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Conductance calculations with a wavelet basis set

K. S. Thygesen, M. V. Bollinger, and K. W. Jacobsen
Center for Atomic-scale Materials Physics, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

~Received 30 August 2002; published 12 March 2003!

We present a method based on density functional theory~DFT! for calculating the conductance of a phase-
coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated
on the same footing taking their full atomic and electronic structure into account. The linear-response conduc-
tance is calculated from the Green’s function which is represented in terms of a system-independent basis set
containing wavelets with compact support. This allows us to rigorously separate the central region from the
contacts and to test for convergence in a systematic way. The method supports the use of both norm-conserving
and ultrasoft pseudopotentials. We use the method to study the effect of adsorbates on the conductance of an
infinitely long, atomically thin Al wire, and find that hydrogen and oxygen effectively reduce the conductance
of the wire by one and two conductance quanta, respectively.

DOI: 10.1103/PhysRevB.67.115404 PACS number~s!: 73.63.2b, 72.15.2v, 71.15.2m, 85.35.2p

I. INTRODUCTION

The study of electron transport in atomic scale systems is
becoming increasingly important as the miniaturization of
electronic devices proceeds. It is thus of great relevance to
establish the connection between the microscopic character-
istics of an electronic system, such as the atomic configura-
tion and electronic structure, and transport properties such as
the electrical current and conductance. Owing to the com-
plexity of the problem, such studies are strongly dependent
on the existence of reliable numerical treatments based on
first-principles approaches.

In this paper we present a numerical approach to the cal-
culation of the conductance of a phase-coherent system
based on density-functional theory. In the past decade a few
different approaches to this problem have been suggested.
They all rely on or are equivalent to the Landauer-Bu¨ttiker
description1 of the electronic transport in which the conduc-
tance is obtained from the transmission matrix for a scatter-
ing region connecting two ballistic leads—and our method is
no exception in this respect.

One approach to the scattering problem is to directly cal-
culate the scattering states from which the transmission co-
efficients can be obtained. This is, for example, the case in
the method developed by Lang2 where the scattering states
for a scattering region connecting two free-electron elec-
trodes are calculated from the Lippman-Schwinger equation.
The electronic scattering potential is identified with the ef-
fective potential as defined in density-functional theory
~DFT!, and this potential is then determined self-consistently
together with the electron density. The scattering states can
alternatively be calculated using a recursion-matrix method
as demonstrated by Hirose and Tsukada3 or using a wave-
function-matching approach as shown by Choiet al.4,5 The
scattering-state approach provides a direct real-space picture
of the scattering processes, however, only in a few cases a
more realistic atomic and electronic structure of the leads has
been taken into account.4

The conductance can alternatively be calculated within a
Green’s function approach. The relation between the conduc-
tance and the Green’s function has for example been derived

within the nonequilibrium Keldysh formalism.6 This ap-
proach requires an explicit separation of the system into
leads and a scattering region, and the conductance is then
expressed exclusively in terms of the Greens’s function for
the scattering region. The properties of the leads enter only
through self-energy corrections to the Hamiltonian of the
scattering region. The approach has been used extensively in
connection with tight binding models, where it is straightfor-
ward to divide up states as belonging to either leads or scat-
tering region.7–10Recently the Green’s function approach has
also been combined with DFT with the aim of calculating
currents and atomic/electronic structures fully self-
consistently in the presence of an applied bias voltage. The
entire system is then described within DFT, using localized
basis sets consisting of either atomic orbitals11,12 or
Gaussians.13

In this paper we present a numerical way of calculating
the scattering Green’s function and the conductance within
the DFT framework. The main difference between our
method and those of Refs. 11–13 lies in the choice of basis
set. While Refs. 11–13 use localized orbital functions cen-
tered on the atoms we use a system-independent basis set in
the transport direction consisting of wavelets. For the trans-
verse degrees of freedom a basis set consisting of solutions
to the two-dimensional Kohn-Sham equation is used. The
wavelets have compact support making the separation of
leads and scattering region very simple. Furthermore they
allow for multiresolution analysis and for a systematic check
of basis set convergence.

The method has been implemented in the low-bias linear-
response regime and tested on atomically thin metal wires. In
particular we have studied how the adsorption of gas atoms
modifies the conductance of an Al wire. Adsorption of both
hydrogen and oxygen is seen to strongly affect the conduc-
tance.

The paper is organized as follows. In Sec. II we introduce
the Green’s function formalism and the expression for the
conductance. A general introduction to wavelets including a
discussion of the third-order interpolating wavelet used in
the present approach is given in Sec. III. We then describe
how to generate the basis functions in Sec. IV, and explain in

PHYSICAL REVIEW B 67, 115404 ~2003!

0163-1829/2003/67~11!/115404~11!/$20.00 ©2003 The American Physical Society67 115404-1



detail how the connection to DFT is established and in par-
ticular implemented in Sec. V. Some tests and applications
are presented in Sec. VI, and finally a summary is given in
Sec. VII.

II. GENERAL THEORY

In this section we describe the theoretical basis for the
conductance calculations. The general system setup and the
conductance formula are presented, and we discuss how the
coupling to the leads is taken into account.

