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A spectral route to determining chirality
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DK-2800 Kongens Lyngby, Denmark
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We show how one-dimensional structured media can be used to measure chirality, via the spectral
shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases,
be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using
this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect
could be used for measuring enantiomeric excess. © 2009 American Institute of Physics.
�doi:10.1063/1.3246153�

The concept of molecular enantiomers, molecules which
are nonsuperposable mirror images of each other, is of vital
importance in the pharmaceutical industry, due to the fact
that two different stereoisomers of the same molecule may
have profoundly different effects. Such chiral molecules
have particular optical properties, such as, e.g., optical activ-
ity, and circular dichroism.1 Also, as was recently shown
experimentally, linearly polarized light incident upon a chiral
medium will split into the two directions of circular polar-
ization, refracted at different angles to each other.2 Such
properties may be utilized to determine the chirality of a
given sample, a measurement also of the enantiomeric ex-
cess. However, neither of these methods are based on spec-
tral information but instead rely on measurements of inten-
sity or angle of refraction. While both circular dichroism and
optical rotation are of course wavelength dependent, this
wavelength dependence is not what is used to characterize
the chiral strength in such measurements. We have previ-
ously shown how the sensitivity of measurements based on
circular dichroism may be enhanced using photonic crystals.3

In this letter, we present a possible way of obtaining spectral
signatures of chirality, by tracking the band gap edges of
such structured media.

We consider a Bragg stack, as illustrated in Fig. 1, con-
sisting of alternating layers of isotropic chiral media, charac-
terized by refractive indices ni, and chiral parameters �i, with
i=1,2. The layers are of widths di, with lattice constant �
=d1+d2. Such structures are closely related to magneto-
optical Bragg gratings, in which the optical activity stems
from the inclusion of magnetic material.4 To treat the inclu-
sion of the chiral media, we need to modify the ordinary
constitutive relations. We assume, as is commonly done, that
the curl equations of Maxwell still hold in chiral media, but
replace the standard constitutive relations with the ones
based on the symmetrized Condon set,5,6

D = �E − g � H/�t, B = �H + g � E/�t , �1�

which for monochromatic plane waves with time dependence
exp�−i�t� becomes

D = �E + i�H, B = �H − i�E , �2�

where �=�g. For weak chirality, these constitutive relations
are equivalent to the Drude–Born–Fedorov relations, as dis-

cussed in the review by Lekner in Ref. 7. We implicitly
assume that � and � may be position dependent, while we for
simplicity consider nonmagnetic materials and set �=1
throughout the paper. We calculate the dispersion relation of
the chiral structure using a recent derivation by Kim et al.,8

which is based on an exact solution of the coupled wave
equations of the system.

In Fig. 2 we show the band structure of a Bragg stack in
which one of the constituent media is chiral. For illustrative
purposes, we choose a value of �=0.6 for the chiral medium,
which is several orders of magnitude larger than any natu-
rally occurring media. We stress that the trends observed
remain the same for more realistic values of the chiral
strength, and that none of the conclusions drawn depend on
this magnitude of chirality. For reference we also show the
band structure for the corresponding nonchiral structure. The
results are shown for on-axis and oblique incidence of light,
respectively. In both cases the band structure is significantly
altered as chirality is introduced in one of the media. How-
ever, the location and the size of the band gaps is unaltered in
the case of on-axis incidence. On the other hand, it is clear
that for oblique incidence, there is a marked shift of the band
gap edges as a chiral medium is introduced. This suggests a
possible spectral route to measuring chirality, namely that the
chirality may be determined by tracking the band gap edges
of the Bragg stack. One could imagine having a Bragg stack
consisting of air and ordinary, nonchiral dielectric and then
flowing a chiral liquid through the air regions. By measuring
transmission spectra it would then be possible to determine
the chirality of liquid.

