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The soft-disk model previously developed and applied by Durian �D. J. Durian, Phys. Rev. Lett. 75, 4780
�1995�� is brought to bear on problems of foam rheology of longstanding and current interest, using two-
dimensional systems. The questions at issue include the origin of the Herschel-Bulkley relation, normal stress
effects �dilatancy�, and localization in the presence of wall drag. We show that even a model that incorporates
only linear viscous effects at the local level gives rise to nonlinear �power-law� dependence of the limit stress
on strain rate. With wall drag, shear localization is found. Its nonexponential form and the variation of
localization length with boundary velocity are well described by a continuum model in the spirit of Janiaud et
al. �Phys. Rev. Lett. 97, 038302 �2006��. Other results satisfactorily link localization to model parameters, and
hence tie together continuum and local descriptions.

DOI: 10.1103/PhysRevE.78.021401 PACS number�s�: 83.80.Iz, 47.57.Bc

I. INTRODUCTION

A. Foam rheology

While the deformation and flow properties of foams are
broadly understood in terms of shear elastic modulus, yield
stress, etc. �1–3�, many details remain perplexing. A fuller
understanding must address both the local forces that operate
at the level of the individual films, and the way in which
these forces combine to determine the overall response to
strain. This paper will be entirely devoted to the second
question. It uses a particularly simple representation of
bubbles and their mutual forces, as previously developed by
Durian �4–7�. This model may be unrealistic in some re-
spects, but its simplicity and computational tractability
makes it attractive at a time when more precise descriptions
of dynamic properties are lacking.

Our immediate goal is to thoroughly analyze the proper-
ties of this model, per se. Since it represents bubbles as soft
disks �in the two-dimensional �2D� case� it has some rel-
evance to granular materials as well. As is often the case in
foam physics, this study will remain for the time being in
two dimensions, which has obvious advantages. The main
experimental literature of foam rheology is concerned with
ordinary three-dimensional �3D� foams, but in recent years,
considerable attention has been focused on their 2D counter-
parts.

It has turned out that the obvious 2D experimental
sample, consisting of foam trapped between two plates �see
Fig. 1�c��, has shear properties that are significantly affected
by viscous drag forces exerted by the confining plates. We
will therefore be concerned with two quite different but re-
lated cases: with and without such forces. The latter case can
be realized experimentally in 2D as a Bragg raft �Fig. 1�a��
and it is roughly analogous to a 3D foam, because of the

absence of confinement-induced forces. Having defined the
model, we will deal with this case first, and proceed to in-
troduce the wall forces at a later stage. In summary, the main
goals of this work are �1� to extract the parameters of a
continuum �Herschel-Bulkley� formalism, by means of simu-
lation, and �2� to use these in a continuum model for 2D
shear localization. Both of these goals are satisfactorily real-
ized within the scope of the present calculations.

B. Questions raised by experiments

It is necessary first to review some of the history of foam
rheology. The more traditional 3D experiments, for example,
those of Khan et al. �8�, have used various types of rheom-
eters to explore the relation between stress, strain, and strain
rate. This is most straightforward when strain rate does not
change sign; that is, increments of shear are always in the
same sense, and we shall adopt that restriction here also.
Awkward complications arise from hysteretic effects in the
more general case �9�. The conclusion has generally been
that the data is well accounted for by the Herschel-Bulkley
equation. This adds to the quasistatic stress-strain relation a
second term proportional to the strain rate �̇, raised to the
power a,

� = �y + cv�̇a, �1�

where � and �y denote, respectively, stress and yield stress,
cv is the viscosity component of stress �also called consis-
tency�, and a is the Herschel-Bulkley exponent. However,
the exact value of a is still subject to debate. Most experi-
ments agree on the shear-thinning behavior of foams,
whereas for a=1 �the Bingham fluid�, the effective viscosity
�that is, stress divided by strain rate�, tends to constant at
high rate of strain, it tends to zero if a�1. While Schwartz
and Princen �10� predicted theoretically that a=2 /3, various
values between 0.25 and 1 have been measured experimen-
tally �see, for instance, �8,11–16��. Besides, Denkov et al.*vincent.langlois@fysik.dtu.dk
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�14� and Katgert et al. �15� showed, respectively, that a de-
pends on the properties of the surfactant and on the polydis-
persity of the foam. The obvious question arises: what deter-
mines the value of a? There has been little understanding of
this up until now, and it is one of our stated objectives to
explore the question within the context of a simple model.

