsN, is equal to the number of plane waves used in
be found using standard matrix diagonalization mettfdds. the DFT calculation along the direction. For the systems

] . studied so far, it has proved possible to consistently reduce
B. Mean-field electron potential the dimensionality of the wavelet function space. This is

The mean-field electron potential is obtained from a self-achieved by replacind/, with the coarsefV_,; function
consistent DFT calculation and this potential then defines thepace
single-particle Hamiltonian of the system. In the present
treatment we use theacapo pseudopotential codeto gen- 7 N
erate the effective potential. It applies a plane wave basis set T/lzspar{ Pl = —i ) e [ 0,1, —— 1] ] (35
to iteratively diagonalize the Kohn-Sham equations. More 2d, 2
details on the implementation of the code can be found in ] o ]

Refs. 29-32. The DFT calculation is then performed for theReferring to Eq.(14) it is seen that this replacement corre-
scattering region and the first principal layers of the twosponds to leaving out the detail spatk ;. Even though the
leads, corresponding to the shaded area in Fig. 1. The supdmterpolets at levet- 1 are used in the basis set, the effective
cell approach is applied with periodic boundary conditions inpotential and the projectors associated with the pseudopoten-

all directions, including thez direction. This means that tjal can still be represented using the fiﬁ:Qj‘function space
within the DFT treatment when moving beyond the first prin-along thez-axis. This is facilitated by the scaling relation in
cipal layer of the right lead one enters the repeated first pringq. (10). More details are given in Appendix B.

cipal layer of the left lead. If the perturbations originating
from the scattering region are properly screened, the system
will be periodic in this region and both the electron density
and the effective electron potential are thus smoothly joined In the present calculations we apply two versions of the
at the interface between the two leads. This does not excludgarallel function spacéé, andV_, and hence the full three-

the possibility of investigating systems with different leads.gimensional basis set, E(QR5) can be rewritten as
In that case one can simply extend the two leads by including

additional crystal layers of the respective lead materials in q

the DFT calculation. The region that now separates the origi- 11:4:M:Ki) = &1(2)xink (1),  where (q=-1,0),

nal parts of the leads should be chosen to be sufficiently (36)
large so that it comprises all the perturbations due to the

presence of the inhomogeneous interface. This spurious pasthere the notationp(z) = ¢[z/(2%,)—i] has been intro-

of the electron potential is then simply omitted in the con-duced. Correspondingly the basis set used for solving the
ductance calculation. transverse eigenvalue equation becomes

di—i):ie{o,l,.--,NZ—l} CVo, (34

C. Summary
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li,q,G, ,ki):%ﬁ(z)e‘@rm where (q=—1,0).
(37

For these two basis sets the explicit forms of the inner prod- @
ucts associated with the operatétsandS are given in Ap- & o5
&

Y

pendix B. It is noticed that the numberrefers to the level of
the applied scaling function space. Choosipg—1 reduces
the size of the basis set in E(6) by a factor of 2. Conse-
quently the size of the matrices entering Ef) becomes >
significantly smaller and this in turn allows for the investi- 0 , L
gation of larger systems that could otherwise not be treated 0 05 1

using g=0. For a given system consistency between the E (Vy)

results obtained for the two function spaces should, of

course, always be ensured.

Vo

1.5

FIG. 3. Conductance of a one-dimensional step potential. The
full line represents the exact result while the points indicate the

calculated values. The used parameters larel6a, and V,
VI. TESTS AND APPLICATIONS =1.0 Ha.

In this section the derived scheme for calculating the con;[iv Kohn-Sham potentials are obtained from self-consistent
ductance will be applied to a number of different systems FeT OI -I t'a p;o eth ats are Ot ained from sefi-consiste
First we investigate a one-dimensional system for which arP calcuiations for the two Systems.

exact analytical solution exists. We then calculate the con- Since the Ieaf:Is are seml-lnfl_nlte ‘_"‘_”d pe_rlodlc, the scatter-
ing states can in general be identified with left and right

ductance of infinite monatomic Al and Au wires. These sys- . AT . -
tems serve as test cases for our method. Finally, we invest!'°VN9 B.Ioch.states. Fpr the m.f'n't.e wires the scattering
§ gion is identical to a single period in the leads, and there-

how r ms aff h n n f ay .
gate how adsorbed atoms affect the conductance o al[c?Jre the Bloch states do not undergo any scattering at all.

otherwise perfect Al wire. .
It should be mentioned that for several metals includingo‘Ccordlng to the Landauer formula the conductance then

Au atomically thin wires can actually be produc€d®®Due becomes
to the low coordination of the atoms in such systems, the 2e2
chemical properties are expected to differ significantly from G(e)= TN(S), (39

those of the corresponding bulk systems. In particular the

reactivity toward adsorption of light atoms incread®¥,and  where N(&) denotes the number of bands existing at the
the presence of impurity atoms must be expected even undghergye.

ultrahigh vacuum conditions. Under these circumstances The calculated conductance for an inifinite monatomic Al
conductance measurements might provide information aboufire is shown in the upper left panel of Fig. 4. The conduc-
the actual composition of the wires.