a�Electronic mail: jeped@fotonik.dtu.dk.
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FIG. 1. �Color online� The chiral Bragg stack consisting of alternating lay-
ers of refractive indices n1 and n2, and chiral strengths �1 and �2. The widths
of the layers are d1 and d2, so the lattice constant �=d1+d2. Circularly
polarized light is incident at an angle �0 from the surrounding medium with
refractive index ns=1.
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To investigate this in more detail, we consider the sim-
pler case where there is negligible index contrast between the
layers of the Bragg stack, so that both may be characterized
by the same refractive index, n0, as illustrated in Fig. 3�a�.
Several polymers exist with refractive indices close to water;
Poly �methyl methacrylate� �PMMA� , for example, has a
refractive index of n�1.49 and is well suited for photonic
crystal manufacturing.9,10 One could also imagine index
matching by tuning the refractive index of the buffer liquid.
Alternatively, microfluidic concepts may be employed to re-
alize a striped pattern with alternating thin laminar-flow lay-
ers of a pure buffer fluid �without chiral molecules� and
buffer fluid containing chiral molecules. In the low-Reynolds
regime, typical for microfluidic architectures, diffusion is the
only source of mixing. Well-defined spatial periodic � varia-
tions �without any refractive index contrast� should thus in
principle be possible by carefully adjusting the flow rate rela-
tive to the diffusion rate.11

In the case of negligible index contrast, there is no cou-
pling between the two modes of circular polarization and the
transmission matrix from medium 1 to medium 2 is charac-
terized by a single scalar transmission coefficient, t=2 / �1
+cos ��

�2� /cos ��
�1��, where ��

�i� are the angles given via the
Chiro–Snell’s law, ns sin �0= �n0��i�sin ��

�i�.12 Here, ns is
the index of refraction of the surrounding medium, assumed

ns=1 from here on, while +�−� denotes the direction of cir-
cular polarization of the incident light, corresponding to right
�left� circular polarization. It is evident that this transmission
coefficient is of the same form as the one describing on-axis
transmission between two nonchiral dielectric layers of index
contrast n2� /n1�=cos ��

�2� /cos ��
�1�. Since the cross-polarization

�XP� coupling is negligible, we may thus directly map this
problem onto the one illustrated in Fig. 3�b�, in which lin-
early polarized light is incident on an ordinary, nonchiral
Bragg stack with layers of refractive indices n1� and n2�. By
equating transmission coefficients and phase accumulations
in each of the two cases, we arrive at the mapping

d1� =
�

1 + �rdr
, �3a�

d2� =
�rdr�

1 + �rdr
, �3b�

ni� = �−1�d1�n0 � �1� + d2�n0 � �2��cos ���i�, �3c�

where di is the layer thickness of the ith layer of the chiral
structure, while di� is the one for the nonchiral structure.
Here, we have introduced �r��n0��2� / �n0��1� and dr

�d2 /d1. In this way, the chiral contrast of the zero index
contrast case is mapped onto an index contrast of a nonchiral
structure.

Using this mapping we may greatly simplify the analysis
of the chiral Bragg structure, using terms and results ob-
tained from ordinary index-contrast Bragg structures. First of
all, it is clear from the mapping that no band gaps will be
present for the structure in the case of on-axis incidence, for
which n1�=n2�. Also, we may derive an analytical expression
for the first-order shift of the band gap wavelengths as a
function of the chiral parameter of either layer. The wave-
lengths of the band gaps are evaluated using the Bragg con-
dition m�gap=2�navg, where navg is the average refractive
index and m is the order of the gap. We find

m�gap = �
i=1

2

2di�n0 � �i��1 −
ns

2

�n0 � �i�2sin2 �0. �4�

Fixing �1, we find that the sensitivity of the band gaps to the
chirality of the second medium is

