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Control algorithm for multiscale flow simulations of water
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We present a multiscale algorithm to couple atomistic water models with continuum incompressible flow
simulations via a Schwarz domain decomposition approach. The coupling introduces an inhomogeneity in the
description of the atomistic domain and prevents the use of periodic boundary conditions. The use of a mass
conserving specular wall results in turn to spurious oscillations in the density profile of the atomistic descrip-
tion of water. These oscillations can be eliminated by using an external boundary force that effectively
accounts for the virial component of the pressure. In this Rapid Communication, we extend a control algo-
rithm, previously introduced for monatomic molecules, to the case of atomistic water and demonstrate the
effectiveness of this approach. The proposed computational method is validated for the cases of equilibrium
and Couette flow of water.

DOI: 10.1103/PhysRevE.79.045701 PACS number�s�: 47.11.St

Water is the most important solvent and an ubiquitous
component of biological systems. The interaction of water
with its environment and the ability to capture its behavior at
all scales from atomistic to continuum is challenging and has
stimulated much interest in multiscale computational ap-
proaches, beginning with the work of Clementi �1�.

Multiscale methods, coupling continuum models to atom-
istic descriptions, have been largely developed for fluids de-
scribed in the atomistic regime by Lennard-Jones potentials.
We may distinguish multiscale methods by the way informa-
tion is exchanged between the two descriptions: by a direct
flux exchange �2–5� and by a Schwarz alternating method
�6–9�. A number of recent works has presented extensions to
more realistic systems involving, for example, polyatomic,
polar molecules such as water. Multiscale simulations of liq-
uid water include the works of de Fabritiis et al. �3� who
employed the flux exchange scheme and Praprotnik et al.
�10� who presented a spatially adaptive molecular resolution
procedure to transition from a coarse grained to an all-atom
representation.

In this Rapid Communication, we present an application
of the Schwarz alternating method �8,9� to perform multi-
scale simulations of liquid water. The key advantage of this
approach, over flux-based schemes, is that it does not require
the calculation of the pressure tensor; a quantity that can be
difficult to compute accurately due to limited spatial or tem-
poral resolution. At the same time, Schwarz algorithms re-
quire several iterations in order to ensure an approximate
conservation of mass and momentum between the different
descriptions whereas flux-based schemes are algebraically
exact. Both schemes encounter a difficulty with density os-
cillations attributed to the removal of periodic boundary con-
ditions �BCs� in the atomistic domain. Flux-based schemes
employ a buffer region that should be sufficiently large to
ensure bulk properties in the atomistic region �3�. In Schwarz
algorithms, a boundary force is introduced, along with a
specular wall, to account for the missing component of the
virial pressure and to eliminate these density oscillations. In
this Rapid Communication, we determine the boundary force
for multiscale simulations of liquid water, by extending the

control algorithm, previously developed for monatomic liq-
uids �8� to the case of water.

We begin with a summary of the general Schwarz itera-
tion procedure �see Fig. 4�. In this approach, a solution of the
continuum velocity field is obtained first subject to external
�outer boundary� and internal �from the atomistic region�
boundary conditions. This is followed by a solution of the
atomistic scale equations, usually Newton’s equations of mo-
tion as embodied in molecular-dynamics �MD� methods.
This is implemented in the following five steps. �a� The in-
teractions between atoms are computed, including the
boundary force Fm. �b� The velocity boundary condition ob-
tained from the continuum solution is imposed on the atomic
degrees of freedom. �c� The atomistic-continuum interfaces
are moved with the local continuum velocity normal to the
interface to allow flow inward and outward of the atomistic
domain; the atoms that have crossed the interfaces are
bounced and the interface positions are reset to the initial
values to keep a constant frame of reference. �d� The par-
ticles that have left the atomistic domain are reinserted
�11,12�. �e� A velocity boundary condition, as measured in
the atomistic domain, is constructed for the continuum re-
gion and used for the next iteration. The steps are then re-
peated again, starting with the solution of the continuum ve-
locity field.