A. System setup and conductance formula

We consider the transport of non-interacting electrons in a
system which can be divided into three regions~see Fig. 1!:
A scattering region (S), a left lead (L), and a right lead (R).
The leads are metallic and connect the scattering region with
two thermal reservoirs that are maintained at the chemical
potentialsm1 andm2. The electrons injected from the reser-
voirs move ballistically through the leads and all scattering
events are thus taken to occur in the scattering region. Only
elastic scattering is considered and hence the electrons move
coherently between the reservoirs. The left and right leads
are assumed to couple only indirectly via the scattering re-
gion and the Hamiltonian matrix of the entire system there-
fore takes the form

H5S HL HSL
† 0

HSL HS HSR

0 HSR
† HR

D , ~1!

where theH i themselves are matrices. The vanishing cou-
pling between the two leads is obtained by using a basis set
with compact support in the direction of the electron trans-
port, the z direction in Fig. 1. Furthermore the scattering
region has to be large enough so that nonlocal contributions
to the Hamiltonian~from, for example, nonlocal pseudopo-
tentials! do not cause a direct coupling.

We shall not assume, however, that the basis functions are
orthogonal. The nonorthogonality has been taken explicitly
into account in a recent derivation of the conductance for-
mula presented in Ref. 13, where the following definitions
and formula are explained in greater detail.

The matrix representation of the retarded Green’s function
GR(«) is defined as14

S zSL2HL zSSL
† 2HSL

† 0

zSSL2HSL zSS2HS zSSR2HSR

0 zSSR
† 2HSR

† zSR2HR

D
3S GL

R GLS
R GLR

R

GSL
R GS

R GSR
R

GRL
R GRS

R GR
R
D 5S 1L 0 0

0 1S 0

0 0 1R

D , ~2!

where theSi are overlap matrices andz5«1 ih, h being a
positive infinitesimal. With this definition the matrix Green’s
function in general differs from̂i u@(«1 ih)1̂2Ĥ#21u j &, but
the two quantities are related through

^ i u@~«1 ih!1̂2Ĥ#21u j &5~S•GR~«!S! i j . ~3!

For an orthogonal basis set the matrix Green’s function be-
comes equal to the left hand side of Eq.~3! and the distinc-
tion becomes irrelevant.

The current due to noninteracting electrons moving in a
~mean-field! electron potential is then given by13

I 5
2e

h E d« Tr@GS
R~«!GL~«!GS

A~«!GR~«!#

3@nF~«2m1!2nF~«2m2!#, ~4!

where nF(«) refers to the equilibrium Fermi distribution
function and the trace runs over the scattering region only.
The central quantity of this relation is the Green’s function
for the scattering regionGS

R(«)

GS
R~«!5@~«1 ih!SS2HS2SL

R~«!2SR
R~«!#21, ~5a!

Si
R~«!5@~«1 ih!SSi2HSi#gi

(0),R~«!3@~«1 ih!SSi
† 2HSi

† #

~5b!

gi
(0),R~«!5@~«1 ih!Si2H i #

21,i 5~L,R!, ~5c!

whereSi
R(«) is the self energy due to the left (i 5L) or right

( i 5R) lead andgi
(0),R(«) is the Green’s function of the iso-

lated left or right lead. In Eq.~4! the advanced Green’s func-
tion is given by the usual relationGS

A(«)5@GS
R(«)#† and the

Gi(«) matrices are obtained from the self-energies

Gi~«!5 i ~Si
R~«!2@Si

R~«!#†!. ~6!

The current formula in Eq.~4! is seen to be on the same form
as the original expression for the current derived in Ref. 6.
The difference is, however, that Eq.~4! is strictly a matrix
expression and is derived for the general case where the sub-
spaces of the two leads and the scattering region are allowed
to be nonorthogonal.

The relation between the current formula Eq.~4! and the
Landauer-Bu¨ttiker approach can be established by noting
that the transmission matrixt(«) is given by15

t~«!5@GR~«!#1/2GS
R~«!@GL~«!#1/2. ~7!

Substituting this expression into Eq.~9! leads to the well
known Landauer-Bu¨ttiker formula

FIG. 1. Schematic setup of the system. It is divided into three
regions: the scattering region (S), and the left~L! and right lead
(R). The leads connect the scattering region with two thermal res-
ervoirs that are maintained at the chemical potentialsm1 and m2.
The numbering of the leads refers to the division into principal
layers.
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I 5
2e

h E d« Tr@ t†t#@nF~«2m1!2nF~«2m2!#. ~8!

The current formula in Eq.~4! is also valid for nonequi-
librium electron transport. However, this property will not be
utilized in the present treatment where we shall focus on the
linear response conductance. Assuming the difference be-
tween the chemical potentialsm1 and m2, to be small, the
current in Eq.~4! becomes linear in the applied voltageeU
5(m12m2). The conductanceG5I /U is then given by

G5
2e2

h
Tr@GS

R~«!GL~«!GS
A~«!GR~«!#«5«F

, ~9!

where the Green’s functions are now to be evaluated at the
Fermi energy«F . Equation~9! represents the starting point
for the present approach. From Eq.~5! it is seen that in order
to obtain the Green’s function of the scattering region one
needs to calculate the self-energies due to the leads. The
calculation of these quantities and in particular the problem
of coupling the semi-infinite leads to the scattering region
will be addressed in the next section.

B. Coupling to leads

In the present treatment each of the leads will be taken to
be semi-infinite. Since the electrons move ballistically
through these regions the leads must be periodic and re-
semble the bulk metal. As a consequence the scattering re-
gion should be chosen sufficiently large so that it comprises
all the perturbations on the electron system due to the pres-
ence of scatterers. In practice such perturbations are rapidly
screened by the electron gas and the mean-field electron po-
tential is expected to decay to its bulk value over a few
atomic layers. In the leads the electron potential will have the
periodicity of the underlying bulk crystal but in order to
calculate the isolated lead Green’s functiongi

(0),R(«), one
still needs to invert matrices of infinite dimension. This prob-
lem is solved by the use of localized basis functions that
allows us to divide the leads into so-called principal
layers,16,17 see Fig. 1. The length of such a layer should be a
multiplum of the bulk lattice constant and chosen large
enough so that each layer only couples to its two neighboring
layers. This also implies that the scattering region will only
interact with the first principal layers of the leads, labeled 1
in Fig. 1. The problem of findinggi

(0),R(«) is thus reduced to
that of finding the surface Green’s function of the isolated
leads, i.e., the Green’s function of the first layer. In practice
we do this by using the efficient iterative decimation
technique.18 More details on the calculation of the lead
Green’s functions are given in Appendix A.

