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In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the
cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex
medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe,
e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibrate
single beam optical tweezers in a complex viscoelastic environment. At the same time, we determine
viscoelastic characteristics such as friction retardation spectrum and elastic moduli of the medium.
We apply and test a method suggested �M. Fischer and K. Berg-Sørensen, J. Opt. A, Pure Appl. Opt.
9, S239 �2007��, a method which combines passive and active measurements. The method is
demonstrated in a simple viscous medium, water, and in a solution of entangled F-actin without
cross-linkers. © 2010 American Institute of Physics. �doi:10.1063/1.3280222�

I. INTRODUCTION

Subcellular structures are collections of molecules in a
complex, biological environment, which are in most cases
out of equilibrium. Some of them perform time-dependent
processes such as intracellular transport or cell division.
Here, equilibrium energy states do not suffice for a quantita-
tive description of the system and anyway, they could hardly
be measured directly. The forces exerted in such processes
can be measured more directly. The time and velocity depen-
dencies of forces exerted between different sorts of biomol-
ecules can give valuable information about the internal states
of the molecules and about the interaction between the dif-
ferent types of molecules. This has been shown by in vitro
force measurements on single molecules, whereby a better
understanding of molecules such as motor proteins or fiber
proteins has been obtained in the past two decades �Ref. 1
and references therein�. Force measurements of biomolecules
in their natural environment, the complex cell cytoplasm,
would provide an even deeper understanding of their natural
actions and interactions.

An optical trap is the only nanotool capable of manipu-
lating biomolecules and organelles within the cytoplasm
without perturbing the cellular membrane. Therefore, a
single beam optical trap would be an optimal instrument to
measure forces inside living cells. Normal calibration proce-
dures for single beam optical traps2–4 apply in simple liquids
only and often, one would need to know the viscosity, the
index of refraction of the medium, and the size and shape of
the probe. These are quantities that are often unknown when
the probe is inside the cytoplasm or another viscoelastic me-
dium. In the literature, previous investigations of probe par-
ticles manipulated by optical traps in viscoelastic media rely
on ex situ calibration in a simple liquid such as water.5,6

Here, we demonstrate calibration in situ in a viscoelastic
medium.

An optically trapped particle performs Brownian motion
in a quasiharmonic potential.7 This motion can be recorded
with high sampling rates by quadrant photo diode �QPD�
position detection systems �Ref. 8 and references therein�.
Knowledge of the stiffness parameter � of the quasiharmonic
potential and the position x enables one to measure or exert
prescribed forces of order pN. In a calibration procedure the
trapped particle is driven by forces of known characteristics
and its trajectory is measured. The simplest driving force is
the thermal stochastic force, causing a Brownian motion of
the trapped particle. Such driving is denoted as passive. If
the trapped object has a known shape and friction coefficient
and if it is moving in a simple viscous fluid, force and posi-
tion calibration is conveniently performed through power
spectral analysis.2 Another type of calibration requires a con-
trolled motion of the trapping laser with respect to the
sample chamber.3,9 We denote this type of driving as active.

The Brownian motion of particles in viscoelastic media
differs from that in viscous media. As a result, the power
spectra of a bead in an actin gel10,11 and of a granule in a
cell12 deviate qualitatively from power spectra in viscous
media such as glycerol or water. Also, if an endogenously
occurring particle is used as handle for the optical trapping,
its size and shape might not be known.

In this paper we show how to apply the so-called
fluctuation-dissipation theorem �FDT� method13,14 to cali-
brate optical tweezers in a viscoelastic medium in a situation
where the hydrodynamic interactions between the medium
and the trapped particle are a priori unknown. The method
combines passive and active measurements under conditions
where the results of the FDT remain valid. Through the cali-
bration we find the spring constant � that characterizes the
strength of the optical trap, the positional calibration factor
�, that relates voltages measured with the particle positions,
the response function ��f�, the friction retardation spectrum

REVIEW OF SCIENTIFIC INSTRUMENTS 81, 015103 �2010�

0034-6748/2010/81�1�/015103/10/$30.00 © 2010 American Institute of Physics81, 015103-1

Downloaded 24 Jun 2010 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp

http://dx.doi.org/10.1063/1.3280222
http://dx.doi.org/10.1063/1.3280222


�̃�f�, and for incompressible one-component fluids, also the
shear modulus G�f� of the viscoelastic medium in which the
particle is immersed.

II. THE FDT METHOD

The theoretical background of the method is presented in
Ref. 13. In this section we provide a recipe of the practical
implementation of the method and thus, we repeat only the
essentials to ensure a consistent description. Essential formu-
las are displayed in Table I, and below the calibration equa-
tions are restated as convenient formulations of the FDT.

