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Elastic constants and zone-boundary phonons ofd-plutonium have been calculated within the density-
functional theory. The paramagnetic state ofd-Pu is modeled by disordered magnetism utilizing either the
disordered local moment or the special quasirandom structure techniques. The anomalously softC8 as well as
a large anisotropy ratiosC44/C8d of d-Pu is reproduced by this theoretical model. Also the recently measured
phonons ford-Pu compare relatively well with their theoretical counterpart at the zone boundaries.
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I. INTRODUCTION

The last few years have seen a remarkable focus on plu-
tonium metal, both experimentally as well as theoretically. In
addition to its importance as a nuclear power source, it has
many anomalous properties that are challenging to explore
and understand. Many aspects of Pu metal were recently re-
viewed by Heckeret al.,1 which we refer to for a more gen-
eral discussion. In the present paper we focus on the high
symmetry, low density, and technologically important Pu
phase, namely,d-Pu. Although crystallized in a close-packed
simple arrangement, face-centered cubic(fcc), this phase
may be the most puzzling piece in the Pu puzzle. Experimen-
tally, recent studies ofd-Pu include heat capacity, resistivity,
susceptibility, photoemission, elasticity, and phonon disper-
sions. These measurements paint a complex picture ofd-Pu
for which the theory that otherwise is suitable for metals is
unable to account. Consequently, new theoretical models
have been developed that try to link the many properties of
d-Pu, which sometimes seem contradicting. The key feature
of these models have been to reproduce the anomalous
atomic density ofd-Pu. Compared to the ground-state mono-
clinic a phase, thed phase is stabilized at a 25% larger
atomic volume at a modest temperature of 593 K. Elaborate
density-functional calculations that are quite reasonable for
a-Pu (Ref. 2) cannot account for this expansion. Other mod-
els, such as the mixed-level model(MLM ),3 can reproduce
the expanded volume ford-Pu, however. The MLM also has
the advantage of being able to correctly describe the elec-
tronic structure when compared to photoemission data.4 It is
based on the idea that the 5f band ind-Pu is split into two
levels, one appropriate for a valence state(one 5f electron)
and the other a nonbonding core state(four 5f electrons)
with some hybridization allowed with the valence states.
This approach seems to be unable to correctly describe any
other phase, including the ground-statea phase, and is there-

fore of limited use for the understanding of many other fac-
ets of Pu.

Another rather successful model ofd-Pu is derived from
the dynamical mean-field theory.5,6 Here correlation effects
are incorporated by means of an onsite Hubbard parameter
“U,” believed to be responsible for the expanded volume and
other anomalous properties ofd-Pu. Indeed, this approach
reproduces the correct atomic density when the Hubbard pa-
rameterU is chosen to be about 4 eV.5 Recently this model
produced elastic constants and phonons ford-Pu that are in
remarkable agreement with experiment.6 Compared to the
MLM, however, this technique is less accurate in producing
an electronic structure that is consistent with the photoemis-
sion data.

The last model we discuss is most closely related to tra-
ditional density-functional theory(DFT), which has been
proven to be so successful for many metallic systems includ-
ing the light actinides.7 It was discovered, by several
researchers,8–10 that allowing the magnetic spin to polarize
reduces the 5f bonding in d-Pu sufficiently to expand the
lattice to an atomic density in very good agreement with
experiment. The hypothetical zero temperature ground-state
spin configuration for fcc Pu has been confirmed to be anti-
ferromagnetic (L10 structure), whereas it has been
proposed11 that d-Pu is paramagnetic(PM) (with substantial
magnetic moments) which is well described by disordered
magnetic moments. In addition to reproducing the anoma-
lous lattice constant ind-Pu, this approach offers(i) me-
chanical stability ofd-Pu, (ii ) a mechanism that explains the
d-Pu→g-Pu transition,(iii ) an electronic structure that is
fully compatible with d-Pu photoemission
measurements.11,12 The notion of magnetism in Pu is some-
what controversial and there has been no direct experimental
evidence of magnetic moments in Pu. The magnetic suscep-
tibility is largely temperature independent, although resistiv-
ity measurements may suggest existence of local magnetic
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moments.1,13 The fact thatd-Pu, alloyed with americium(a
nonmagnetic element), shows a Curie-Weiss behavior13 of its
magnetic susceptibility also lends support to this idea. In
addition, it has been shown that when magnetic effects such
as spin/orbital polarization and spin-orbit coupling are incor-
porated in the theory, virtually all known phases of Pu are
well described.14

In the present study, we adopt the magnetic model of Pu
and calculate bulk properties ofd-Pu including elastic con-
stants and zone-boundary phonons which are compared to
recent measurements. Section II deals with computational
details of our electronic structure calculations, Sec. III pro-
vides a discussion of the results, and finally in Sec. IV we
summarize.