III. WAVELET THEORY

This section serves as a brief introduction to the most
basic concepts of wavelet theory and multiresolution analy-
sis. The discussion will be limited to the one-dimensional
case, however, the theory is readily extended to higher di-
mensions. We begin by defining the general concept of a

multiresolution analysis~MRA!. This construction makes
precise the idea of analyzing functions on different scales
and it offers a natural framework for the discussion of wave-
lets. After this general introduction, we consider a specific
MRA, namely, the one associated with the third-order inter-
polating wavelet.19 This is the wavelet underlying the basis
set employed in the present treatment. We end the section
with a discussion of some desirable features of this wavelet.
A more detailed introduction to wavelets can be found in
Ref. 20.

Let f(x) be a localized function satisfying

f~x!5(
i PZ

a if~2x2 i !. ~10!

We say thatf(x) satisfies a two-scale relation with two-scale
coefficients$a i%. From f(x) we can define a sequence of
subspaces by

Vq5span$f~2qx2 i !: i PZ%. ~11!

The integerq is referred to as the level of the subspace. To
characterize these subspaces further, we note that a function
f (x) belongs toV0 exactly when f (2qx) belongs toVq .
Furthermore it follows from Eq.~10! thatVq#Vq8 whenever
q<q8. The subspaces$Vq% provide an increasing sequence
of approximation spaces: projecting a functionf onto theqth
subspace produces an approximation, which converges tof
asq→`. The family of subspaces$Vq% constitutes an MRA
with scaling functionf(x). If h denotes the width off, the
approximation spaceVq will be capable of resolving details
down to a length scale of the order 22qh.

Supposec(x) is a function inV1 such that the subspace
W05span$c(x2 i ): i PZ% fulfills the conditions

V01W05V1 , ~12!

V0ùW05$0%. ~13!

Defining the subspaces$Wq% according to Eq.~11! with f
replaced byc, the following general relations can be shown
to hold

Vq1Wq5Vq11 , ~14!

VqùWq5$0%. ~15!

Clearly, the subspaceWq contains the details ofVq11 not
captured byVq . For this reasonWq is referred to as the
detail space at levelq. By applying these relations repeatedly
we obtain the decomposition (q.q0):

Vq5Vq0
1Wq0

1Wq0111•••1Wq21 , ~16!

where all subspaces on the right hand side are mutually dis-
joint in the sense of Eq.~15!. The functionc is called the
wavelet of the MRA. Employing the decomposition Eq.~16!,
any function f q in Vq can be written as a sum of functions
each carrying the details off q at a fixed scale:

f q~x!5 f q0
~x!1gq0

~x!1gq011~x!1•••1gq21~x!.
~17!
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We have based our numerical scheme on the third-order
interpolating scaling function~interpolet! defined and dis-
cussed in detail in Refs. 19,21. The relation between this
scaling functionf and its corresponding waveletc is par-
ticularly simple:c(x)5f(2x21). Figure 2 shows the form
of the interpolet and its decomposition as expressed by the
two-scale relation. Apart from fulfilling a two-scale relation,
the interpolet has some nice properties:~a! compact support,
~b! cardinality, and~c! third-order interpolation. Each of
these has useful implications. Property~a! renders the matrix
representation of any local operator sparse. Furthermore, it
provides a means for decomposing the underlying function
space into subspaces containing functions with support in a
fixed region of space. This latter point is crucial in our case,
since it allows us to separate the scattering region from the
leads. Property~b! means that

f~ i !5d i ,0 ,i PZ. ~18!

Finally ~c! ensures that any third order polynomial,p(x),
is exactly reconstructed by an interpolation in terms of
f(x2 i ) and its integer translates to

p~x!5(
i PZ

p~ i !f~x2 i !. ~19!

For any function,~b! and ~c! together imply that the expan-
sion

f̃ ~x!5(
i PZ

f ~ i !f~x2 i ! ~20!

is exact at the integer points, and estimatesf (x) to third
order at noninteger points.19

In the following we consider the problem of obtaining a
matrix representation of certain operators which are relevant
for applications within quantum mechanics. The representa-
tion of a translationally invariant operatorT̂ with respect to
the basis$f(x2 i )% i PZ is determined by the matrix elements

Ti , j5T0,j 2 i5E f~x!T̂f@x2~ j 2 i !#dx. ~21!

The numerical values of these matrix elements have been
tabulated by Arias19 for operatorsT̂51̂, T̂5d/dx and T̂

5d2/dx2. In the case of a multiplication operator,M̂ f the
matrix elements take the form

~M f ! i , j5E f~x2 i ! f ~x!f~x2 j !dx. ~22!

The lack of a closed analytic expression forf, enforces us to
introduce an approximation at this point. Thus we invoke the
identification

f~x2 i ! f ~x!f~x2 j !'
1

2
f~x2 i ! f ~ j !f~x2 j !

1
1

2
f~x2 i ! f ~ i !f~x2 j !, ~23!

which is clearly a good approximation whenf is slowly vary-
ing over the support of the interpolet. Within this approxima-
tion we obtain for Eq.~22!