4 4
A. One-dimensional system ~3 s i
We consider a one-dimensional step potential of the form ‘E = x2
indicated in Fig. 3. For this system the transmission probabil- 51 b4 /
ity for an electron incident with the energy, has an exact f \ -6
analytic expressioll and using the Landauer formula the °g & = = o 2 B 02 04 06 08 1 12
conductance becomes (E-Ep)eV) KA
2e2[  VisiP(al)]"? ;
G(S)_T 1+m , (38 “‘§3
&2
where a=\2m(e+V,)/A? and L, V, are the length and 1 ot
depth of the step potential, respectively. In Fig. 3 the calcu- o S e o o o T s 6

lated values for the conductance are seen to be in complet E-En)(eV) 02 04 535,08 10
agreement with the analytic result.

FIG. 4. Infinite monatomic Altop) and Au(bottom) wires. Left:
Calculated conductance for a discrete set of energies. Lines have
been added as guides to the eye. Right: DFT band structures. The

We have also investigated the conductance of infinitqattice constant of the AlAu) wire is 2.39 A (2.62 A) and the
monatomic wires. Two different metals are used Al and Aurepeated wires are separated by 7.8 A). For the conductance
for which the ionic cores are described by ultrasoftcalculationN,=30 (N,,=200) and the two-dimensional Brillouin
pseudopotentialé With these psedudopotentials the effec- zone integration is performed with tfie point only.

B. Infinite monatomic wires
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Adsorbate L S B S
~3 H adsorbed
y = 7| -- Infinite Al wire !
(\l(3 2_ i
:‘ 2 | ]
z A 0 .
x Central Al ~1Ir — Al(s+p)
> -- H(s)
FIG. 5. Al wire with an impurity atom adsorbed on the side. The & - Allp)
conductance has been calculated for H and O adsorbates. 8 3
064 0 2

tance is seen to be quantized in integer steps &I as
expected from the discussion above. Comparing with the
DFT band diagram shown in the upper right part of Fig. 4, FiG. 6. Conductance of an Al wire with an H atom adsorbed on
these integers are seen to be equal to the number of bangkg side. The lower panel shows the DOS projected onto different
existing in the examined energy window. For future refer-atomic orbitals of the H and central Al atoms.

ence, we remark that the states of the doubly degenerate

band havep, andp, character, respectively, while the bands
just above and below have a&p, character(as usuak de-

2
(E-Ep)(eV)

H atom and the central Al atoms. A peculiar feature of the

notes the wire axis The conductance of a monatomic Au conductance curve s the drpp to zero at an energy of
wire has also been investigated and the calculated conduc-2-2 €V- At this point the projected density of states on the
tance is shown together with the corresponding DFT band! S State and the central Alp, orbitals are comparable in
diagram in the lower panel of Fig. 4. magnitude and the vanishing conductance is likely to arise

Both conductance calculations have been converged witRecause of destructive interference. Above the band gap the
an error margin of 0.3 eV with respect to the DFT bandhydrogen is seen to cause a lowering of the conductance by
diagrams. For Al this was achieved witt,=30, whereas approximately G, indicating that a channel has been
Au requiredN,,= 200. Using a norm-conserving Au pseudo- closed. For symmetry reasons, thgband cannot mix with
potential does not improve the convergence thus suggestirfje other bands, and consequently this channel is expected to
that the slower convergence is due to the presence of th@main almost intact. Indeed, the ADOS for thepjlorbitals
localized Aud electrons. This, of course, limits the size of turn out to differ only slightly from thep, band of the infi-
systems that can be treated involving transition metal atomgiite wire. On the other hand the spectral weight of e
orbitals on the central Al atoms is shifted down below the
bottom of thep, band, thereby effectively closing this chan-
) _ nel, see Fig. 6. The calculated conductance with O adsorbed

The presence of adsorbates on a wire causes scattering gf the wire is shown in the upper panel of Fig. 7. The lower
the Bloqh electrons and conseque_ntly the sharp conductan_?fana shows the ADOS for the orbitals of the central Al
steps displayed by the perfect wire are destroyed. In thigioms, The resonance displayed by the conductance at the
sectlon we study t_h|s effect in the case of H and O adsorbeggtiom of thesp, band coincides with peaks in ADOS for
on an infinite Al wire. o the Al p, orbital and the Qp, orbital (not shown. Above the