A second question concerns normal stresses or the related
phenomenon of dilatancy. While often mentioned in the con-
text of granular materials, these effects have not been much
considered for foams, apart from the work of Weaire and
Hutzler �17,18�, confined to the quasistatic case. As they
noted, there is, in principle, a second and possibly more im-
portant dynamic contribution to these effects, well known to
rheologists �19,20�. So one may ask: what are the dynamic
effects in a simple model?

As in much of foam physics, recourse may be made to
two-dimensional systems, for the sake of simplicity and
transparency. We will not attempt a full review of the various
rheological experiments on 2D foams that have been per-
formed over the last five years �13,15,21,22�. Equally, we
will give no details of the quasistatic calculations �23,24�
that have been adduced to account for them, or the con-
tinuum theory �25–28� which has offered an alternative
viewpoint. We will argue that the present paper strongly sup-
ports the continuum model. Some results of the quasistatic
calculations suggest that corrections are needed to account
for the role of polydispersity, and we do not rule that out.

C. Soft sphere or disk model

In the model developed by Durian around 1995, 2D
bubbles are represented by circular disks. When overlapping
�and only then� they interact via a simple spring force, the
displacement of the spring being the radial overlap �see Fig.
2�. The elastic repulsive force Fn acting on bubble i due to
bubble j is given by

Fn = �
2R0

Ri + Rj
�ijnij. �2�

Here � is the coefficient of elasticity, nij is the normal vector
between bubbles i and j,

nij =
ri − rj

�ri − rj�
, �3�

and the overlap �ij �see Fig. 2� is given by

�ij = ��Ri + Rj� − �ri − rj� if �Ri + Rj� � �ri − rj�
0 otherwise.

� �4�

Ri and Rj are the radii of bubbles i and j, centered at ri and
rj, respectively, and R0 is the average bubble radius of the

entire bubble packing. The ratio
2R0

Ri+Rj
in Eq. �2� takes into

account that larger bubbles are easier to deform than smaller
ones. In such a model one may define an effective liquid
fraction � �which ignores the overlap of disks� as �=1
−N�R0

2�	 /A, where A is the area of the confinement of the
disks and N is the total number of disks. Since a packing of
polydisperse disks loses its mechanical rigidity for ��0.16,
for higher values of � it no longer represents a two-
dimensional foam. In all the following, the liquid fraction
will be chosen as �=0.05.

A real flowing foam dissipates energy by viscous friction
in the films and Plateau borders separating the bubbles. The
films are not explicitly represented in our model. The sim-
plest expression, as used by Durian �5� and adopted here,
represents the viscous force Fd on bubble i associated with a
neighboring bubble j as

Fd = − cb�vi − vj� , �5�

where cb is the dissipation constant for the bubble-bubble
interaction and vi and vj are the respective bubble velocities.
With all the above definitions, the model can provide a semi-
quantitative description of foams throughout the range of
liquid fraction consistent with stability. In Durian’s original
calculations �5�, inertia was neglected. Hence all forces on
each bubble were balanced. This reduces the problem to a set
of linear equations in the velocities of the bubbles. Durian
then further simplified the problem by substituting the vis-
cous drag exerted on each bubble by its neighbors to the
value the drag would have in a linear velocity profile. He
thus sets the average velocity �v j	 of all neighbors j of
bubble i to �v j	= �̇yix̂, where �̇ is the imposed strain rate and
yi is the y coordinate of bubble i.

In our calculations we instead allow each bubble to move
independently, subject to the elastic and dissipative forces

(c)(b)(a)

FIG. 1. Three types of 2D foams: �a� monolayer of air bubbles sitting at liquid/air interface �Bragg raft�; �b� bubbles floating in liquid
under a glass plate; and �c� bubbles confined between two glass plates. There are large effects due to the drag associated with motion relative
to solid boundaries in both �b� and �c�.
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FIG. 2. Overlap �ij between two contacting bubbles of radii Ri

and Rj, located at ri and rj, respectively.
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defined above. In practice we used the Verlet algorithm, with
a bubble mass mb small enough to assume that inertial effects
are negligible �the ratio �mb /cb

2 was set to 0.01�. We present
results here only for the eventual steady state after long
times. The results obtained are significantly different from
those of Durian. This may be due to the strong approxima-
tion that he used, as indicated above. This approximation had
been removed later by Tewari et al. �6�, but they were not
interested in the rheological properties and concluded that
both versions of the model were equivalent.