~M f ! i , j5
1

2
@ f ~ i !1 f ~ j !#Si , j , ~24!

whereSi , j5^f(x2 i ),f(x2 j )& is the overlap matrix.

IV. THE BASIS SET

The general Green’s function framework introduced in
Sec. II relies on a basic assumption, namely on the compact
support of the basis functions in thez-direction. In order to
facilitate this requirement we introduce the basis functions

u in&5fS z

dz
2 i Dx i ,n~r'!, ~25!

wheref is the third-order interpolating scaling function and
dz is a characteristic length which is roughly given by the
scale on which the electron potential varies, see Sec. V. The
connection with the theory presented in the preceding section
is then established by rescaling thez axis bydz . The trans-
verse functionsx i ,n must be linearly independent for fixedi,
but otherwise the method does not rely on their specific
form. Ideally, we would prefer the transverse functions to
provide the same resolution as the interpolets do in the trans-
port direction. Depending on the boundary conditions, this
could be achieved by two-dimensional interpolets or plane
waves. However, using such a basis set the size of the Hamil-
tonian matrix quickly exceeds the limits of what is compu-
tationally tractable. Consequently, we need a way of identi-
fying the most important parts of the transverse subspaces
with respect to transport properties.

Inspired by the adiabatic approximation,22,23 we have
adopted the following procedure. Letu im&5f(z/dz
2 i )xm(r'), where thexm ~not to be confused withx i ,n)
constitute a complete set of transverse functions. For eachi
we set up the transverse Hamiltonian and overlap matrices

FIG. 2. Illustration of the decomposition expressed by the two-
scale relation Eq.~10!. The third-order interpolating scaling func-
tion ~full line! is expanded in terms of its level 1 translates~dotted
line!.
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Hm,m8
i

5^ imuĤu im8&, Sm,m8
i

5^ imuŜu im8&. In the case of an

ultrasoft pseudopotential24 the operatorŜ includes a nonlocal
part due to an augmentation charge, see Sec. , but otherwise
Ŝ51̂. Given these matrices we then solve the generalized
eigenvalue problem

H i
•cn

i 5«n
i Si

•cn
i ~26!

to obtain the lowestNm transverse eigenstates. The full basis
set then consists of the functions of Eq.~25! with the trans-
verse functions at sitei given by these eigenstates, i.e.,

x i ,n~r'!5(
m

cn,m
i xm~r'!, n51, . . . ,Nm . ~27!

A nice feature of the basis set introduced above, is its
ability to capture the exact scattering states for the case of a
conductor having a slowly varying potential in the transport
direction. For such systems we can apply the adiabatic ap-
proximation, which states that a scattering state at energyE
takes the form22,23

CE,n~z,r'!5cE,n~z!xz,n~r'!, ~28!

wherexz,n for eachz is the nth eigenfunction of the trans-
verse HamiltonianHz52 1

2 ] r'
2 1V(z,r'). Within this ap-

proximation, the family of transverse modesxz,n for a given
n constitute a so-called conductance channel. The slow varia-
tion of the scattering potential implies that an electron ini-
tially injected in a given channel remains in that channel
upon traversing the conductor, i.e., no scattering between the
channels is induced. Since the conductance is determined by
the scattering states at the Fermi level, the ability of the
applied basis set to represent these is expected to be an es-
sential issue. In the adiabatic limit we have the following
expansion:

CEF ,n~z,r'!5(
i

cEF ,n~ idz!u i ,n&, ~29!

which follows from the interpolating property off and the
fact thatu i ,n& is a product off and thenth eigenfunction of
the transverse Hamiltonian atz5 idz .

In the general treatment of realistic atomic scale systems,
the scattering between different channels implies that a scat-
tering state can no longer be identified by a single mode, and
the number of modesNm which should be included in the
basis is not known in advance. It is, however, expected that
low-energy modes are more important than high-energy
modes. Thus by increasingNm the basis set expands in a well
controlled and physically meaningful manner. Moreover, the
small overlap between neighboring interpolets and the fact
that ^x i ,nux i ,m&5dn,m , ensures that the basis set is almost
orthogonal, thereby preventing numerical instabilities.

V. IMPLEMENTATION

We use the trace formula given in Eq.~9! to calculate the
conductance, and in Sec. IV it was argued thatu in&
5f(z/dz2 i )x i ,n(r') is a suitable basis set for evaluating

the involved matrices. Consequently the Hamiltonian and
overlap matrices entering Eq.~2! take the form^ inuĤu jm&
and^ inuŜu jm&. As discussed in Sec. I we are treating a sys-
tem of noninteracting electrons moving in an effective mean-
field potential, and the Hamiltonian operator then takes the
single-particle form

Ĥ52
1

2
¹21V~r!1V̂NL , ~30!

where V(r)1V̂NL represents the mean-field potential with
V̂NL denoting a nonlocal pseudopotential.

In the following we present the calculational procedure
for obtaining the transverse functions,x i ,n(r'). We then pro-
ceed to describe how the effective DFT potential enters the
conductance calculations in practice. Finally a summary is
given.