The configuration is sketched in Fig. 5. .The adsorbate angj;nq gap, the conductance is lowered by approxima®@ly, 2
the two nearest Al atoms were relaxed within a supercell obng the ADOS indicate that this is due to a redistribution of

fixed dimensions. The resulting _Koh_n-Sham potential wasgpe spectral weight of the, and p, orbitals toward lower
used to model the scattering region in the conductance Ca@a‘nergies.

culations, while the potential of the perfect Al wire was used
for the leads. In order to ensure charge conservation, the
potentials were aligned with respect to the Fermi levels.
Figure 6 shows the calculated conductance for the Al wire 2
with H adsorbed. As expected the adsorbate lowers the con- B2
ductance of the wire. In order to understand the more de- o
tailed features of the conductance curve, we have also calcu- A —
lated the atom-projected density of stat@®OS) from the ~ ‘ '
self-consistent DFT eigenstates, see lower panel of Fig. 6. BN
Thes orbital of H has a finite spectral weight coinciding with 1
the sp, band of the wire, thus indicating a hybridization of 8
these states. Much of treeand p, orbitals of the central Al 0
atoms goes into the bound state lying just below the band, -
and in the conductance curve this is reflected as a reduction
of the ideal conductance of abougd. However, the Ak, p, FIG. 7. Conductance of an Al wire with an O atom adsorbed on
orbitals still contribute to thep, band and thus the current the side. The lower panel shows the DOS projected onto different
carried by thesp, states is expected to flow through both the atomic orbitals of the central Al atoms.

C. Effects of adsorbed impurities

. ; .
— O adsorbed ]
[ —- Infinite Al wire !

i
(E-ED(eV)
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VIIl. SUMMARY we have thatH;=H;, H;; ;=Hy,. Similar relations, of

We have described a numerical method for calculating th&OUrse. hgld for the overlap matrices. Using the compact
conductance of a phase-coherent system in the lineaflotatione ™ =e+iz, the self energy due to the left lead
response regime. Both the scattering potential and the pote@iven in Eq.(5b) can be rewritten as
tial in the ballistic leads are modeled by an effective potential R N (O)R ot +
obtained from a self-consistent DFT calculation. 3(e)=[e"Sq—Hs]oi1y (e)le "Sg;—Hgl, (A2)

The main focus has been on the numerical implementa-

tion. In particular we have given a detailed account for theVnere the subscript “S1” indicates the matrix elements be-

construction and application of a basis set consisting ofVeen the scattering region and the first principle layer.

wavelets with compact support in the direction of transportEduation (A2) shows tha_tg(ﬁ)’R is th% OR”W quantity that

and two-dimensional solutions of the Kohn-Sham equatiomeeds to be calculated in E¢A1). giY" can in turn be

in the transverse plane. obtained from the following set of recursive matrix equa-
Finally, we have studied the effect of adsorption on thetions:

conductance of an infinitely long, atomically thin Al wire, o R o R

and found that the presence of hydrogen and oxygen effec- [e*S—Hi]giPR=1-[2" S~ Hilgh) R, (A3a)

tively reduces the conductance of the wire by, respectively,

one and two conductance quanta. [67S —Hi1g 9 R=—[e" S, HL1gO T,
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The Center for Atomic-scale Materials Physics is spon-with n=2,3,... . Asimilar approach applies to the right

sored by the Danish National Research Foundation. We adead. The iterative decimation technidigrovides an effi-
knowledge support from the Danish Center for Scientificcient and rapidly convergent method for obtainigﬁ)'R
Computing through Grant No. HDW-1101-05. We thankfrom the above equations_

Lars Bruno Hansen for assistance with the implementation of

the ultrasoft pseudopotentials. APPENDIX B: EVALUATION OF MATRIX ELEMENTS

APPENDIX A: DETERMINATION OF LEAD GREEN'S In this section the explicit forms of the matrix elements
FUNCTIONS needed for constructing the Hamiltonian and overlap matri-

This appendix describes the calculational procedure fof€S for POth thilfu” Sﬁtzrg’ Eg2), and fotr ghe#;ana/ers_(la
finding the isolated lead Green's functigf?’R(e), given in ~ S'9envaiue probiem, 926), are presented. The Hamil-

Eqg. (5¢). In Sec. Il B it was argued that the semi-infinte Ieadstonlan operator and the overlap operators have the form, see

can be divided into principal layers that are coupled only tOSec. v

their nearest neighbors. This was facilitated by the use of

basis functions with compact support. For the left lead I:|=—£V2+V(r)+\A/NL (Bla)
Green’s function the following matrix equation is then ob- 2
tained: o
S=1+ QNL! (Blb)
7S;—Hy  zSh,—HI, 0 where Vy, and Q. are the nonlocal operators associated
" T with the ions described by ultrasoft pseudopotentidls.
zS3~Has zS,—Hy  zS,,—Hp, It is our aim to obtain a matrix representation of these
0 zS;,—Hy, zS,—H; operators with respect to the basdsq,nk, ) and

li,q,G, .k, ), defined in Eqs(36) and(37). In both casesj
represent the level of the applied scaling functions and in the