II. COMPUTATIONAL DETAILS

In order to studyd-Pu we have applied three established
electronic structure techniques similar to what has been done
before.11 Common for any DFT approach is the need for an
assumption of the electron exchange and correlation func-
tional. The generalized gradient approximation15 has been
successful for actinide metals in the past7 and is used
throughout this study.

Specific details regarding the exact muffin-tin orbitals
(EMTO), full potential linear muffin-tin orbitals(FPLMTO),
and the projected augmented plane-wave(PAW) calculations
are presented below.

The calculations we have referred to as EMTO are per-
formed using a scalar-relativistic, spin-polarized Green’s
function technique based on an improvedscreenedKorringa-
Kohn-Rostoker method, where the one-electron potential is
represented by optimized overlapping muffin-tin(OOMT)
potential spheres.16–19 It is spherically symmetric inside and
constant outside these spheres. The radii of the potential
spheres, the spherical potentials inside them, and the con-
stant value from the interstitial are determined by minimiz-
ing (a) the deviation between the exact and overlapping po-
tentials and(b) the errors coming from the overlap between
spheres. Thus, the OOMT potential ensures a more accurate
description of the full potential compared to the conventional
muffin-tin or nonoverlapping approach because it is opti-
mized to best represent a nonspherical(full ) potential.

Within the EMTO formalism, the one-electron states are
calculatedexactly for the OOMT potentials. As an output
from the EMTO calculations, one can determine the self-
consistent Green’s function of the system and the complete,
nonspherically symmetric, charge density. Finally, the total
energy is calculated using the full charge-density
technique.19,20

For the total energy of random substitutional alloys, the
EMTO is combined with the coherent potential
approximation21 (CPA) that also allows for the treatment of
magnetic disorder.22,23 In the present work, as well as in our
previous papers,11,12,24,25a PM d-Pu was modeled within the
DLM approximation.26 This state uses a random mixture of
two distinct magnetic states, namely, the spin-up and spin-
down configurations of the same atomic species in a system.

The calculations are performed for a basis set including
valencespdf orbitals and the semicore 6p state whereas the

core states are recalculated at each iteration. Integration over
the irreducible wedge of the fcc Brillouin zone(BZ) is per-
formed using the specialk-point method27 with 916 k points.
The Green’s function has been calculated for 40 complex
energy points distributed exponentially on a semicircle with
a 1.9 Ry diameter enclosing the occupied states. The equi-
librium density ofd-Pu is obtained from a Murnaghan fit28 to
about 15 total energies calculated as a function of lattice
constant. For the calculation ofC8 and C44 we use volume
conserving orthorhombic and monoclinic strains,
respectively.29 The zone-boundary(ZB) phonons are calcu-
lated similarly to what was done earlier.30

The parameters of the FPLMTO calculations are the same
as those given previously,10 but the more important details
are repeated here. The approximations in this method are
limited to the approximation of the exchange/correlation en-
ergy functional, cut offs in the expansion of basis functions,
k-point sampling in integrations over the BZ, and the Born-
Oppenheimer assumption. Spin-orbit coupling and spin/
orbital polarization are accounted for, in the same way as
have been described earlier.10

The use of full nonsphericity of the charge density and
one-electron potential is essential for the calculation of small
distortions. This is accomplished by expanding charge den-
sity and potential in cubic harmonics inside nonoverlapping
muffin-tin spheres and in a Fourier series in the interstitial
region. We use two energy tails associated with each basis
orbital and for 6s, 6p, and the valence states(7s, 7p, 6d, and
5f) these pairs were different. With this “double basis” ap-
proach we use a total of six energy tail parameters and a total
of 12 basis functions per atom. Spherical harmonic expan-
sions are carried out throughlmax=6 for the bases, potential,
and charge density. Two types of crystal structures are con-
sidered here. First, the antiferromagnetic, ferromagnetic, and
nonmagnetic configurations are accounted for in a two atom/
cell simple tetragonal structure. Within this structure the
axial c/a ratio distinguishes between fccsc/a=Î2d and
body-centered cubic(bcc:c/a=1). Otherc/a values are also
considered when studying mechanical instabilities. The spe-
cial quasirandom structure(SQS) model31 with an eight atom
(SQS8) supercell is used to approximate a disordered mag-
netic structure with zero total spin moment. The sampling of
the irreducible BZ is done using the specialk-point method27