A. Transverse eigenfunctions

In order to calculate the set of transverse functions
x i ,n(r'), we need for eachi to solve the eigenvalue equation
given in Eq.~26!. With the Hamiltonian of Eq.~30! the ei-
genvalue problem becomes reminiscent of the two-
dimensional single-particle Schro¨dinger equation. We apply
the supercell approach25 in the transverse plane. The system
of interest then constitutes a single cell which is repeated
infinitely. In this way a two-dimensional superlattice is
formed, and both the potentialV(r) and the nonlocal pseudo-
potential operatorV̂NL become periodic with respect to this
lattice. The advantage of this approach is that it allows for
the modeling of both surfaces, interfaces, and finite systems.
In the latter case one just has to make sure that a sufficient
amount a vacuum is added between the repeated structures.
Using the supercell construction described above we can
write the eigenfunctionsx i ,n(r') as Bloch states

x i ,n,k'
~r'!5eik'r'un,k'

i ~r'!, ~31!

where un,k'

i (r') is a periodic function,k' belongs to the

two-dimensional first Brillouin zone, andn may be consid-
ered as a conductance channel index. Due to the discrete
translational symmetry defined by unit vectors of the super-
cell k' is conserved and the Hamiltonian and overlap matri-
ces are diagonal with respect to this variable. This in turn
implies that the Green’s function is diagonal with respect to
k' , and for a givenk' we can then independently calculate
the conductanceG(k'). The total conductance can finally be
found by integrating over the two-dimensional Brillouin
zone

G5E dk'

VBZ
G~k'!, ~32!

whereVBZ is the area of the first Brillouin zone. In practice
the integral is carried out by converting it into a finite sum
*dk' /VBZ→(k'

w(k'), wherew(k') represent the weights

of the discretek' points. For a given system the applied set
of k' will depend on both the size and the shape of the
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supercell and their number can often be significantly reduced
by symmetry operations, see, e.g., Ref. 26.

The next step is to select a suitable basis set for the evalu-
ation of unk'

i (r'). The basis set should span the space of

two-dimensional functions having the periodicity of the su-
per lattice. In the current implementation plane waves are
used but we stress that this choice is not unique. A different
basis set, e.g., two-dimensional, periodic interpolets, could
also be applied. Now, expanding the transverse eigenstates in
plane waves we obtain

x i ,n,k'
~r'!5(

G'

cn,k'

i ~G'!uG' ,k'&, ~33!

whereuG' ,k'&5(1/AA)ei (k'1G')r', G' is a vector belong-
ing to the two-dimensional reciprocal lattice, andA is the
area of the supercell. It is noticed that the expansion coeffi-
cientscn,k'

i (G') in Eq. ~33! can be identified with the vector

cn
i appearing in Eq.~26!. The associated Hamiltonian and

overlap matrices are then obtained by replacingum& with
uG' ,k'&. In order to make the eigenvalue problem compu-
tationally tractable the plane wave expansion needs to be
truncated. We do this by including in the plane wave expan-
sion only theNi smallest wave vectors along the direction of
each of the two reciprocal lattice vectorsGi . In this way Eq.
~26! has been reduced to anN1•N2 dimensional matrix ei-
genvalue problem and due to its scaling the eigenvectors can
be found using standard matrix diagonalization methods.27,28

B. Mean-field electron potential

The mean-field electron potential is obtained from a self-
consistent DFT calculation and this potential then defines the
single-particle Hamiltonian of the system. In the present
treatment we use theDACAPO pseudopotential code29 to gen-
erate the effective potential. It applies a plane wave basis set
to iteratively diagonalize the Kohn-Sham equations. More
details on the implementation of the code can be found in
Refs. 29–32. The DFT calculation is then performed for the
scattering region and the first principal layers of the two
leads, corresponding to the shaded area in Fig. 1. The super-
cell approach is applied with periodic boundary conditions in
all directions, including thez direction. This means that
within the DFT treatment when moving beyond the first prin-
cipal layer of the right lead one enters the repeated first prin-
cipal layer of the left lead. If the perturbations originating
from the scattering region are properly screened, the system
will be periodic in this region and both the electron density
and the effective electron potential are thus smoothly joined
at the interface between the two leads. This does not exclude
the possibility of investigating systems with different leads.
In that case one can simply extend the two leads by including
additional crystal layers of the respective lead materials in
the DFT calculation. The region that now separates the origi-
nal parts of the leads should be chosen to be sufficiently
large so that it comprises all the perturbations due to the
presence of the inhomogeneous interface. This spurious part
of the electron potential is then simply omitted in the con-
ductance calculation.

Within the conductance calculations the effective DFT po-
tential Veff is represented on a discrete real space grid. For
the plane wave DFT calculation such a representation of the
potential is readily obtained using the discrete Fourier trans-
form. The real space resolution ofVeff in turn determines the
number and width of the basis functions given in Eq.~25!.
For the transverse eigenfunctionsx i ,n,k'

(r'), the discrete
real space representation is chosen to have the same form as
the transverse part of the effective potential thus the same
plane wave expansion is applied to the transverse eigenvalue
problem as in the DFT calculation. For the parallel basis
functions we initially associate an interpolet with each grid
point of Veff along thez-direction. The space spanned by the
interpolets localized within the scattering region and the two
first principal layer of the leads, i.e., the shaded region in
Fig. 1, can be written as

Ṽ05spanH fS z

dz
2 i D : i P$0,1,•••,Nz21%J ,V0 , ~34!

whereNz is the finite number of discrete real space points
along thez direction. Ṽ0 is, of course, a subspace of the
spaceV0 spanned by the interpolets localized along thez axis
of the full system. We let these function spaces represent
level 0.

From Eq.~34! it is also seen that the number of scaling
functionsNz is equal to the number of plane waves used in
the DFT calculation along thez direction. For the systems
studied so far, it has proved possible to consistently reduce
the dimensionality of the wavelet function space. This is
achieved by replacingṼ0 with the coarserṼ21 function
space

Ṽ215spanH fS z

2dz
2 i D : i PH 0,1,•••,

Nz

2
21J J . ~35!

