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Controlling chaotic transients: Yorke’s game of survival
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We consider the tent map as the prototype of a chaotic system with escapes. We show analytically that a
small, bounded, but carefully chosen perturbation added to the system can trap forever an orbit close to the
chaotic saddle, even in presence of noise of larger, although bounded, amplitude. This problem is focused as a
two-person, mathematical game between two players called “the protagonist” and “the adversary.” The pro-
tagonist’'s goal is to survive. He can lose but cannot win; the best he can do is survive to play another round,
strugglingad infinitum In the absence of actions by either player, the dynamics diverge, leaving a relatively
safe region, and we say the protagonist loses. What makes survival difficult is that the adversary is allowed
stronger “actions” than the protagonist. What makes survival possilii¢ ke background dynamidthe tent
map herg are chaotic andii) the protagonist knows the action of the adversary in choosing his response and
is permitted to choose the initial poirt of the game. We use the “slope 3" tent map in an example of this
problem. We show that it is possible for the protagonist to survive.

DOI: 10.1103/PhysReVE.69.016203 PACS nun#er05.45.Gg, 05.45.Pq

Transient chaogl] is an interesting physical phenomenon been thoroughly developed, both for Hamiltonian and dissi-
which occurs in systems where trajectories bounce chaotpative systems. Most of the work has been focused on sys-
cally for a certain time in a bounded region until they reachtems with chaotic attractors, both in noiseless and noisy en-
a final state, usually nonchaotic. Varied manifestations oWironments[8], and comparatively less attention has been
transient chaos are present in chaotic scattdidjgchaotic  paid to the control of chaotic saddles. Nevertheless, ex-
advection in fluid dynamicg3], species competition in ecol- amples of studies of transient chaos include theoretical
ogy[4,5], or voltage collapse in electric power systef$],  works as well as applications for models of ecological, elec-
to cite just a few. From the point of view of nonlinear dy- trical, chemical, and laser systen4,9-13. The aim of
namics, the phenomenon of transient chaos is associated withese works is typically to find small perturbations that keep
the existence of a certain type of sets called chaotic saddlethe system in a permanent chaotic regime. While such strat-
also known as nonattracting chaotic invariant sets, formed bggies have to deal essentially with the unstable dynamics of
a bounded set of unstable periodic and aperiodic orbits, fothe saddle, in the present work we shall emphasize the de-
which almost all trajectories diverge. Typical orbits in the stabilizing effect of strong noise. Thus our goal is to find a
system will approach the chaotic saddle following its stablestrategy able to trap the system close to the chaotic saddle
manifold, spend some time bouncing in its vicinity, and thenindefinitely even in the presence of noistgongerthan con-
escape from it following its unstable manifold. Therefore, atrol.
compelling challenge might be to find a simple method to Since Akiyama and Kaneko presented the “dynamical
maintain an orbit in the neighborhood of the invariant set forsystems game theory['13—-15, there has been a growing
all times, respecting the original dynamics of the system. interest for modeling increasingly more complex game strat-

While for a linear system the perturbation needed toegies with concepts borrowed from nonlinear dynamics. In
change its nature is of the same order as the dynamics of ththeir work it is shown that game theory has resulted to be
motion, the extreme sensitivity to initial conditions makesdeeply related to several problems involving dynamical phe-
control with very little perturbations a possible task. In thisnomena, and for many cases it is possible to switch from the
sense, diminishing the amplitude of control is an importantpoint of view of game theory to that of nonlinear dynamics.
goal in this field. Obviously, if the system is embedded in aln fact, the nature of these games can be described as a
noisy environment controlling orbits is even harder, and typi-dynamical system. Our work points in this direction, and we
cally stronger amplitudes than in the noiseless case arface our problem as a mathematical game between two play-
needed. Since the seminal paper of Ott, Grebogi, and Yorkers called “the protagonist” and “the adversary,” the pro-
[7], the theory of chaos control in nonlinear dynamics hasagonist’s goal is to survive inside a bounded region, that is,

the vicinity of the chaotic saddle. We describe an idea which
we apply here to a very simple nonlinear dynamical system,

*Email address: jaguirre@escet.urjc.es but can be conveniently adapted for a wide variety of maps
"Email address: dovidio@imedea.uib.es with a chaotic saddle, in which some kind of noise and con-
*Email address: msanjuan@escet.urjc.es trol is present. In a system with attractors, the natural ten-

1063-651X/2004/64)/0162035)/$22.50 69 016203-1 ©2004 The American Physical Society



AGUIRRE, D’OVIDIO, AND SANJUAN PHYSICAL REVIEW E 69, 016203 (2004

dency of a particle is to reach one of these attractors, and
therefore it is plausible for the protagonist to maintain itself u
close to one attractor even when the adversary is allowed
slightly stronger actions. However, it is important to remark
that without any external control, the probability of the pro-
tagonist to survive in the vicinity of a chaotic saddle is zero,
even in the absence of noise, and this fact makes the survival
of the protagonist a remarkable achievement.