In viscous media optical tweezers can be calibrated by
applying a purely passive method, such as the power spec-
trum method.2 In this method, the power spectrum P��� of
the Brownian motion of the trapped particle in equilibrium is
determined from the Fourier transformed x̃��� of the particle
trajectory x�t� which has been observed for a measurement
time Tmeas. In viscoelastic media, the power spectrum is ana-
lytically given by

P��� =
2kBT Re��̃����

�� + i��̃��� − �2m�2
, �1�

where m is the mass of the trapped particle. The quantity
�̃��� is called the friction retardation spectrum. Its real part
accounts for dissipative processes, whereas its imaginary part
accounts for elastic processes in the interaction between

trapped particle and medium. For each frequency, Eq. �1�
gives one equation for the unknowns �, �̃���, and m. Thus,
additional information is required in order for us to solve for
these unknowns if m and the frequency dependence of �̃���
is unknown. The FDT method suggests obtaining that addi-
tional information by actively driving the system. Under the
assumption that the FDT �Ref. 15�

����� = −
�

2kBT
P��� �2�

holds for the viscoelastic medium and experimental situa-
tions considered, the information sought after is extracted
from a combination of data from these active and passive
measurement series.

The validity of the FDT requires that the active driving
amounts to a perturbation of the equilibrium system only. In
Eq. �2�, ����� represents the imaginary part of the response
function. The response function is a quantity that describes
nonequilibrium systems in linear response theory, and it re-
lates external forces to average positions via

�x̃���	 = ����F̃ext��� . �3�

Hence, ���� can be regarded as an inverse effective spring
constant.

One way to apply an external perturbation to the system
is to move the piezostage on which the sample is placed

TABLE I. Essential formulas. All quantities and equations are frequency dependent and have to be taken at the frequency f =� / �2�� of the stage/laser
oscillations during the active part of the measurements. In the expression for the shear modulus, we have introduced the particle radius r.

Quantity Notation Equal to

Undriven system
Power spectrum P limTmeas→� ��x̃P�2	 / Tmeas

Driven system
Stage driving Laser driving

Stage/laser amplitude AS/L max�xS	 max�xL	
Stage/laser phase �S/L ��xS	 ��xL	
Particle amplitude AP max�xP	
Particle phase �P ��xP	
Phase shift 	� 	�=�S−�P 	�=�L−�P

Active spectrum R̃S/L R̃S=
AP

2�fAS

 �sin�	��− i cos�	��� R̃L=

AP

2�fAL

 �−sin�	��+ i cos�	���

FDT method
Stage driving Laser driving

Trap stiffness �mass� ��m� �−�2m=
2kBT

P
Re�R̃S� �=

2kBT

P
Re�R̃L�

Response function � 1− i�R̃S

�−�2m
−

i�R̃L

�

Frict. ret. spct. �mass� �̃�m� �̃= R̃S /� �̃+ i�m=−
�

i� � 1

i�R̃L

+1�
Viscoelastic modulus �size, mass� G�r ,m�

i�

6�r
�̃

i�

6�r
�̃

Volt.-pos. conv. factor � 2kBT

�P�volt� ·
cot�	��

��volt�
a,b 1

Re���volt����volt�
a,c

aThe quantities P�volt�, ��volt�, and ��volt� represent the power spectrum, the trap stiffness, and the response function obtained with the measured voltages xP
�volt�

instead of positions xP in a natural length unit.
bEquation is valid for low frequencies, �→0, and in media with vanishing static elasticity, lim�→0 Im��̃����→0.
cEquation is valid for low frequencies, �→0.
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�stage driving�. If the sample container is sealed on all sides,
the liquid in which the trapped particle is immersed can be
assumed to be comoving with the piezostage. In that case,
one can formulate the FDT in a more convenient way. We

introduce the active spectrum for stage driving R̃S���

R̃S��� ª �̃������� =
�x̃���	

i�x̃S���
. �4�

The stage follows a chosen trajectory xS�t� that, at least in
principle, is infinitesimal around xS=0 in order to provide the
external perturbation. By reformulating the FDT one obtains,
equivalently to Eq. �2�

�� − �2m�� =
2kBT

P���
Re�R̃S���� . �5�

Equation �5� is still the FDT that in this form represents a
general measurement prescription for finding the unknowns
� and m. Note that P��� in Eq. �5� still represents the power
spectrum of the unperturbed system and is therefore ob-
tained in the passive part of the measurements. Simula-
tion results and analytical considerations suggest that for
a calibration, it is most practical and reliable to perturb
the system with harmonic oscillations.13 In the special
case of a sinusoidally moved stage, xS�t�=AS sin��St+�S�,
the trapped particle responds with sinusoidal motion,
�xP�t�	=AP sin��St+�P�. Equation �5� then becomes

�� − �2m��S
=

2kBT

P��S�
AP

�SAS
sin�	�� , �6�

where 	� is the phase difference between stage and particle
oscillations, 	�=�S−�P. Equation �6� represents a simple
formula for the experimental determination of the trap stiff-
ness, since all magnitudes on the right-hand side can be
obtained from measurements. Parameter values for � and

m may be found by fitting the parabolic function on the
left-hand side of Eqs. �5� and �6� to the experimental values.

