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Thermally driven molecular linear motors: A molecular dynamics study
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We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial
carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner
short, capsulelike nanotube. The simulations indicate that the motion of the capsule can be
controlled by thermophoretic forces induced by thermal gradients. The simulations find large
terminal velocities of 100–400 nm/ns for imposed thermal gradients in the range of 1–3 K/nm.
Moreover, the results indicate that the thermophoretic force is velocity dependent and its magnitude
decreases for increasing velocity. © 2009 American Institute of Physics. �doi:10.1063/1.3281642�

In recent experimental studies, Somada et al.1 and Bar-
reiro et al.2 fabricated molecular linear motors consisting of
coaxial carbon nanotubes �CNTs�. In both systems a short
CNT is found to move along the axis of a long CNT, working
as a molecular linear motor. Barreiro et al.2 were able to
attach a cargo to an ablated outer wall of a multiwalled CNT
and to impart translational and rotational motion of the cargo
by imposing a thermal gradient. Barreiro et al.2 identified
thermophoresis as the main driving mechanism for their mo-
tor and consistent with recent numerical simulations of ther-
mophoretic motion of gold nanoparticles and water nano-
droplets confined inside CNTs.3–6 In the experimental
arrangement of Somada et al.1 the system was described and
modeled as a capped capsule-like short CNT with a chiral
vector of �12,0� encapsulated in the interior hollow space of
a single wall CNT with a chiral vector of �22,0�. The hollow
space was approximately 8.5 nm long and limited by two
fixed and inner CNTs with a chiral vector of �12,0�. The total
length of the outer CNT was more than 100 nm long. Using
transmission electron microscopy �TEM�, Somada et al.,1

observed that the inner CNT �capsule� changed its position
including stop events at the two ends of the hollow space.
During the 170 s long experiment, the capsule was found to
travel back and forth seven times. However the motion of the
capsule could only be observed indirectly due to 0.5 s time
resolution of the TEM. The pictures obtained from the TEM
experiment furthermore indicate that the capsule is undergo-
ing rotation during the translational motion. Somada et al.1

proposed that the mechanism driving the capsule is related to
thermal activation energy which is in equilibrium with the
van der Waals �vdW� energy gain due to the interaction be-
tween the caps of the inner CNTs.7 However, the theoretical
activation time is shorter than the activation time measured
in the experiments, and Somada and co-workers1 included an
additional contribution to the total friction force due to the
thermal fluctuation of the outer CNT. They argue that the
thermal energy not only activated the capsule motion but

also obstructed its travel by deforming the hollow space of
the system. In a related study, Smith et al.8 found that
fullerenes encapsulated inside CNTs would jumped nano-
meter distances under TEM illumination. The authors as-
cribed this motion to thermal or electrostatic forces. In order
to employ the concept of a molecular linear nanomotor with
potential applications such as mass nanotransport systems9–13

and archival memory devices,14 a detailed explanation of the
driving mechanisms should be addressed. In the present
Communication we study the ability of thermal gradients and
the associated thermophoretic forces to impart motion in
CNT-based linear motors. The thermal gradient may be im-
posed by irradiation from a transmission electron microscope
or from Joule heating induced by electrical currents. In ex-
perimental and theoretical studies Howe et al.,15 Yokota et
al.,16 Wang et al.,17 and Biskupek et al.18 found that electron
beam irradiation generates a temperature increase in the irra-
diated region due to electron thermal spikes. Moreover, in-
duced effects such as defect production, annealing and heat-
ing by electron-phonon coupling have been investigated by
Krasheninnikov.19,20 Using molecular dynamics �MD� simu-
lations, Krasheninnikov19 argued that, in carbon nanostruc-
tures, the kinetic energy of an incident electron beam is con-
verted into thermal energy, which results in an increase in
temperature that is higher than expected for bulk systems due
to the small system size.

In this work we perform MD simulations in order to
demonstrate that the motion of the inner CNT, in a system
similar to that studied by Somada et al.,1 may be strongly
influenced by thermophoretic forces. We show quantitatively
that a thermal gradient as small as 1.2 K/nm can cause the
motion of the capsule. For our simulations we use the MD
package FASTTUBE,21 which has been used extensively to
study thermophoretic motion of liquids and solids confined
inside single and double wall CNTs.3–6,13 We simulate the
system studied by Somada et al.1 using a double wall CNT
system as illustrated in Fig. 1. The system consists of an
outer 42.6 nm long CNT with a chiral vector of �22,0� cor-
responding to a diameter of 1.723 nm. The inner capsule is
modeled as an open short 3.195 nm long CNT with a chiral
vector of �12,0�, and diameter 0.94 nm. We describe the va-
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lence forces within the CNT using Morse, harmonic angle
and torsion potentials.21 We include a nonbonded carbon-
carbon Lennard-Jones potential with parameters �CC