and the number ofk points used were up to 240 in the two
atom/cell calculation and about 60 for the eight atom/cell
calculation. To each energy eigenvalue a Gaussian is associ-
ated with 20 mRy width to speed up convergency.

The PAW approach is an extension of the norm-
conserving pseudopotential scheme,32 which is a powerful
technique for performing large-scale static as well as dy-
namic DFT calculations using a plane-wave basis set. Trans-
ferable pseudopotentials of this kind, however, can become
computationally very expensive when applied to transition or
f-electron systems, because of the required small core radius.
A remedy to this problem was proposed by Vanderbilt in the
ultrasoft pseudopotential scheme,33 where the norm-
conserving condition is relaxed and the core radius can be
moved out to approximately half of the nearest-neighbor dis-
tance. In this approach, localized atom-centered augmenta-
tion charges need to be introduced. Blöchl34 developed a
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generalization of the Vanderbilt ultrasoft pseudopotential and
the linear augmented plane-wave35 methods, i.e., the projec-
tor augmented wave technique. Within the PAW method, the
all-electron wave functions are related to the pseudowave
functions via a linear transformation.

We perform scalar-relativistic spin-polarized PAW calcu-
lations for Pu using the VASP code.36 The calculations treat
16 valence electrons, including the semicore 6s and 6p states
with a plane-wave cutoff of 23.4 Ry. As in the case of the
FPLMTO, the SQS model is used for the disordered
magnetic-moment configuration. Here, as opposed to in our
previous work,11 no lattice relaxations were allowed in the
PAW. We calculate the PAW elastic constants and ZB
phonons within the SQS8 and SQS16 models, respectively.
The BZ is sampled with the same grid ofk points for all the
spin configurations, equivalent to a 12312312 fcc
Monkhorst-Pack grid.37

Even though the three presented numerical techniques are
all founded on the same fundamental framework, the
density-functional theory, they have distinct differences that
give them certain advantages and disadvantages. First, the
FPLMTO and VASP employ no approximations to the elec-
tron potential and charge density and are therefore somewhat
more reliable for very open structures and/or small distor-
tions. The FPLMTO includes spin-orbit and orbital polariza-
tion interactions and is therefore the most accurate method.
PAW, however, is at least an order of magnitude faster than
FPLMTO and can more easily be used to calculate forces
due to the plane-wave basis set. Both these methods require
the use of supercells to study disorder. The EMTO method,
on the other hand, is well suited to study disordered systems
within the CPA. The EMTO make some geometrical ap-
proximations in the construction of the electron potential, but
these are controlled by the fact that it is optimized to best
represent the full potential. The FPLMTO and EMTO do not
assume any pseudopotential but calculate energy contribu-
tions from all electrons.

III. RESULTS AND DISCUSSION

The results are shown in Table I. Notice first that the
calculations assuming a disordered magnetic statesDd pre-
dict very similar equilibrium volumes, 25.5 Å3 (EMTO),
24.9 Å3 (FPLMTO), and 23.9 Å3 (PAW). Also the bulk

moduli are in close agreement with each other 38, 41, and
46 GPa. In spite of their numerical differences, the methods
predict very similar bonding properties which suggests that
these DFT results are robust. Also the ferromagnetic(FM)
FPLMTO treatment ofd-Pu appears to be reasonable with
respect to equilibrium volume and bulk modulus. For com-
parison we also show results from a nonmagnetic(NM) cal-
culations, i.e., no spin/orbital polarization and spin-orbit cou-
pling, using the FPLMTO method. It is very obvious that
neglecting magnetic effects predicts a serious overbinding
with a too small equilibrium volume(29%) and too large
bulk modulus(550%) as a result. Also, a negativeC8 sug-
gests a mechanical instability ofd-Pu for this restricted cal-
culation, which is clearly not suitable ford-Pu.