Another option to drive the system is to relocate the trap
center �laser driving�. Moreover, using this application of the
FDT to obtain the trap stiffness � would allow other param-
eters of the linear system of the trapped particle in the vis-
coelastic medium to be found without any further measure-
ments. These parameters are the response function ����, the
friction retardation spectrum �̃���, and the voltage-position
conversion factor �ªxP

�volt� /xP which relates measured volt-
ages xP

�volt� to actual particle positions xP. All quantities de-
scribing the system of a trapped bead in a viscoelastic me-
dium in linear response theory are summarized in Table II.
The equations for determining the parameters for both stage
and laser driving are shown in Table I.

III. MATERIALS AND METHODS

A. Experiments

In principle, the experimental procedure consists of two
parts, involving active and passive time series measurements.
For technical reasons, since the active part in our setup is
performed with stage driving, three additional steps are re-
quired: direct positional calibration, pixel calibration, and
stage-bead phase delay calibration. The entire procedure is
sketched in Fig. 1 and explained in more detail below.

The optical tweezers setup consists of a neodymium
doped yttrium orthvanadate �Nd:YVO4� laser operating at
1064 nm �10 W, Spectra Physics Millenia� which is directed
into an inverted microscope �Leica DMIRBE�, equipped
with an oil objective with a numerical aperture of 1.32 �Leica
HCX PL APO 63x/1.32, oil�. A QPD �S5981, Hamamatsu�
positioned in the conjugate position of the back focal plane
of the condenser and a charge-coupled device �CCD� camera
�Sony XC-ES50, 25 Hz� mounted on the side port of the

TABLE II. Explanation of quantities describing the system of a bead which is trapped by optical tweezers in a
viscoelastic medium in linear response theory.

Quantity Notation Physical content

Particle mass m Particle property; mass of the particle trapped by the optical
tweezers.

Trap stiffness � Interaction property; spring constant of the harmonic potential
exerted by the optical tweezers.

Friction retardation
spectrum

�̃�f� Interaction property, gives frequency dependence of frictional
interaction between trapped particle and medium; real part
stands for dissipative, imaginary part for elastic processes; also
called frequency-dependent friction coefficient

Power spectrum P�f� Equilibrium system quantity; describes frequency-dependent
intensity of the Brownian motion of the trapped particle

Response function ��f� Nonequilibrium system quantity; describes frequency
dependence of the response of the trapped particle to external
forces; real part describes in-phase response, imaginary part
describes out-of-phase response

Active spectrum R̃S/L�f� Nonequilibrium system quantity; describes frequency
dependence of the response of the trapped particle to stage/laser
velocities

Shear modulus G�f� Medium property; describes stress response to a shear
deformation, real part stands for elastic, imaginary part for
viscous properties
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microscope provide two different means of detecting the
trapped bead. Further details of the setup may be found in
Ref. 16.

The hardware enables simultaneous acquisition of bead
and stage positions which is necessary for determining
the phase shift 	���� between bead and stage. Bead and
stage positions were acquired with a fast data acquisition
card �NI PCI-MIO-16E-4 �old model designation� and NI
PCI-6040E �new model designation��. Home-made LABVIEW

programs �LABVIEW 7.1 and 8.5, National Instruments� were
used to acquire data from the photodiode and the CCD
camera to move the sample chamber �mounted on the pi-

ezostage� in three dimensions �3D� and analyze the images
obtained.

A sample chamber was prepared from two cover slips
with double sided sticky tape in between as spacer. For the
experiments in water, polystyrene beads of a diameter of
1.65 �m were diluted in millipore water �1 /106�, injected
into a chamber and sealed with silicon/vacuum grease.
The actin network was created by adding 450 �l of G-buffer
�2.0 mM Tris HCl, 0.2 mM ATP, 0.2 mM CaCl, and 0.5 mM
DTT� to 1 mg of freeze dried actin �Sigma/from rabbit
muscle� as well as 5 �l of bead solution �2.1 �m, polysty-
rene beads �Spherotech� at 1/250 bottle concentration� and

FIG. 1. �Color online� Sketch of the different steps in the experimental procedure. In �a�–�c�, the bead is in solution and follows the oscillations of the stage
with a delay. In �d� and �e�, the bead is bound to the coverslip and follows the oscillations of the stage precisely.
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45 �l of F-buffer �750 mM KCl, 20 mM MgCl2, 10 mM
ATP, and 4 mM Tris HCl�, giving a final actin concentration
of 2 mg/ml.17 Preparation was done on ice. Thereafter, the
Eppendorf tube was repeatedly tilted to mix the sample con-
tents before approximately 30 �l of it was transferred to the
prepared sample chamber and sealed with silicon grease. The
chamber then rotated in the refrigerator for at least 1 h before
the experiments were undertaken.