The simplest form of this game involves a one-
dimensional map, the tent map, that is defined T{g)
=m(1—|x|)—1. For cases of interest suchras- 3, almost
all initial points x, yield trajectories ok, ,1=T(x,) that go
to —o asn—o; and in this case we say the protagonist does 1 SURNIVAL
not survive. To survive he must act. The equation of the POSSIBLE
game is 23

(2,8/3)

u =23 +r
0 0

(2/3.4/3)

2/9,419)

Xpr1=T(Xp) T Upr1+ s, (1) vo
(2/27.4/2-7

where the adversary chooses the perturbaijpn, (knowing 227
X, andT) and the protagonist then chooses the “response” 2,2'7 2;9 '2,3 '1 ‘2 LS
rs+1 (knowingu,,,; andx, andT). The perturbatioru,, ;
might be chosen at random or using an effective strategy. In FIG. 1. Parame_ter r_egion of survivgl. Survival is pqssible in the
the long run there is little difference between these two if thefross-hatched region if the protagonist chooses optimally. Above
protagonist can survive forever. The protagonist faces whaf'® cross-hatched region, the adversary can always win.
appears to be an impossible task because we permit only
|un|<ug and|r,|<rg, wherer, andu, are specified with,  In controlling chaog7,9], for example, if noise is present
< Ug. If r, is viewed as the control and, is viewed as (i.e., u, chosen at randomthe controlr,, must dominateu,
some kind of noiséor interferencg the usual requirementis so as to be able to drive the trajectory to a specified fixed
that the control is stronger than the noise. However, the maipoint and keep it close to the fixed point. In the game of
goal of this paper is to show that in the context of transienssurvival for the tent map, there are several “safety points”
chaos it is possible to control a noisy orbit, even in the casandry must be large enough so that the protagonist can reach
in which noise is stronger than control. The smaller bound orone of them, but the choice of which is really determined by
r, than onu,, might lead us to calt,, an “influence” rather  whatu, happens to be. The protagonist is bounced between
than a “control” since the protagonist cannot control the these safety points in an order determined by the sequence of
details of the trajectory. For this problem, we let the “rela- u,,.
tively safe” region be the intervab=[ —1,+ 1] and termi- The exampleBefore analyzing the theorem in detail, we
nate the game if somg, is outsideS Certainly if X, is  examine the case mentioned abowgs- 4/9 andr,=2/9 and
outsideS, it is possible for the adversary to choose the seshow that the protagonist can survive. We designate four
guenceu, that causes the sequenceto diverge, and there points as safety pointg, = —2/3—2/9, z,= —2/3+2/9, z5
is a slightly larger interval depending ey andry such that =+2/3—2/9, andz,= +2/3+2/9. It is easy to check that
if X, is outside that, the trajectory must diverge even if theT(z)=*=2/3 andT(=2/3)=0. A graph of the tent map ap-
adversary tries to help. To keep formulas simple, we state oypears in Fig. 2 showing all these points, and Fig. 3 shows the
results form=3 though analogous results are available forevolution of an orbit in this situation. The protagonist’s strat-
all m>2. (If m=2, there is a chaotic attractor anduf is  egy must be to make sure evetyin Eq. (1) is a safe point
sufficiently small, survival is guaranteed even if the responsd it is to guarantee that he can survive. In particular, the
size is 0) We begin with an example. protagonist must choosg equal to one of the safety points
For up=4/9 andr,=2/9, there exists a strategy guaran-to make sure he succee@athough in fact most points in
teeing survival. Ifuy>2r, then there is no strategy guaran- S=[ —1,1] would also be valid agg). If x,, is a safety point
teeing survival. for any integem=0, then we show he can choosg, ; SO
The best strategy for survival depends mnas is made thatx,, 4 is a safety point, and so he survives another day.
clear in the following theorem. There are different strategiesSince x,, is a safety point, we may suppose, for example,
for ry=2/3 and each integds, wherer is in [2/3¢,2/3"1). T(X,) is +2/3. (The case-2/3 is virtually the samé.Then
Recallm=3. afteru,, ., is chosen, the point(x,)+u,;; must be in the
Theorem There is a strategy guaranteeing survival for ainterval[ 2/3—4/9,2/3+ 4/9] and so is at most 2/9 from either
givenry and uq if and only if there is an integek=1 for  z; or z,. Hencer,,; can be chosen wittr, ;| <r so that
which 2/¥<r, anduy=<r,+2/3". (The cross-hatched part of x,.; is a safety point. This case may be generalized by not-
Fig. 1 shows where there are strategies for survival. ing that this strategy works wheneveg—r,<2/9.
This type of problem is quite different from the standard This example illustrates why we call this problem a game
control in which the goal is to drive the trajectory to a point. of “survival” rather than of “control,” since the protagonist
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T(x)
+1
-2/3,0 0,0) 2/3,0) x
o H i T i }
Z1 Z2 Z3 Z4
-1
]
-1 0 +1