Next, we discuss the calculated elastic constants, shown
in Table I. These are considerably more sensitive to details of
the calculations and this becomes clear when comparing the
theoretical results. The tetragonal shear constantC8 provides
information regarding the stability of the cubic phase with
respect to a tetragonal distortion. It is expected to be small
because thed8 phase, which is a tetragonal phase, is stabi-
lized when thed phase is heated only about 100 K. The
calculations ofC8, assuming a magnetic state, are all small
ranging from 8.1 GPa to 18 GPa. The shear constantC44 is
predicted to be considerably larger, ranging from
30 GPa to 81 GPa. The FM FPLMTO calculations predict a
somewhat smaller value, 27 GPa. Overall, the elastic con-
stants are consistently overestimated in the calculations com-
pared to experiments, although the large and anomalous an-
isotropy ratio is relatively well reproduced assuming a
disordered magnetic state: it is equal to 10(EMTO), 2.7
(FPLMTO), and 3.0(PAW), whereas ultrasonic38 and x-ray39

measurements indicateC44/C8 to be equal to 7.1 and 6.3,
respectively. For uranium metal, calculated elastic
constants40,41 are also larger than experiment and part of the
explanation in this case is the substantial temperature depen-
dence of these constants. The present calculations refer to
zero temperature whereas the measurements were recorded
at room temperature. To our knowledge, no experiments of
elastic constants for single-crystald-Pu at lower tempera-
tures exist. For polycrystald-Pu elasticity was recently mea-
sured as a function of temperature near the room
temperature.42 These show a linear temperature dependence
and, when extrapolated from room to zero temperature, they
suggest an increase of the order of 20%. Taking this into

TABLE I. Calculated equilibrium volumesÅ3d, bulk and elastic moduli(GPa), and zone-boundary phonons(THz) for d-Pu. Magnetic
configurations are denotedD for disordered, FM for ferromagnetic, and NM for nonmagnetic.

Method V B C8 C44 XL XT LL LT

EMTO sDd 25.5 38 8.1 81 7.5 2.7 2.9 1.3

PAW sDd 23.9 46 10 30 3.0 1.3 2.5 1.3

FPLMTO sDd 24.9 41 18 48

FPLMTO (FM) 25.6 26 17 27 2.9 1.9 2.3 0.63

FPLMTO (NM) 17.8 165 −69 15

Experiment 25.0,a,b 30a, 29b 4.8a, 4.9b 34a, 31b 3.1b 1.7b 3.1b 0.48b

aLedbetter and Moment(Ref. 38).
bWong et al. (Ref. 39).
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account, the FPLMO and PAW calculation ofC8 and the
EMTO calculation ofC44 are in greater discrepancy with
experiment than what is typically found for elastic-constant
calculations for metals in general(up to 20% error is ex-
pected). Incidentally, the present EMTO results are in a good
agreement with those of LDA+U, where a strong localiza-
tion of the 5f electrons is assumed, by Bouchetet al.43 (C8
=12 GPa andC44=75 GPa).

The ZB phonons are calculated using the so-called frozen
phonon method. This method require the study of supercells,
where the total-energy response to the movement of an atom
corresponding to the phonon mode, is calculated. This pro-
cedure is less suitable for our treatment of the disordered
magnetic state in the FPLMTO(and PAW) methods because
of the already large(eight atoms/cell) computation and for
this reason we do not attempt this calculation using the
FPLMTO. Notice in Table I that all calculations reproduce
the correct numerical order of the ZB phonons, with the
agreement between experiment and FPLMTO/PAW being
rather good. TheLT phonon for the PAW treatment is too
large, however. The EMTO method overestimates the ZB
phonons consistently. Possible reasons for the discrepancy
between theory and experiment may be that the measure-
ments were made at room temperature on alloy stabilized
d-Pu, whereas theory deals with pured-Pu at zero tempera-
ture.

IV. SUMMARY

Disordered magnetism in conjunction with traditional
density-functional formalism is a tool for describing elastic
properties of paramagneticd-Pu. Because the present ap-
proach is fundamentally founded on density-functional
theory, the results are robust, although rather sensitive to
numerical approximations and implementations. The DFT-
CPA-DLM technique is particularly useful because there is
no need to study large supercells. In addition, this approach
is well suited to studyd-Pu based alloys.
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