1. Passive measurements

Passive measurements are illustrated in Fig. 1�a�. A bead
was trapped with the optical tweezers at a fixed distance l
from the microscope coverslip with l ranging between 5 and
23 �m. The bead motion was recorded with the QPD. The
power of the laser was kept constant during the course of the
calibration, typically at 110–120 mW at the exit of the laser,
with an estimated intensity of 
15 mW at the sample. The
Brownian motion of the trapped bead was sampled at 10 kHz
whereby Nwind time series were recorded. The power spectra
from each of these windows were calculated. In order to
check whether changes occurred because of the active driv-
ing, passive measurements were performed in between active
ones.

2. Active measurements

Figure 1�b� illustrates the active measurements. The
system was driven by sinusoidally oscillating the piezostage
in the x direction with seven different frequencies between
10 and 70 Hz, for the experiments in water and with 19
different frequencies between 10 and 100 Hz, for measure-
ments in the actin solution. Each time the stage was moved
for 10 s and the bead motion was recorded with a sampling
frequency of 2 kHz. For measurements in water, the driving
amplitudes were chosen as described below. For measure-
ments in actin, we applied a driving amplitude of 200 nm.
The stage motion was recorded with the inbuilt stage posi-
tion monitoring system.

3. Direct positional calibration

The direct positional calibration is illustrated in Fig.
1�c�. Direct positional calibration is used to determine the
conversion factor � which translates the output voltages of
the photodiode to real positions through a measurement in-
dependent from the active and passive measurement series.
We denote this value ��SIN�. The stage was driven sinusoi-
dally at a fixed frequency and measurements from the QPD
were compared with measurements based on the images
taken by the CCD camera. The QPD facilitates the measure-
ment of spatial displacements as small as 1 nm with a tem-
poral resolution of MHz.18,19 However, the linearity of the
conversion factor �, which translates the output voltages of
the photodiode to positions in a natural length unit is limited
to displacements below 40% of the radius of the trapped
bead.20 On the contrary, a CCD detection scheme has the
advantage of remaining linear for a wider range of displace-
ments, provided that the objective is corrected for field cur-
vature aberration. However, this method suffers from lower
temporal resolution, as limited by the frame rate of the cam-

era. The spatial resolution is limited by pixel size but may be
improved simply by zooming in on the objects in the field of
view. In our case, we zoomed in on the trapped bead with
a diameter of 2 �m to achieve a pixel size on the order of
12 nm, calibrated as described below.

4. Pixel calibration

The pixel size calibration is illustrated in Fig. 1�d�. From
the images, 3D detection of the bead position was based on
the brightest ring in the image of the bead. We applied a
binary mapping with a threshold value to transform the pic-
ture into a bright ring on a black background. Then the center
of the ring was interpreted as the lateral position of the bead
while its diameter was used to calculate the axial position as
follows: A stuck bead was moved in predefined steps of
length dPZ, in both lateral and axial directions using the pi-
ezostage while grabbing images of the bead. The resulting
images underwent binary mapping and were then analyzed to
extract precise values of pixel sizes in both lateral and axial
directions, dVID, and the conversion factor � was determined
from the ratio. Further details may be found in Ref. 7.

5. Phase correction calibration

Calibration of the phase correction is illustrated in
Fig. 1�e�. The acquisition of bead position is delayed relative
to the determination of the stage position, with a delay time
t�del�. Thus, for the correct determination of 	� in Eq. �6�, we
must correct for the phase delay 	��del�= t�del�fS

	��corr� = 	��fit� − 	��del�. �7�

Here, 	��fit� was found from fits of sinusoidal functions to
the bead and stage positions in the active measurements. For
determination of the phase delay 	��del�, we made an addi-
tional experiment using a bead stuck to the coverslip. We
recorded the stage signal and the QPD signal of the stuck
bead while sinusoidally oscillating the stage with a fre-
quency of 2 Hz. Since the stuck bead moves exactly like the
stage, the phase difference between the phases in sinusoidal
fits to stage and bead signal gives the time lag due to the data
acquisition process. We obtained t�del�=49417 �s. In prin-
ciple, the phase correction calibration should be performed
only once for a given setup, with a given data acquisition
card.

IV. SELECTION OF OSCILLATION AMPLITUDE

Here, the choice of deflection amplitude AL/S is dis-
cussed for both laser and stage driving while, in our experi-
ments only stage driving has been applied. The larger the
deflection amplitude of the laser/stage, the larger is the de-
flection of the trapped particle and the better is the signal-
noise ratio after averaging. On the other hand, the deflection
AL/S has to be chosen relatively small due to several con-
straints. First, the bead should stay in the harmonic trapping
region during deflection of the laser or stage to ensure a
linear response of the trap. Second, the center of the bead
must remain within the linear detection range of the QPD.
Third, since the method is based on the FDT, the laser/stage
motion should generate a small perturbation of the equilib-
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rium system, i.e., the amplitude AL/S should be as low as
possible. This third constraint is apparently the most strin-
gent one. Since one has to choose some finite value, a rea-
sonable choice would be to set AS/L so that the bead ampli-
tude AB would be equal to the half width of the trap,
�kBT /��1/2. That choice should still ensure a linear response.
We can now use the response function ���� to calculate the
required stage/laser amplitudes for sinusoidal driving with
angular frequency �K according to the laser/stage trajectory