II. RESPONSE TO SIMPLE SHEAR IN THE ABSENCE
OF WALL DRAG

A. Herschel-Bulkley power-law exponent

In this section we deal with the Durian model, with no
additional viscous drag force from confining plates. Our first
computations concerned the evaluation of its flow properties
under simple shear, in particular, the value of the Herschel-
Bulkley power-law exponent a in Eq. �1�. To this purpose we
generated assemblies of 1000–10 000 bubbles in a rectangu-
lar confinement, as shown in Fig. 3, using periodic boundary
conditions in the horizontal direction. The bubbles at the
upper boundary, which are treated as attached to this bound-
ary, are given a constant velocity V. This corresponds to the
application of strain at a constant rate �̇=V /H for a sample
of width H �see Fig. 3�. We will only consider polydisperse
foams, the bubble radii having a uniform distribution within
the range R=R0�1	0.15�.

At this stage it is convenient to introduce a dimensionless
Deborah number De, which is defined as the ratio of the
characteristic time of the material that is sheared to the char-
acteristic time of the deformation process �29�. We identify
the latter with �̇−1, and the material time scale we relate to
the competition of energy storage and dissipation at the level
of bubble-bubble interactions. This then results in the defini-
tion De= �̇cb /�.

Under an imposed boundary shear, after a transient, the
system of disks reaches a steady average state. It is charac-
terized by a linear average velocity profile of the disks with
regard to their vertical position in the sample, so there is no
localization in the present case; we may proceed to extract
the constitutive law in a straightforward way. We determine

the stress at the moving boundary as a function of V. In Fig.
4 we display this variation as a function of the dimensionless
Deborah number De. A least-square fit of the data with the
Herschel-Bulkley form results in

�/� = 0.0043 + 0.26De�0.54	0.01�. �6�

The model foam thus exhibits a strongly nonlinear, shear-
thinning rheological behavior, despite the linearity of all lo-
cal forces. This can be attributed to the importance of disor-
der in such a polydisperse jammed system: the velocity
fluctuations cannot be neglected and make the trajectories of
the bubbles strongly nonaffine. Therefore the simple image
of bubble layers sliding over each other is misleading. In the
initial version of the model applied by Durian �4,5�, the
mean-field approximation effectively subtracts these disor-
dered motions, which results in a Bingham rheology �a=1�.
Let us note that the nonlinear behavior does not affect the
average velocity profile in the simple shear geometry we
adopted �as opposed to what happens in a cylindrical Couette
geometry �13��. The shear localization that is discussed in
later sections is not seen here.

The value of the Herschel-Bulkley exponent we obtain
�Eq. �1�� a=0.54	0.01 is roughly consistent with the vari-
ous experimental measurements already mentioned, that
showed a nonlinear, shear-thinning behavior �8,11–16�.

velocity V

FIG. 3. Snapshot of 2D soft-disk foam. The sample is periodic
in the horizontal direction; bubbles at the upper and lower boundary
are shown in gray. In the simulation the upper boundary is moved
with velocity V.
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FIG. 4. �a� Stress on the moving boundary as a function of the
Deborah number De= �̇cb /�. The solid line is a fit to Eq. �1� �reex-
pressed in terms of De�, resulting in the Herschel-Bulkley exponent
a=0.54	0.01. In �b� we have subtracted the fitted value of the
yield stress �̇y from the data to show the power-law behavior in a
double logarithmic plot.
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However, it is slightly higher than most experimental values.
This discrepancy can be attributed to the extreme simplicity
of the local ingredients of the model that we have used here.
Including more realistic forces at the local scale might lead
to a better estimation of the Herschel-Bulkley index. Recent
theoretical work by Denkov et al. �30� implies that the vis-
cous dissipation between two bubbles sliding along each
other should scale like �V1/2 rather than being linear. How-
ever, the relation between the local properties and the mac-
roscopic rheology is still not understood. Further work on
this topic is currently performed and will be the subject of a
subsequent publication.

B. Normal stress

In a system constrained by a fixed applied pressure, the
foam would expand in volume �by increasing its nominal
liquid fraction� when sheared. In our simulations we impose
the volume by fixing the position of the edge bubbles, and
measure the resulting pressure 
 on the boundaries. Its
variation with shear rate is shown in Fig. 5 and is well de-
scribed by a formula analogous to the Herschel-Bulkley
equation,


/� = 0.059 + 0.11De�0.40	0.01�. �7�

For the case of De=0 one obtains the static osmotic pressure
of the foam, 
0 �17�. Although the tendency of a 3D foam to

increase its liquid fraction under shear has been qualitatively
reported in experiments �31�, we do not know of any quan-
titative experimental measurements of the dynamic variation
of the osmotic pressure, which is particularly difficult to ob-
tain in 2D. Rheologists sometimes cite the old work of Bag-
nold �19� as indicating a quadratic dependence, very differ-
ent from the power law in Eq. �7�. We have not proceeded
any further with the analysis of the normal stress.