Referring to Eq.~14! it is seen that this replacement corre-
sponds to leaving out the detail spaceW̃21. Even though the
interpolets at level21 are used in the basis set, the effective
potential and the projectors associated with the pseudopoten-
tial can still be represented using the finerṼ0 function space
along thez-axis. This is facilitated by the scaling relation in
Eq. ~10!. More details are given in Appendix B.

C. Summary

In the present calculations we apply two versions of the
parallel function spacesṼ0 andṼ21 and hence the full three-
dimensional basis set, Eq.~25! can be rewritten as

u i ,q,n,k'&5f i
q~z!x i ,n,k'

~r'!, where ~q521,0!,
~36!

where the notationf i
q(z)5f@z/(2qdz)2 i # has been intro-

duced. Correspondingly the basis set used for solving the
transverse eigenvalue equation becomes
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u i ,q,G' ,k'&5
1

AA
f i

q~z!eiG'•r', where ~q521,0!.

~37!

For these two basis sets the explicit forms of the inner prod-
ucts associated with the operatorsĤ andŜ are given in Ap-
pendix B. It is noticed that the numberq refers to the level of
the applied scaling function space. Choosingq521 reduces
the size of the basis set in Eq.~36! by a factor of 2. Conse-
quently the size of the matrices entering Eq.~5! becomes
significantly smaller and this in turn allows for the investi-
gation of larger systems that could otherwise not be treated
using q50. For a given system consistency between the
results obtained for the two function spaces should, of
course, always be ensured.

VI. TESTS AND APPLICATIONS

In this section the derived scheme for calculating the con-
ductance will be applied to a number of different systems.
First we investigate a one-dimensional system for which an
exact analytical solution exists. We then calculate the con-
ductance of infinite monatomic Al and Au wires. These sys-
tems serve as test cases for our method. Finally, we investi-
gate how adsorbed atoms affect the conductance of an
otherwise perfect Al wire.

It should be mentioned that for several metals including
Au atomically thin wires can actually be produced.33–35Due
to the low coordination of the atoms in such systems, the
chemical properties are expected to differ significantly from
those of the corresponding bulk systems. In particular the
reactivity toward adsorption of light atoms increases,36,37and
the presence of impurity atoms must be expected even under
ultrahigh vacuum conditions. Under these circumstances
conductance measurements might provide information about
the actual composition of the wires.

A. One-dimensional system

We consider a one-dimensional step potential of the form
indicated in Fig. 3. For this system the transmission probabil-
ity for an electron incident with the energy,«, has an exact
analytic expression38 and using the Landauer formula the
conductance becomes

G~«!5
2e2

h F11
V0

2sin2~aL !

4«~«1V0!
G21

, ~38!

where a5A2m(«1V0)/\2 and L, V0 are the length and
depth of the step potential, respectively. In Fig. 3 the calcu-
lated values for the conductance are seen to be in complete
agreement with the analytic result.

B. Infinite monatomic wires

We have also investigated the conductance of infinite
monatomic wires. Two different metals are used Al and Au
for which the ionic cores are described by ultrasoft
pseudopotentials.24 With these psedudopotentials the effec-

tive Kohn-Sham potentials are obtained from self-consistent
DFT calculations for the two systems.

Since the leads are semi-infinite and periodic, the scatter-
ing states can in general be identified with left and right
moving Bloch states. For the infinite wires the scattering
region is identical to a single period in the leads, and there-
fore the Bloch states do not undergo any scattering at all.
According to the Landauer formula the conductance then
becomes

G~«!5
2e2

h
N~«!, ~39!

where N(«) denotes the number of bands existing at the
energy«.

The calculated conductance for an inifinite monatomic Al
wire is shown in the upper left panel of Fig. 4. The conduc-

FIG. 3. Conductance of a one-dimensional step potential. The
full line represents the exact result while the points indicate the
calculated values. The used parameters areL516 a0 and V0

51.0 Ha.

FIG. 4. Infinite monatomic Al~top! and Au~bottom! wires. Left:
Calculated conductance for a discrete set of energies. Lines have
been added as guides to the eye. Right: DFT band structures. The
lattice constant of the Al~Au! wire is 2.39 Å ~2.62 Å! and the
repeated wires are separated by 7.5 Å~6.0 Å!. For the conductance
calculationNm530 (Nm5200) and the two-dimensional Brillouin
zone integration is performed with theG point only.
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tance is seen to be quantized in integer steps of 2e2/h as
expected from the discussion above. Comparing with the
DFT band diagram shown in the upper right part of Fig. 4,
these integers are seen to be equal to the number of bands
existing in the examined energy window. For future refer-
ence, we remark that the states of the doubly degenerate
band havepx andpy character, respectively, while the bands
just above and below have anspz character~as usualz de-
notes the wire axis!. The conductance of a monatomic Au
wire has also been investigated and the calculated conduc-
tance is shown together with the corresponding DFT band
diagram in the lower panel of Fig. 4.

Both conductance calculations have been converged with
an error margin of 0.3 eV with respect to the DFT band
diagrams. For Al this was achieved withNm530, whereas
Au requiredNm5200. Using a norm-conserving Au pseudo-
potential does not improve the convergence thus suggesting
that the slower convergence is due to the presence of the
localized Aud electrons. This, of course, limits the size of
systems that can be treated involving transition metal atoms.

C. Effects of adsorbed impurities

The presence of adsorbates on a wire causes scattering of
the Bloch electrons and consequently the sharp conductance
steps displayed by the perfect wire are destroyed. In this
section we study this effect in the case of H and O adsorbed
on an infinite Al wire.