xL/S�t� = AL/S sin��Kt� . �8�

One has Eq. �3�, with the external force from the laser/stage
being

F̃L��� =
�

i�
i�x̃L��� , �9�

F̃S��� = �̃���i�x̃S��� . �10�

By taking the norm of Eq. �3�, inserting the laser/stage ve-
locity spectrum for sinusoidal driving and requiring for the

bead amplitude AB��K����x̃��K�	�=! �kBT /��1/2, one obtains

AS��K� =
1

����K����K�̃��K��
�kBT

�
, �11�

AL��K� =
1

����K���
�kBT

�
. �12�

Those two results are plotted over the frequency
fK=�K / �2�� for different spring constants �, in Fig. 2,
for a polystyrene bead with radius R=875 nm and density
�=1.05 g /cm3 in a simple viscous medium of viscosity
�=0.0009 Pa s.

Note that the curves plotted in Fig. 2 are from analytical
considerations. In reality, state-of-the-art stages can only be
oscillated up to frequencies on the order of 100 Hz. For laser
driving one must keep in mind that the harmonic trapping

region has a finite extension, so for a linear response the laser
oscillation amplitude should not exceed a value that is half of
that extension. Note further, the difference between stage and
laser driving in Fig. 2: While high stage position amplitudes
are necessary at low stage driving frequencies, high laser
position amplitudes are required at high laser driving fre-
quencies. The physical reason for that is that the interaction
between the particle and the laser trap is proportional to their
relative positions but the coupling between particle and a
simple viscous medium is only via their relative velocities.
Thus at low frequencies when the stage is only moving
slowly, one needs a high stage amplitude to deflect the bead
from its equilibrium position and vice versa, at high frequen-
cies. In addition, note that the crossover frequency between
the curves for required stage and laser amplitudes in Fig. 2 is
very close to the corner frequency fc=� / �2��0�.

To find driving amplitudes AS��K� required for our ex-
periments with stage oscillations, Eq. �11� has been applied
by using estimates for the parameters �, �̃���, and ����. In
experiments in general viscoelastic media, these parameters
are unknown before the calibration. Then, Eqs. �11� and �12�
cannot be applied a priori for the calculation of the required
laser or stage amplitude AL/S��K�. These amplitudes rather
have to be adjusted in a way that the response of the particle
exhibits an amplitude that is roughly equal to the observed
half width of the trap.

A. Data handling

All of the previous equations were given in frequency
space. In practice, data are recorded as positions x�t� and
y�t� for a single trapped particle for a finite measurement
time Tmeas with a finite sampling rate fsample. Such data sets
have to be Fourier transformed whereby one obtains dis-
crete frequency-dependent transforms x̂k at the frequencies
fk=k /Tmeas, k=−Tmeasfsample /2+1, . . . ,Tmeasfsample /2

x̂k = �t
j

N

e−i2�jk/Nx�tj� �13�

with tj = j�t, �t=1 / fsample, and N�t=Tmeas.
From the data measured during the passive part with

the QPD, the Fourier transformed data x̂k
�volt� lead to the

power spectrum Pk
�volt�. From windowing by averaging

over Nwind=10 data sets and blocking by averaging over
Nblock=20 adjacent frequencies, one obtains the windowed
and blocked power spectrum2

�Pk
�volt�	wind =

��x̂k
�volt��2	wind

T
�14�

to be combined with the measurements from the active part.

V. RESULTS AND DISCUSSION

A. Experiments in water

The first series of experiments to validate the FDT
method were experiments on beads trapped in a simple liquid
�water� with known viscous properties. These sets of experi-
ments allow for a direct comparison with established meth-
ods, i.e., the power spectrum �PSD� method.2
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FIG. 2. Required stage and laser amplitudes for obtaining particle oscil-
lations with an amplitude equal to the half width of the trap for two dif-
ferent spring constants �. Solid line: stage amplitude for �=0.01 pN /nm;
Dashed line: laser amplitude for �=0.01 pN /nm; Short-dashed line:
half width of trap when �=0.01 pN /nm. Dotted line: stage amplitude
for �=0.04 pN /nm; Long-dashed-dotted line: laser amplitude for
�=0.04 pN /nm; Short-dashed-dotted line: half width of trap when
�=0.04 pN /nm. The corresponding corner frequencies are fc=114 and
455 Hz, respectively. The particle is assumed to be a spherical bead of
radius R=875 nm and density �=1.05 g /cm3 which moves in water with
viscosity �=0.0009 Pa s. Hydrodynamic interactions beyond simple Stokes
friction are neglected.
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1. Application of PSD method