In the present algorithm, the atomistic region is described
by MD simulations subject to nonperiodic boundary condi-
tions �NPBCs�. The position ri= �xi ,yi ,zi� and velocity ui
= �ui ,vi ,wi� of the ith particle evolve according to the New-
ton’s equation of motion,

d

dt
ri = ui�t� ,

mi
d

dt
ui = Fi = − �

j�i

�U�rij� ,

where mi is the mass and Fi is the force on particle i. The
interaction potential U�rij� models the physics of the system.
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Here we consider liquid water modeled using the rigid
simple point charge/extended water model by Berendsen et
al. �13�, with an O-H bond length of 1 Å and a H-O-H angle
of 109.47° constrained using the SHAKE algorithm �14�.
The long-range electrostatic interactions are treated using the
reaction field method �15�. The nonbonded interactions are
computed using a molecular cutoff �rc� of 1.0 nm and the
equations are integrated using a leap-frog scheme with a time
step �t=2 fs.

We impose NPBC with a boundary force Fm to exert the
correct mean virial pressure on the MD system �8�. A specu-
lar boundary is used to prevent molecules from leaving the
atomistic domain and to impose the ideal kinetic part of the
system pressure. The collisions are detected in a moving
frame of reference. At the end of the time step, the moving
boundaries are reset to their initial position and particles that
end up outside the computational domain are then reinserted
�11,12�. More specifically, we first detect the collision of a
water molecule by computing whether its center of mass has
crossed the boundary; thus, at each time step n, we compute
the collision time as t�= �xc

n−xb� / �ub− ũc
n+1/2�. Here, xc

n is the
position of the center of mass of the water molecule, xb and
ub are the initial boundary position and boundary speed, and
ũc

n+1/2 is the center-of-mass velocity of the molecule after the
regular leap-frog update but before a possible reflection.
Note that we are only concerned with molecular positions xi
and velocities ui in the direction perpendicular to the bound-
ary and have dropped the molecule index i for simplicity. If
t� is smaller than the time step �t then the molecule is cross-
ing the boundary and the new velocity and position of each
atom of the molecule are calculated as

un+1/2 = ũn+1/2 − 2�ũc
n+1/2 − ub� , �1�

xn+1 = xn + t�ũn+1/2 + ��t − t��un+1/2. �2�

In �8� the boundary force Fm is computed from the pair po-
tential and the pair-correlation function g�r� of the fluid. This
approach was shown to be superior to existing approaches
but is not sufficient for dense liquids at low temperatures as
the pair-correlation function may not be sufficient to describe
the structure of the liquid. In �9� a control algorithm was
introduced in order to achieve the target density of the sys-
tem for a wide range of temperatures. This algorithm is here
extended to the case of water described by a fully atomistic
model.

We apply our method to a model water system at equilib-
rium in the liquid phase, namely, �T=300 K,�
=0.997 g cm−3�. The size of the computational domain is
3�3�3 nm3. Nonperiodic boundary conditions are im-
posed in the x direction. The system is weakly coupled to a
Berendsen thermostat �16� with a time constant of 0.02 ps. In
order to reduce spurious oscillations in the density, we apply
the control algorithm to the mean external boundary force
applied to the MD system. The control approach is sketched
in Fig. 1. Each iteration involves the following steps. We
start by applying a zero external boundary force. The density
is sampled in 3 ps time intervals and we employ a filter to
reduce the signal noise. The filter reduces the required sam-
pling size and hence improves the convergence properties.
The density �m� is measured with a spatial resolution ��x� of
0.025 nm in time intervals of 3 ps and processed twice
through a Gaussian filter to obtain �m,

�m�x� =
1

�2� �� �m��x��e−�x − x��2/�2
dx��e−�x − x��2/�2

dx�,

�3�

where �=2�x. The cutoff used for the discrete evaluation of
the convolution is 3�x �9�. We then evaluate the error in the
fluid density as

FIG. 1. Schematic representation of the control algorithm for
reducing density fluctuations. The controller uses the error ei, which
is the difference between the target density �i

t and the computed
density �i

m, to obtain a correction to the boundary force �Fi, which
is applied to the MD boundary to produce the correct density and
virial component of the pressure; the procedure is iterated until the
error is smaller than a prescribed tolerance.
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FIG. 2. �a� The external boundary force computed after applying dynamic control theory. �b� The corresponding reduced density
��+=� /�bulk� values, without the control �zero external boundary force, dotted line� and with the control �solid line�. For these simulations,
we used kp=nm2.5 kJ /amu mol and both the force and density were sampled over 0.36 ns.
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e�rb� = �t − �m�rb� , �4�

where rb is the distance to the boundary, �t is the desired
constant target density, and �m is the measured filtered value.
We compute the gradient of this error as

��rb� = �e�rb� = − ��m�rb� �5�

and amplify this with a factor Ki
P to obtain the adjustment

�F to the boundary force as

�Fl = Kl
P�l �6�

for each lth bin, where KP�rw�=kp
	�rc−rb� and kp is a con-

stant factor. We let KP depend on the distance from the
boundary because the magnitude of the density disturbances

is reduced as the distance increases. The boundary force is
finally computed as

Fl
new = Fl

old + �Fl, �7�

and applied to the center of mass of each water molecule �see
Fig. 2�. We consider that the method has converged when the
root mean square of the error

E =	 1

N
�
l=1

N

el
2 �8�

is less than a prescribed value, here 1%. The controller is
continuously acting on the system and E is computed in time
intervals of 90 ps.