The configuration is sketched in Fig. 5. The adsorbate and
the two nearest Al atoms were relaxed within a supercell of
fixed dimensions. The resulting Kohn-Sham potential was
used to model the scattering region in the conductance cal-
culations, while the potential of the perfect Al wire was used
for the leads. In order to ensure charge conservation, the
potentials were aligned with respect to the Fermi levels.

Figure 6 shows the calculated conductance for the Al wire
with H adsorbed. As expected the adsorbate lowers the con-
ductance of the wire. In order to understand the more de-
tailed features of the conductance curve, we have also calcu-
lated the atom-projected density of states~ADOS! from the
self-consistent DFT eigenstates, see lower panel of Fig. 6.
Thes orbital of H has a finite spectral weight coinciding with
the spz band of the wire, thus indicating a hybridization of
these states. Much of thes and pz orbitals of the central Al
atoms goes into the bound state lying just below the band,
and in the conductance curve this is reflected as a reduction
of the ideal conductance of about 1G0. However, the Als,pz
orbitals still contribute to thespz band and thus the current
carried by thespz states is expected to flow through both the

H atom and the central Al atoms. A peculiar feature of the
conductance curve is the drop to zero at an energy of
22.2 eV. At this point the projected density of states on the
H s state and the central Alspz orbitals are comparable in
magnitude and the vanishing conductance is likely to arise
because of destructive interference. Above the band gap the
hydrogen is seen to cause a lowering of the conductance by
approximately 1G0, indicating that a channel has been
closed. For symmetry reasons, thepx band cannot mix with
the other bands, and consequently this channel is expected to
remain almost intact. Indeed, the ADOS for the Alpx orbitals
turn out to differ only slightly from thepx band of the infi-
nite wire. On the other hand the spectral weight of thepy
orbitals on the central Al atoms is shifted down below the
bottom of thepy band, thereby effectively closing this chan-
nel, see Fig. 6. The calculated conductance with O adsorbed
on the wire is shown in the upper panel of Fig. 7. The lower
panel shows the ADOS for thep orbitals of the central Al
atoms. The resonance displayed by the conductance at the
bottom of thespz band coincides with peaks in ADOS for
the Al pz orbital and the Opz orbital ~not shown!. Above the
band gap, the conductance is lowered by approximately 2G0,
and the ADOS indicate that this is due to a redistribution of
the spectral weight of thepx and py orbitals toward lower
energies.

FIG. 5. Al wire with an impurity atom adsorbed on the side. The
conductance has been calculated for H and O adsorbates.

FIG. 6. Conductance of an Al wire with an H atom adsorbed on
the side. The lower panel shows the DOS projected onto different
atomic orbitals of the H and central Al atoms.

FIG. 7. Conductance of an Al wire with an O atom adsorbed on
the side. The lower panel shows the DOS projected onto different
atomic orbitals of the central Al atoms.
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VII. SUMMARY

We have described a numerical method for calculating the
conductance of a phase-coherent system in the linear-
response regime. Both the scattering potential and the poten-
tial in the ballistic leads are modeled by an effective potential
obtained from a self-consistent DFT calculation.

The main focus has been on the numerical implementa-
tion. In particular we have given a detailed account for the
construction and application of a basis set consisting of
wavelets with compact support in the direction of transport
and two-dimensional solutions of the Kohn-Sham equation
in the transverse plane.

Finally, we have studied the effect of adsorption on the
conductance of an infinitely long, atomically thin Al wire,
and found that the presence of hydrogen and oxygen effec-
tively reduces the conductance of the wire by, respectively,
one and two conductance quanta.
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APPENDIX A: DETERMINATION OF LEAD GREEN’S
FUNCTIONS

This appendix describes the calculational procedure for
finding the isolated lead Green’s functiongi

(0),R(«), given in
Eq. ~5c!. In Sec. II B it was argued that the semi-infinte leads
can be divided into principal layers that are coupled only to
their nearest neighbors. This was facilitated by the use of
basis functions with compact support. For the left lead
Green’s function the following matrix equation is then ob-
tained:

S � A A A

••• zS32H3 zS23
† 2H23

† 0

••• zS232H23 zS22H2 zS12
† 2H12

†

••• 0 zS122H12 zS12H1

D
3S � A A A

••• g33
(0),R g32

(0),R g31
(0),R

••• g23
(0),R g22

(0),R g21
(0),R

••• g13
(0),R g12

(0),R g11
(0),R

D
5S � A A A

••• 1 0 0

••• 0 1 0

••• 0 0 1
D , ~A1!

where the subscripts refer to the principal layer in the lead.
Due to the periodicity of the electron potential in the leads

we have thatH i5H1 , H i ,i 115H12. Similar relations, of
course, hold for the overlap matrices. Using the compact
notation «15«1 ih, the self energy due to the left lead
given in Eq.~5b! can be rewritten as

SL
R~«!5@«1SS12HS1#g11,L

(0),R~«!@«1SS1
† 2HS1

† #, ~A2!

where the subscript ‘‘S1’’ indicates the matrix elements be-
tween the scattering region and the first principle layer.
Equation ~A2! shows thatg11

(0),R is the only quantity that
needs to be calculated in Eq.~A1!. g11

(0),R can in turn be
obtained from the following set of recursive matrix equa-
tions:

@«1S12H1#g11
(0),R512@«1S122H12#g21

(0),R , ~A3a!

@«1S12H1#gn1
(0),R52@«1S12

† 2H12
† #gn21,1

(0),R

2@«1S122H12#gn11,1
(0),R ~A3b!

with n52,3, . . . . A similar approach applies to the right
lead. The iterative decimation technique18 provides an effi-
cient and rapidly convergent method for obtainingg11

(0),R

from the above equations.