When applying the PSD method,2 it is sufficient to
evaluate the undriven data from the bead immersed in water.
Application of the PSD method results in values for two
fitted parameters, the corner frequency fc

�PSD� and the dif-
fusion coefficient D�PSD,volt�. Conversion of the diffusion co-
efficient to metric units provides the factor � as discussed
below. The trap stiffness is obtained according to

��PSD� = 2��0
�fc

�PSD� �15�

with the friction coefficient

�0
� = 6��R�1 +

9R

16l
� , �16�

where the finite distance l=5 �m between bead and
microscope coverslip has been accounted for. With
���=24.5 °C�=0.0009 Pa s, one obtains from averaging
over the Nwind=20 data sets

��PSD,av� = �46.1  1.1� pN/�m. �17�

The temperature � enters this result indirectly because the
viscosity is temperature dependent. The error contribution
arising from the temperature uncertainty is 2.2% and
has been obtained by assuming that the temperature at
the bead position is known with an uncertainty of 
1 K.21 At
�=25 °C, the viscosity changes by 
20 �Pa s per kelvin
which corresponds to a relative error of 2.2%. The conver-
sion factor � is determined with the PSD method from the
relation

��PSD� = �D/D�PSD,volt� �18�

with the theoretical value for the diffusion coefficient
D=kBT /�0

�. The resulting value is displayed in Fig. 3.

2. Application of the FDT method

The experimental setup available allowed for stage-
driving only, and below we describe our results when con-
ducting experiments with that driving procedure.

3. Positional calibration

The conversion factor � estimated from data from active
measurements ��FDT,ex� is found through the discretized ver-
sion of the expression stated in Table I

�K
�FDT,ex� =

2kBT

2�fK�PK
�volt�	wind

·
cot�	�K

�corr��
�K

�FDT,av,volt� . �19�

Since we measure in water at low frequencies, a value with
lower statistical error may be obtained by averaging

��FDT,av� = ��K
�FDT,ex�	K. �20�

The results for �K
�FDT,ex� and ��FDT,av� are plotted in Fig. 3.

Furthermore, the results from the PSD method, ��PSD�,
Eq. �18�, and the estimate from the independent method
described in Sec. III, ��SIN�, are given. As seen in the figure,
we obtain good agreement between the results from the FDT
method and the independent method, whereas the PSD
method yields a somewhat lower result. We suspect mechani-
cal drift to be the cause for this discrepancy. In the experi-
ments described here, we work in a very narrow frequency
range at quite low frequencies, and application of the PSD
method is thus more susceptible to errors due to drift than in
a typical optical tweezers experiment.

4. Trap stiffness

For calibration with the FDT method, the discretized
version of the basic equation in terms of amplitudes and
angles, Eq. �6�, is applied

�K
�FDT,volt� =

2kBT

�PK
�volt�	wind

·
AP,K

�fit,volt�

2�fKAS,K
�fit,ex�sin�	�K

�corr�� , �21�

where the capital K is the index of the driving frequency fK

of the laser/stage and the mass term has been neglected. This
result has units pN/�volt unit�. For obtaining a result �K

�ex�

which has units pN/nm, it has to be divided by the conver-
sion factor ��SIN�

�K
�FDT,ex� =

�� − �2�f�2m�K
�volt�

��SIN� . �22�

Experimental spectra display statistical noise. Therefore it is
appropriate to average those results to obtain a value with
lower statistical error

��FDT,av� = ��K
�FDT,ex�	K. �23�

The results for �K
�FDT,ex� and ��FDT,av� are plotted in Fig. 4

together with the result from the PSD method, Eq. �17�.
For ��FDT,av� one obtains

��FDT,av� = �43.6  1.3� pN/�m, �24�

a result with a total relative error of 4%. Thus, within their
error bars, the calibration results from the PSD method and
the FDT method agree.
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FIG. 3. Voltage-position conversion factor values obtained with three dif-
ferent methods, measurements in water. The long-dashed line indicates the
value ��PSD� obtained with the PSD method as described in the text. The
dotted lines indicate ��PSD� two times the standard deviation. One standard
deviation corresponds to a relative error of 4.1%. Solid squares with error
bars show the frequency-dependent values �K

�FDT,ex� that result from calibra-
tion with the FDT method. The relative error of 
14% originates from
statistical errors and errors from the uncertainty of the temperature. The
average, ��FDT,av�, is shown as a solid line, with short-dashed lines indicating
��FDT,av� two times the standard deviation �one standard deviation gives a
relative error of 5.5%�. Finally, the solid circle with error bars indicates the
conversion factor ��SIN� as obtained by the independent positional calibra-
tion.
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5. Response function

The response function at frequency fK is obtained as

�K
�FDT,ex� =

1 − i2�fKR̂S,K
�ex�

��FDT,av� . �25�

The real and imaginary parts of the active spectrum which
are necessary for that computation are obtained by using the
relations