FIG. 2. Graph of the tent map(x)=m(1—|x|) —1 defined in
the intervall — 1,+ 1] for m= 3. The four pointg; designate safety
points and alsd (z) = =2/3.
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In the general case where ¥r, and up=ry+2/3,
there are § safety points, namelyf ~¥(0) which consists of

2

Note thatT(*+2/3'+2/3+...+2/3) is a point of the
form +2/3'+2/3?+ ... +2/3~ 1 (which is the single point 0
if k=1). The argument showing that the strategy can be
implemented proceeds as in the special cases discussed
above.

We now argue that a guaranteed strategy exists only for
the above cases. Hence kf is chosen so that 2/5r,
<2/3 1 for some k=1, and ug=rq+2/3+5 where §
>0, then no guaranteed strategy exists; in other words, there
is a strategyJ for choosing the points,, so that the protago-
nist loses.

Let Sy be the set of safe points. The strategyis to
chooseu,, so thatT(x,,_1) t+ U, is as far as possible. L&f,
be the se{x:|x—y|=<r, for somey in S,}. HenceY, is the
set of points that are no more thegfrom some safe points.
For any pointxg, there is au; with |u;|<uq such that

+2/31+2/F+ ... 2/ for k=1.

is buffeted from safety point to safety point without being T(Xo) +U1 is not in Y. Hencex;=T(Xo) +us+r (with

able to choose between these pof@aisit is shown in Fig. 3.
There is typically only one that can be reached with, 4|

<r, for eachn. In the above example calculation, notice that_

T(Xn41) is either —2/3 if X,, 4 iS 24 Or +2/3 if z3. The
protagonist cannot choose whetfg,, . ;) is to be positive
or negative(unlessu,,; was 0 so thatzz; and z, were
equally closg

The general strategycalled R) for choosingr,. 4 is to
identify a collection of safety points and chooggto be one
of them and from then on choosg., so thatx,,; is a
safety point. In the case where &8, and up=<ry+2/3,
(k=1), there are two safety points, namety= —2/3 and
z,=2/3. Then ifx, is a safety pointT(x,,) =0, and the point
T(Xp) +U,+1 must be in the interval —ug,ug]. Sinceug
<rg+2/3, each point of the interval is withir, of a safety
point. Hence the strategy can be carried out.

i A A B B B e e e
1+ R X i .
24 D I st n 73? ___________ f=h—m i mm e -
L ! A
n ¢ T l: ™ ra FaF H
05rz, o fdemdm b L L4
- R P
< of | | TR Hu,g i
| .'II :'. ,; \'.\ ;" T(Xn)+l]:n+1+rn+1=,"xn+1 .
] EEEEAY P a
05 | Z, ._P._é .......... E,_.:’ ..... _!;',_}Q.K_._._%._._._l_.é __________ E—
o i i b ;
N NT(X )
2# ....................................... N
|- L
PP IR PSP KRN EENPUN U SN AR UUIN PPN BN PR S |
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Iterations

FIG. 3. Evolution of an orbit fok=2, m=3, r,=2/9, andu,
=4/9. The four dotted-dashed lines represent the safety paints
and the dashed lines represent their imadég)=*=2/3. The

[r1|<r;) is not a safe point. Led, be the smallest interval
containingS; .

If x,is notind,, itis easy to check that stratetyresults

in X, also outsidel,, but further fromS,. If x,, is in J,

let J’ denote the smallest interval containing whose ends
are safe points. Stratedy results inx, ,; which is inT(J"),
which has no points o§,_ in its interior andx,, , ; is further
from S,. Furthermore, the length of(J’) is greater than
that ofJ’. As the process evolves, the trajectory eventually is
outsideJ,, a case which is discussed above.