APPENDIX B: EVALUATION OF MATRIX ELEMENTS

In this section the explicit forms of the matrix elements
needed for constructing the Hamiltonian and overlap matri-
ces for both the full system, Eq.~2!, and for the transverse
eigenvalue problem, Eq.~26!, are presented. The Hamil-
tonian operator and the overlap operators have the form, see
Sec. V,

Ĥ52
1

2
¹21V~r!1V̂NL ~B1a!

Ŝ51̂1Q̂NL , ~B1b!

where V̂NL and Q̂NL are the nonlocal operators associated
with the ions described by ultrasoft pseudopotentials.24

It is our aim to obtain a matrix representation of these
operators with respect to the basesu i ,q,n,k'& and
u i ,q,G' ,k'&, defined in Eqs.~36! and ~37!. In both casesq
represent the level of the applied scaling functions and in the
present implementation it can take the values 0 and21. By
application of the scaling relation~10!, the inner products
involving q521 scaling functions can for a general linear
operatorÂ be rewritten as

^ i ,21,n,k'uÂu j ,21,m,k'&

5(
kl

ak2 i^k,0,n,k'uÂu l ,0,m,k'&a l 2 j , ~B2!

where thea i are the scaling coefficients. A similar relation
holds for the functionsu i ,q,G' ,k'&. Thus when theṼ21
basis set is used, the inner products can be recast as a sum of
inner products involvingq50 interpolets only. As discussed
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in Sec. V B this allows us to expand, e.g., the local potential
in terms of thef i

0(z) while the interpolets of the basis set

belong to the coarserṼ21 function space.
In the remainder of this section we state the explicit rep-

resentations of the operators entering Eq.~B1!. We first focus
on the local operators 1ˆ , ¹2, andV(r) and we then derive
the representation for the nonlocal pseudopotential operator.
It is noted that the inner products are only given in terms of
theq50 basis sets and theq index is thus omitted for clarity.
Furthermore, the following notation̂•u•&'5*dr' and ^•
u•& i5*dz is used.

1. Local operators

The basis set used for evaluating the full Hamiltonian and
overlap matrices yields

^ i ,n,k'u1̂u j ,m,k'&5^f i uf j& i ,^xn,k'
uxm,k'

&' ~B3a!

^ i ,n,k'u¹2u j ,m,k'&5^f i u]z
2uf j& i^xn,k'

uxm,k'
&'

1^f i uf j& i^xn,k'
u¹ r'

2 uxm,k'
&' ,

~B3b!

^ i ,n,k'uV~z,r'!u j ,m,k'&5^f i uf j& i
1

2
^xn,k'

u@V~ idz ,r'!

1V~ jdz ,r'!#uxm,k'
&' , ~B3c!

where in Eq.~B3b! it is used that¹25]z
21¹ r'

2 . In order to

obtain the expression for the local potential Eq.~24! is ap-
plied. For the transverse eigenvalue problem the basis
u i ,G' ,k'& is used. The corresponding representations of the
local operators now become

^ i ,G'8 ,k'u1̂u i ,G' ,k'&5^f i uf i& i^G'8 ,k'uG' ,k'&'

~B4a!

^ i ,G' ,k'u¹ r'
2 u i ,G'8 ,k'&5^f i uf i& i^G'8 ,k'u¹ r'

2 uG' ,k'&'

~B4b!

^ i ,G'8 ,k'uV~z,r'!u i ,G' ,k'&

5^f i uf i& i^G'8 ,k'uV~ idz ,r'!uG' ,k'&' ,

~B4c!

where it is noticed in Eq.~B4b! that the parallel part of the
Laplacean,]z

2 has been omitted since this term only contrib-
utes to the Hamiltonian in the eigenvalue problem with a
constant shift in the energy.

2. Nonlocal operators

The general form of the nonlocal pseudopotential operator
is

V̂NL5(
l ,k,I

ub l
I&Dl ,k

I ^bk
I u ~B5!

where the indexI ranges over all ions in the system andub l
I&

is a localized function centered at ionI. It should be noted
that the definition of the non-local operator,Q̂NL is equiva-
lent to Eq. ~B5!, the only difference being the matrix ele-
mentsDl ,k . Hence we focus here onV̂NL . In the same way
as the local electron potential, the projector functionsb l

I(r)
are evaluated on a real space grid. They can now be ex-
panded as

b l~r!5 (
i ,G'

b l~ idz ,G'!u i ,G'&, ~B6!

whereu i ,G'&5(1/AA)f i(z)eiG'r'. The matrix elements for
the nonlocal operator now become

^ i ,n,k'uV̂NL
I u j ,m,k'&5(

l ,k
^ i ,n,k'ub l

I&Dl ,k
I ^bk

I u j ,m,k'&

~B7a!

^ i ,G'8 ,k'uV̂NL
I u i ,G' ,k'&

5(
l ,k

^ i ,G'8 ,k'ub l
I&Dl ,k

I ^bk
I u i ,G' ,k'&,

~B7b!

where

^ i ,n,k'ub l
I&5 (

j ,G'8
^f i uf j& i^xn,k'

uG'8 &'b l~ jdz ,G'8 !

~B8a!

^ i ,G' ,k'ub l
I&5 (

j ,G'8
^f i uf j& i^G' ,k'uG'8 &'b l~ jdz ,G'8 !.

~B8b!

It should be emphasized that when theṼ21 function space is
used, the projectors just as the local potential can still be
expanded in terms of interpolets at level 0. The matrix ele-
ments can then simply obtained by application of Eq.~B2!.
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