When the external force is not acting on the system, we
observe up to 60% density fluctuations. The results of apply-
ing the control shown in Fig. 2 demonstrate that our ap-
proach eliminates these density oscillations. The value of kp
determines the stability properties and the convergence rate
of the algorithm �9�. With kp=0.75 nm2.5 kJ /amu mol, the
convergence to E�1% is achieved after 0.4 ns. The integral
�8�

�n�
0

rc

Fb�r�dr ,

where �n is the number density of water, Fb is the external
boundary force, and r is the distance from the boundary,
which matches �to within 4 %� the correct virial pressure in
the bulk. As a final check, we measure the angle � between
the normal to the boundary and the dipole moment of each
water molecule. In Fig. 3 we show the angle probability
distribution of cos��� at different distances from the bound-
ary. The NPBC produces a spurious preference in the orien-
tation of the water molecules on the boundary which van-
ishes at a distance of approximately 0.6 nm from the
boundary.
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FIG. 3. The probability distribution of the cosine of the angle �
between the dipole of each water molecule with the normal to the x
direction at distances from the boundary: �a� 0.1 nm, �b� 0.2 nm, �c�
0.4 nm, and �d� 0.6 nm.

FIG. 4. �Color online� Schematic representation of the hybrid simulation for the Couette flow, indicating the atomistic region treated with
MD, the continuum region, and the motion of the boundary far from the atomistic region �with velocity �v�.
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As a further test, we apply the control algorithm to the
case of Couette flow. A schematic representation of the flow
geometry is shown in Fig. 4. The size of the computational
domain is 12�3�3 nm3. A resolution of 0.5�3�3 nm3 is
used to sample the velocities that serve as a BC for the con-
tinuum solver. The flow is imposed by moving the upper
wall with a velocity v=0.1 nm /ps and the lower one with
−v. In the hybrid approach, we apply the Schwarz alternating
method with an overlap region of four cells �2 nm� on each

side, with the continuum-atomistic overlap in the regions
−3 nm	x	−1 nm and 1 nm	x	3 nm. Details about
the exchange of boundary conditions between the MD and
the continuum region described by incompressible Navier-
Stokes �NS� equations can be found in Ref. �8�. In the
present case, the solution to the NS equations is a linear
streamwise velocity profile. The MD subdomain in the hy-
brid case has the dimensions 6�3�3 nm3 �12 boxes in x
and one box in y and z directions�. In one cycle of the hybrid
algorithm, we impose the BC from the continuum to the MD
and subsequently sample the velocities for 80 ps to extract
the BC for the continuum. We sample the results for 1 ns and
show the velocity profiles obtained from the continuum and
hybrid simulations in Fig. 5; the two sets of values are in
excellent agreement.

In conclusion, we have presented a control algorithm to
eliminate density fluctuations in the coupling of atomistic
models with continuum descriptions of liquid water. A dy-
namic controller based on the errors measured in the local
fluid density �that may reach up to 60%� provides an appro-
priate boundary forcing which applies the correct virial pres-
sure to the system. The algorithm was applied to water at
rest, in which case it eliminates the density oscillations, and
to Couette flow, in which case it recovers the linear profile of
the velocity field. Ongoing work aims to develop controllers
that can eliminate the spurious orientation of the water mol-
ecules near the atomistic-continuum interface and the exten-
sion of the coupling to fully three-dimensional configura-
tions.
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FIG. 5. Velocity profiles sampled over 1.8 ns in the x direction
in the case of Couette flow, with the hybrid method and the control
algorithm applied to the atomistic region �fluctuating black line�
compared to the continuum case �dashed line�. In the hybrid ap-
proach, the region −3 nm�x�3 nm is treated atomistically and
the regions −6 nm	x	−1 nm and 1 nm	x	6 nm are treated
by a continuum approach.
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