m
��gap

��2
= �

2d2

cos ��
�2� , �5�

where cos ��
�2�=�1− �ns sin �0 / �n0��2��2. There is thus a

first-order shift in the band gap positions,

m	�gap � � 	�2
2d2

cos �
, �6�

where cos �=�1−ns
2 sin2 �0 /n0

2, suggesting that this may be
a very sensitive way of measuring chirality. Quite intuitively,
the sensitivity increases with the width of the chiral medium.
Thus the minimum detectable wavelength shift divided by
the width of the chiral layer is ultimately what determines
the minimum detectable shift in chirality. As such, simply
increasing the width of the chiral layer will increase the sen-
sitivity, so long of course that the concentration of chiral
molecules remains the same and that they are still reasonably
evenly distributed within the layer. As an example, assuming
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FIG. 2. �Color online� Band structures for a chiral Bragg stack with layers
of thickness d1=0.2� and d2=0.8�, refractive indices n1=2 and n2=1.33,
and �1=0. The blue �red� lines indicate the real �imaginary� part of the
wavevectors. The full lines are for the chiral Bragg stack with �2=0.4, while
the dotted lines are for the nonchiral case, �2=0. Results are shown for
on-axis and oblique incidence of light, respectively. Note the shift of the
band edges for oblique incidence only.
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FIG. 3. �a� Chiral Bragg stack with negligible index contrast between layers.
The incident light is circularly polarized and at an angle �0 to the axis of the
Bragg stack. This situation can be directly mapped onto �b� a nonchiral
Bragg stack with index contrast, where linearly polarized light is incident on
axis.
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a wavelength resolution of 0.1 nm, a layer width of 5 �m,
and setting cos ��1, we obtain a chiral resolution of 	�
=10−5. Interestingly, the sensitivity appears to diverge as
ns sin �0→ � �n0��2�. This is, however, related to an effec-
tive Brewster’s angle and thus coincides with the disappear-
ance of the band gaps, as is also evident from the mapping in
Eq. �3c�. Also, it is only attainable in the situation of ex-
tremely large chirality strengths.

In Fig. 4�a� we show the numerically calculated band
gap regions as well as the analytical results based on the
first-order expansion in �2, for a chiral Bragg stack with no
index contrast. The numerical results are based on the solu-
tion of the full chiral problem. We find excellent agreement
between the analytical and the numerical results. In Fig. 4�b�
we show the corresponding results for the case of nonzero
index contrast, with n1=2. Here, a simple modification of the
result in Eq. �6�, taking n0→d1n1+d2n2, gives very good
agreement with the full numerics. This shows that the first-

order shift in the band gaps is also present in the case of
index contrast, and thus the index matching may not be es-
sential for chirality sensing applications. However, as an in-
dex contrast is introduced, cross-coupling between the two
modes of circular polarization is also introduced, leading to
the appearances of XP band gaps, as indicated in the figure.
It is evident from the results that these gaps are less sensitive
to changes in chirality. From a sensing perspective, this may
be problematic, as the XP gap may mask the underlying co-
polarization �CP� gaps. One possible solution would be to
introduce strong chirality in the other medium, i.e., having
�1
0 in the present case, which will split the CP gaps away
from the XP gap.

In conclusion, we have shown how spectral shifts of the
photonic band gaps of one-dimensional structured materials
may serve as a useful way of measuring chirality. Using a
mapping from the case of pure chiral contrast to the case of
pure index contrast, we have derived an expression for the
first-order shift of the band gaps with chirality. A simple
modification of this result is in excellent agreement with full
numerics, also in the case of a nonzero index contrast.
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FIG. 4. �Color online� Band gaps for the chiral Bragg stack. The gray areas
indicate the regions in which the imaginary part of the wavevector is non-
zero, i.e., the band gap regions. Results are for a structure with d1=0.2�,
d2=0.8�, n2=1.33, �1=0, and oblique incidence, �0=� /4. �a� No index
contrast, i.e., n1=n2=1.33. The dashed lines show the analytical expressions
Eq. �6� for the first order shift in the central band gap wavelength with the
chiral parameter. Blue �green� lines indicate band gaps for right �left� circu-
larly polarized light. �b� Index contrast, n1=2. Here, the dashed lines show
the approximate analytical results, but with n0 replaced by d1n1+d2n2. The
longest-wavelength XP band gaps are indicated.
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