Re�R̂S,K
�ex�� =

AP,K
�fit,volt�

2�fKAS,K
�fit,ex���SIN�sin�	��corr�� , �26�

Im�R̂S,K
�ex�� = −

AP,K
�fit,volt�

2�fKAS,K
�fit,ex���SIN�cos�	��corr�� . �27�

The experimental result for the response function agrees well
with the expected response function �data not shown�

��f� =
1

��FDT,av� + i2�f�0
� . �28�

6. Friction retardation spectrum

As the next step, the friction retardation spectrum is de-
termined from

�̂K
�FDT,ex� = R̂S,K

�ex�/�K
�FDT,ex� �29�

by using the results from the calculation of the response
function from the last paragraph. The result for the real part
is plotted in Fig. 5�a�. The data values lie roughly on a con-
stant line given by �0

�. Thus, good agreement is achieved
with the model for friction in the proximity of a hard wall
which, for simple Stokes friction, is frequency independent
to the first order. The result for the imaginary part is plotted
in Fig. 5�b�. The imaginary part of �̃ represents elastic con-
tributions to the friction force and it is small compared to the
real part. The data are not inconsistent with the theoretical
curve Im��̃hw,R/l��f� from Ref. 2 �Eq. �33��. The statistical
errors of the data points are very large, however, and a clear

assessment is not possible. Furthermore, systematic errors
could play a significant role here. In order to obtain experi-
mental data with smaller error bars, the measuring time must
be chosen longer, especially in the undriven case. Further-
more, if measurements were performed for a bead closer to
the microscope coverslip then the imaginary part of the fric-
tion retardation spectrum should become larger, which would
reduce the relevance of both statistical and systematic errors.

B. Experiments in F-actin

The second series of experiments to validate the FDT
method were experiments on beads trapped in a semidilute
solution of F-actin without cross-linkers. Thus, we also test
the method in a true viscoelastic medium, using the same
steps as described in detail above.

In this section, we present experimental data obtained
from two sets of experiments, corresponding to the same
bead at the same height in the actin network but at different
times. First a set �a� of both passive and active measurements
was recorded. Then position calibration with 500 nm oscil-
lations at 2 Hz was performed. These measurements allowed
a determination of ��SIN� in the actin solution. Thereafter, the
second set of measurements �b� again including both passive
and active measurements was recorded. Presumably, the
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FIG. 4. Trap stiffness values obtained with two different calibration meth-
ods, measurements in water. The long-dashed line shows ��PSD,av�, Eq. �17�.
It is obtained from a fit ranging up to 2 kHz. The average value  two times
its relative error of 3.3% is shown with dotted lines. Data points with error
bars indicate �K

�FDT,ex�, the relative errors of 
8.5% includes statistical er-
rors, errors from the positional calibration, and the uncertainty of the tem-
perature. The seven values for �K

�FDT,ex� exhibit roughly overlapping error
bars and therefore all values are included in the estimate ��FDT,av�, indicated
by the solid line. Short-dashed lines give ��FDT,av� two times the relative
error of 4.0%.
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FIG. 5. Measurements in water. �a� Real part of the friction retardation
spectrum Re��̂K

�FDT,ex��, shown as solid squares with error bars. For compari-
son to expectations, the long-dashed line shows �0=14.0 ng /s, correspond-
ing to the bulk Stokes friction. The filled triangle with �long-dashed line�
error bars indicates the 2% error due to the uncertainty in temperature.
The dotted line indicates Re��̃hw,R/l��f�=�0

�=15.3 ng /s, including correc-
tions due to the finite distance l to the coverslip, to first order in R / l. The
open circle with �dotted line� error bars indicates uncertainty due to tem-
perature. This demonstrates that the FDT method correctly reproduces the
effect of increased viscosity due to the proximity of the microscope cover-
slip. �b� Imaginary part of the friction retardation spectrum Im��̂K

�FDT,ex��,
shown as filled squares with error bars. The long-dashed line shows the
imaginary part of the friction retardation spectrum in proximity to a hard
wall, Im��̃hw,R/l��f� �Ref. 2� �Eq. �33��, for R / l=825 /5000. For comparison,
the imaginary part of Stokes friction �Ref. 2� �Eq. �31��, is plotted as a
dotted line.
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large amplitude oscillations of the stage for the positional
calibration resulted in a partial disruption of the actin net-
work, as also indicated by microscope observations that
the embedded beads show different behavior in the two cases
�a� and �b�.

In Fig. 6, the results of the trap calibration are dis-
played. The resulting average spring constant of the optical
trap, plotted as long-dashed lines with short-dashed lines
indicating two times the standard deviation, equals
�= �1.060.12� ·10−2 pN /nm in the experiments in part �a�
of the figure and �= �1.410.15� ·10−2 pN /nm in the experi-
ments in part �b� of the figure. Similar results have been
obtained in other experiments with similar conditions.