We have carried out several computer experiments to
clarify the applicability of our results. A uniform distributed
noise with zero mean value has been used assince its
only requisite is to be bounded. Obviously, the same results
would have been obtained for any other kind of bounded
noise. Note that, for this reason, Gaussian noise does not
guarantee the survival of the protagonist. For very different
values ofk, m, maximum responsk,, and maximum pertur-
bation ug, beingry<ugy, we have iterated the game up to
several million steps. As our theorem asserts, the protagonist
survives inside the safe regidn-1,1] if and only if ug
$2r0.

An interesting property of the system appears when we
analyze the root mean squafBMS) of the controlr,,
which is expressed as

2

n

RMS=

)

Figure 4 shows the evolution of the RMS of control when
the maximum noise to maximum control ratio is varied, both
computationally calculated and analytically derived. We have
fixed the control tor,=2/9 andug is varied from 0 toug
=2r,=4/9. Foruy=0, that is, in the absence of noise, the

points that do not lie over any of these lines represent the steps @fontrol strategy is to push repeatedly the system back to a

the orbit after the influence of the noiseg.

safety point after the action of the dynamics. The strength of
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0.25 . . , . ,

(r3y=d2+ fuo uzf(u)du—deJuo lu[f(uydu  (6)
o

—ug

=dg+(u?)—2d(|ul). (7)
= To give an example, we can evaluate this expression for
o the case of uniform noise, that is,
=
« 1
—, —Up<u<ug
f(u)=1 2Uop (8
0, otherwise.

A straightforward calculation gives

1 (u 1
(uz):—f ° w2du==u2 9)
2Ug —ug 3
FIG. 4. The control neededecreasesn the presence dfiveak
noise. The picture shows the root mean square of applied control fasind
different noise-control ratios whem=3, ry=2/9. The dots were
calculated numerically, while the straight line represents the analyti- 1 (uw 1
cal curve. <|U|>:2_uof | |U|dUZ§Uo- (10
— Yo

control is thus constant and equal to the distance to go frorfjinally, we obtain that the RMS of control for such distribu-

the image of a safety point back to any of the safety pointstion IS

Calling such a distancel,, we have d,=max{min{|z 1
~T(z)[}}, wherez; andz; are the safety points, and RMS W)= dﬁ+§ug—dkuo, (11)
=d,. When noise is switched on, the RMS of contod-
creasess.ince in this case the.orbit is pushed by the noise If maximum controlr, is set tod,, this function has a
from the image of a safety point towards one of thesafety minimum whenu, /r,=3/2. Figure 4 confirms this result.
points. This result is in contrast with standard algorithms of  The results of this work can be generalized to any unimo-
chaos control, which aim at stabilizing unstable orbits in-qz| one-dimensional map with a chaotic saddle associated
stead of preimages of the escaping region. For these teclie., with escapes showing that it is always possible to
niques, astrongercontrol is needed if noise increases. Fi- survive with less control than noise. The relatiogVr,, as
nally, for high values otiy/r, the RMS of control shows a well as the structure of safety points, will depend on the
minimum and starts to increase again, as there is a value @foperties of each map, its symmetry or asymmetry, etc. In
the noise for which on average the noise places the orbibrder to point this fact, we have developed a similar analyti-
optimally close to one of the safety points. cal study for the asymmetric tent map, and the same strategy
The analytical derivation of the curve for RMS is as fol- yields a noise to control ratio afy/ro=1+ (m/1)¥, where
lows. Looking at Fig. 2, and noticing that the positions of them<C| are the left and right slopes, respectively. It is easy to
safety pointsz; are symmetric, the control needed after asee that this ratio has a maximum equal to 2 for the symmet-
noise displacemeni=<u, can be simply written as ric casem=I and a minimum equal to 1 when the right slope
is infinitely larger than the left one.
In summary, in this paper we are describing an idea which
Ir(u)|=]|ul—dy. (4)  Potentially can be applied to a wide variety of maps with a
chaotic saddle, embedded in noisy environments, for an ap-
propriate choice of ; anduy. Such an analysis could be far
more complex than for the symmetric and asymmetric tent
maps, for which the problem can be fully explained analyti-
cally. Unlike traditional control theory that tries to steer the
state of a system to a precise state, there are situations in
which we only have influence in a chaotic environment. The
o difference betweemfluenceandcontrolis roughly speaking
(lul—d?f(u)du. (5)  To<Uo VSTo=>Uo. _ _ _
ug Finally, the information that is needed in order to apply
our method is just the approximate position of the safety
points. This information might be obtained from time series
Expanding the expression and distributing the integral, weanalysis, suggesting the applicability of this control to real
have systems.

Indicating with \(r?) the RMS, withr(u) the control
needed after a noise displacemanand withf(u) the noise
distribution, we obtain the following:

<r2>=fu° r(u)zf(u)du=J
u
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