((;) o ((;) o present implementation it can take the values 0 arid By

0).R A . ; .
O33 O32 9(31) application of the scaling relatiofll0), the inner products
X1 ... 9(2%)’R g(Z%)R g(Z%)R involving q= —1 scaling functions can for a general linear

(0),R operatorA be rewritten as

0)R ~(0)R
Ji3 9(12) 9(11)

(i,—1nk |Alj,—1mk,)

:2 ak,i<k,0,n,kJ_|A||,O,m,kl>a|,j, (BZ)
(Al) Kl

I
o O
o » O
= O O

where theq; are the scaling coefficients. A similar relation

holds for the functiondi,q,G, ,k,). Thus when theV_,
where the subscripts refer to the principal layer in the leadbasis set is used, the inner products can be recast as a sum of
Due to the periodicity of the electron potential in the leadsinner products involvingy=0 interpolets only. As discussed
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in Sec. V B this allows us to expand, e.g., the local potential 2. Nonlocal operators
in terms of the; () while the interpolets of the basis set  The general form of the nonlocal pseudopotential operator
belong to the coarser_, function space. is

In the remainder of this section we state the explicit rep-
resentations of the operators entering 81). We first focus . R
on the local operators,1V2, andV(r) and we then derive VNL:%I |B1)D1 i Bl (B5)
the representation for the nonlocal pseudopotential operator.
It is noted that the inner products are only given in terms Olyhere the index ranges over all ions in the system dgi)
theq=0 basis sets and thgindex is thus omitted for clarity. s 4 |ocalized function centered at idnit should be noted
Furtfermqre, the following notatiog-|-), =fdr, and (- that the definition of the non-local operat@y, is equiva-
|-)y=/dzis used. lent to Eq.(B5), the only difference being the matrix ele-
mentsD, . Hence we focus here OV, . In the same way

as the local electron potential, the projector functiqﬂfnér)

The basis set used for eVaIUating the full Hamiltonian an%re evaluated on a real space gnd They can now be ex-
overlap matrices yields panded as

jvmvki>:<¢i|¢j>|\ v<Xn,kL|Xm,ki>L (B3a

<i ,n,kL|V2|j vm'kl>:<¢i|(9§|¢j>||<Xn,kL|Xm,kl>J_

i = . iGyry i
+<d’i|¢1>H<X”:M|Vi|xm"‘i>i ’ mgerr\ilrlnl’(i‘:gl oét/r@r(ﬁr;gv)vebeco.m-rehe matix elements for

1. Local operators

(i,nk, |1

ﬁ|<r>=i§ Bi(id,,G)|i,G,), (B6)

(B3b)

ik Vg lismk )y =20 (ink 8D} (Bili,mk
e VM) = (g Ve IVl M= (i BDDLGA k)

(B7a)
+V(jdzarL)]|Xm,ki>J_i (B3¢ .
i,Gl k, |Vyli,G, k
where in Eq.(B3b) it is used thatv?=4+ V7 . In order to < Vi Gk
obtain the expression for the local potential E24) is ap- _ N p! /i
plied. For the transverse eigenvalue problem the basis |§|:‘ (L.GL k. [B)D1 (AT GL ko),
li,G, ,k,) is used. The corresponding representations of the B7b
local operators now become (B70)
. where
<i’G, ikJ_|1|i!GJ_ !kJ_>:<¢i|¢i>H<G, 'kL|GJ_ ’kﬁL
(B4a) . | ! H ’
. ) , <':nak¢|ﬂ|>:2 (bildi){xnk |G LBI(jd;,G])
(i,G, vkL|VrL||vG, 1kL>:<¢i|¢i>H<GJ,_ 1ki|VrL|GL K)o .G,
(B4b) (Bsa
<i16, 1kL|V(Z!rL)|ilGL !kL> . ’ . ’
. _ (i,G. ki |B)=2 (il ¢)(Gy k. |G]), Bi(id,,GL).
:<¢i|¢i>\l<G, ikJ_|V(|d21rJ_)|GJ.ka.>J_! 1.6} B8b
(B4c) (B8D)

where it is noticed in Eq(B4b) that the parallel part of the It should be emphasized that when tTV\el function space is
Laplaceanﬂ§ has been omitted since this term only contrib- used, the projectors just as the local potential can still be
utes to the Hamiltonian in the eigenvalue problem with aexpanded in terms of interpolets at level 0. The matrix ele-
constant shift in the energy. ments can then simply obtained by application of EBR).
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