For comparison, in an experiment in water with the
same laser settings, we find for a bead of the same size
trapped at the same depth, a spring constant of order
�water= �1.4–1.8� ·10−2 pN /nm. Correction for the refractive
index difference between a water solution and the actin so-
lution is difficult as we do not know the refractive index of
the latter, yet an analysis as in Ref. 22 �Eq. �3��, with an
estimate of nactin between that of water �n=1.33� and that of
a cell �n
1.5�, suggests that the spring constant of the trap
in the actin solution could be as low as 34% of that in water.
This analysis is based on a continuous medium model. Ide-

ally, our solution of actin is a homogeneous network, and our
analysis relies on that it is so, yet inhomogeneities might
occur. With that in mind, our experimental results,
�actin /�water
0.8, appear reasonable.

We speculate that improvements to our description and
the active-passive calibration method would require a de-
scription of the actin solution as a two-component medium,
in which the bead is mainly situated in water, trapped in a
water-filled cage between the actin filament.

Figure 6 also illustrates other strengths and weaknesses
of methods estimating trap stiffnesses in viscoelastic media:
As mentioned above, the two sets of measurements in �a� and
�b� differ in time and history, thus the properties of the actin
network are likely to be different in the two cases but the
properties of the trap are expected not to differ. Within two
standard deviations, we find the same trap strength in �a� and
�b�, whereas the total spring constant felt by the bead is
clearly different in the two cases. In the work of Atakhorrami
et al.,5 the suggested approximative method to find the trap
stiffness in situ is based on the limiting behavior of the total
spring constant felt by the bead as f →0. Our results illus-
trate a possible shortcoming of that method, as already al-
luded to by these authors: Our case �a� corresponds to a
medium that is highly elastic in which case the total spring
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the same bead in an actin solution, but in between the two measurements, the actin solution was partially disrupted by oscillations of the stage of an amplitude
of 500 nm at 2 Hz. In part �a� of the figure, the solution of filamentous actin displays the characteristics of a purely elastic network whereas in part �b�, the
results demonstrate viscoelastic characteristics. To guide the eye, the thick solid line is proportional to f0.75.
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constant felt by the probe is clearly different from the spring
constant of the trap. On the contrary, our case �b� shows an
example where we expect our evaluation of the trap stiffness
to agree with an estimate using the procedure suggested by
Atakhorrami et al.5

As a final comparison, the figure also shows the result
of the most direct analysis of the data, based on the equi-
partition theorem and a direct calculation of �x2	 from the
raw time series. According to the equipartition theorem,
�x2	=kBT���0�	, or, in the limit of �→0, kBT / �x2	=�
+� Im��̃����, a result including both elastic components
from the optical trap and from the actin filament network. It
may thus be compared to 1 / ���f�� as f →0.

Figure 7 displays the viscoelastic moduli of the actin
network in the same two cases as in Fig. 6. The moduli are
determined under the assumption that the network is in equi-
librium and the error bars reflect the corresponding statistical
errors. The moduli may directly be compared to other mea-
surements of viscoelastic properties, in in vitro actin solu-
tions. Literature states that, in a limited frequency range, G�,
G�� f0.75,23 whereas for low frequencies, elasticity domi-
nates, resulting in a plateau in G�, G�. Both features are also
displayed in our data, and we find reasonable agreement with
previously published values for the moduli24 at similar actin
concentration. To guide the eye, the lower thick solid line in
part �b� of the figure is proportional to f0.75.

VI. CONCLUSION

In this paper, we present a way to calibrate single beam
optical tweezers in situ in viscoelastic media, through a com-
bination of passive and active recordings on the same sys-
tem. We stated calibration equations for the special case of
sinusoidal driving in terms of the amplitudes AP, AS/L, and
the phase difference 	� and we tested the method in water
and entangled F-actin. The so-called FDT method is based
on linear response theory in continuous media. No specific
model for the friction felt by the trapped particle in the vis-
coelastic medium is assumed. Therefore, no prior knowledge
of viscoelastic parameters of the medium or the shape of the
particle is required. It is required however, that all particle
motion takes place within the harmonic region of the trap-
ping potential. Furthermore, for a linear response, the active
part of the experiment must only inflict small perturbations
to the trapped particle. In particular, we foresee that the FDT
method will be applicable in investigations of how forces are
generated in a biological cell. An important concern when
applying the FDT method to living cells is the presence
of bioactive processes which renders the FDT invalid in
certain frequency ranges: In an actin network with molecu-
lar motors, data for fluctuating beads show disagreement
with the fluctuation-dissipation theorem at frequencies below
10 Hz.25 However, modern piezostages can be moved with
frequencies up to several hundred Hz and acousto-optic
deflector can deflect lasers even with frequencies of seve-
ral kHz. At such high frequencies, no significant nonequilib-

rium contributions to the power spectrum are expected and
the FDT would remain valid. It remains to be seen if fre-
quency ranges of bioactive processes will reveal themselves
in experimental data sufficiently and clearly such that the
experimenter will know that data at these frequencies are to
be excluded from the process of determination of the trap
characteristics.
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