=0.4396 kJ /mol and �CC=0.3851 nm to describe the vdW
interaction between the carbon atoms within the double wall
portion of the system. We equilibrate the system at 300 K for
0.1 ns, by coupling the system to a Berendsen thermostat
with a time constant of 0.1 ps. After the equilibration we
impose thermal gradients in the range of 0.00–4.20 K/nm by
heating two zones at the ends of the outer CNT as illustrated
in Fig. 1. We measure the position of the center of mass
�COM� of the inner CNT during the simulation. We observe,
for gradients higher that 1.18 K/nm, a directed motion of the
capsule in the direction opposite to the imposed thermal gra-
dient, as shown in Fig. 2�a�. For a thermal gradient of 1.18
K/nm the mean terminal velocity is approximately 170 nm/
ns, which is higher than the velocity measured in our previ-

ous studies on thermophoresis of water nanodroplets and
gold nanoparticles confined inside CNTs3–6 but similar to the
velocity measured in the simulations by Barreiro et al.2

Moreover, we find a consistent increase in the terminal ve-
locity for increasing thermal gradients �see Fig. 2�b��. We
observe from the time history of the COM position and ve-
locity �Fig. 2� an initial oscillation of the capsule due to the
static friction acting between the two CNTs.

To confirm that the motion of the capsule is driven by
thermophoresis we perform additional simulations in order to
study the friction and thermophoretic forces acting on the
inner CNT. We carry out a force analysis similar to that
performed by Schoen et al.3 In these simulations, we con-
strain the COM velocity of the inner CNT and extract from
the simulations the external forces required to drive the inner
CNT for different constrained velocities and different im-
posed thermal gradients �Fig. 3�. To measure the isothermal
friction of the system we impose a zero thermal gradient
while we vary the constrained COM velocity. At nonzero
thermal gradients we measure the combined friction and
thermophoretic forces. A positive force indicates resistance
to the motion, whereas a negative force is indicative of ther-
mophoresis. In Fig. 3�a� we show the mean external force as
a function of the imposed thermal gradient for two con-
strained COM velocities. The external forces are subject to
large fluctuations represented by the error bars in the corre-

FIG. 1. Schematic of the computational setup. Cross-sectional view of the
system, the outer CNT is a �22,0� zigzag CNT and the inner one is a �12,0�
zigzag CNT. A thermal gradient is imposed by heating the end sections �in
gray� of the outer CNT.
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FIG. 2. COM position �a� and velocity �b� as a function of time for three
different thermal gradients: blue �*�, 3.16 K/nm; green ���, 1.58 K/nm, and
red �+�, 1.18 K/nm.
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FIG. 3. External force acting on the constrained inner CNT �a� external
force as a function of the imposed thermal gradient for different constrained
velocities: red line and ���, 4 nm/ns. blue line and �+�, 16 nm/ns. �b�
External force acting as a function of the COM velocity for different thermal
gradients: red �+�, 0.0 K/nm; green ���, 1.0 K/nm; blue �*�, 2.0 K/nm; and
fuchsia �squares�, 3.0 K/nm.
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sponding curve. In Fig. 3�b� we show the external driving
forces as a function of the COM velocity for different ther-
mal gradients �0.0, 1.0, 2.0, and 3.0 K/nm�, extracted from
more than eighty individual simulations. We find a system-
atic increase in the thermophoretic force as higher thermal
gradients are imposed on the system. Furthermore, the mea-
sured isothermal friction is small compared with the thermo-
phoretic force �cf. Fig. 3�. We infer from the simulations that
the magnitude of the thermophoretic force is reduced as a
higher velocity is imposed to the inner CNT �Fig. 3�. We
conjecture that the magnitude of the driving thermophoretic
force is inversely dependent on velocity, We find that, for
different imposed thermal gradients, the corresponding ter-
minal velocity is governed by the velocity dependence of the
thermophoretic force rather than a match between the ther-
mophoretic force measured at zero velocity and the static
friction. We observe from Fig. 3�b� that the zero external
force is obtained at approximately 100 nm/ns for 1 K/nm, at
250 nm/ns for 2 K/nm and at 400 nm/ns for 3 K/nm in
reasonable agreement with the terminal velocities observed
in Fig. 2�b�.

In summary, we propose that the motion of the molecu-
lar linear motor observed in the experiments of Somada et
al.1 and Barreiro et al.2 could be caused by the thermal gra-
dient imposed on the system. We believe that the thermal
activation energy as proposed by Somada et al.1 for the
driven mechanism, could be part of the mechanism to extri-
cate the capsule from the energy valley at the ends of the
hollow space. However, we believe that this motion may be
strongly influenced by thermophoretic forces. We believe
that our hypothesis contributes to the understanding and uti-
lization of thermophoresis-based linear nanomotors with po-
tential applications in transport and delivery of substances
encapsulated in carbon nanostructures confined inside a host
CNT.22–28 Moreover, with this Communication we hope to
encourage more experimental work to study thermophoretic
linear nanomotors and its potential applications.
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