III. EFFECT OF WALL DRAG

A. Adding wall drag

As we have already mentioned, certain experiments with
a 2D foam between two glass plates exhibit a new type of
flow; when one boundary is moved to produce shear, the
resulting shear is exponentially localized at that boundary
�22�. According to the continuum model of Janiaud et al.
�25–27� this is to be understood as a direct effect of the wall
drag, which we will now introduce into the numerical model.
This continuum model in its original form assumed a consti-
tutive equation of the Bingham type �a=1�, and added in the
drag force Fw, as a body force proportional to local velocity.
This predicted an exponential localization of the flow along
the moving boundary, the width of the shear band being in-
dependent of the driving velocity.

To mimic that theoretical model in our simulations, we
now add to the forces acting on bubble i, a wall drag force
Fw, given in the most simple form by

Fw = − cw�vi�b
vi

�vi�
, �8�

where cw is a drag constant. According to Bretherton �32�
and Denkov et al. �14�, for surfactants with low surface vis-
cosities, the friction of the foam due to the wall is character-
ized by b=2 /3. However, to keep all the ingredients of our
model linear, we will adopt b=1. The resulting equation of
motion is again solved numerically, using the second order
Verlet method. Note that we have just established in Sec.
II A that the appropriate constitutive law is not that of Bing-
ham, so we will have cause to return to this point again. As
we shall see, the results for the steady shear at long times
exhibit localization, which conforms well to the prediction of
the continuum model.

B. Flow localization

Shear simulations with added wall drag were performed
on an assembly of 10 000 soft disks, for constant values of
�=cb /cw, the ratio of dissipation and drag constant. Once a
steady state was reached, we determined the velocity profile
between static and moving boundary by performing time av-
erages over the horizontal velocity components of the
bubbles. While in the absence of wall friction �cw=0, i.e.,
�→��, the velocity profile is roughly linear throughout the
sample, this is no longer the case for finite values of �.
Instead, flow is localized near the moving boundary, as
shown in Fig. 6. A localization length 1/10 can be arbitrarily
defined by measuring the distance from the moving bound-
ary at which the velocity reaches 1/10th of its value at the
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FIG. 5. Pressure acting on the moving boundary as a function of
the Deborah number. The data is well described by Eq. �7� with an
exponent 0.4	0.01. In �b� we have subtracted the fit parameter 
0

to show the power law behavior in a double-logarithmic plot.
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boundary �see also the Appendix�. The variation of 1/10 with
� is shown in Fig. 7. For values of ��500 �i.e., if the shear
band width is less than the sample width H� the localization
length varies with � in the form of a power law, 1/10
��0.64	0.01.

Figure 8 shows the evolution of 1/10 with the Deborah
number De, when varying the driving velocity V. A least-
square fit results in

1/10/R0 = 0.87De−0.30. �9�

Such a power-law scaling can also be found theoretically by
modifying the continuum model of Janiaud et al. �25� to
incorporate the Herschel-Bulkley rheology we exhibited
here: the velocity field v�y� has to be such that the internal

dissipation is exactly balanced by the friction along the con-
fining plates; that is,

cv
d

dy

�dv

dy
�a = cdv�y�b. �10�

Here cd is the wall drag constant cw of Eq. �8� per unit area,
i.e., cd=cw / ��R0

2� and b=1 for the case of the simple linear
form for the drag force considered here. The exponent a is
the one from the Herschel-Bulkley relationship, i.e., a
=0.54 in our case �see Eq. �6��, and cv is the viscosity com-
ponent of stress. This equation can be solved to predict the
localization of the flow, as shown theoretically in �28�: the
�exponentially defined� localization length l is given by

l � � cv

cd
�1/1+a

Va−b/1+a, �11�

provided that l is much less than the sample size �the two
definitions of the localization length are related by 1/10
=ln�10�l; see the Appendix�. This immediately gives the
scaling 1/10�cw

0.65, in excellent agreement with the data
shown in Fig. 7. However, the success of the continuum
model is not confined to such scaling relationships, but is
fully quantitative. Rewriting Eq. �11� in terms of the Deborah
number gives

l � � cv

cd
�1/1+a�H�

cb
�a−b/1+a

Dea−b/1+a. �12�

Inserting our simulation input parameters for cd, H, cb, R0,
and b=1, together with our numerical results for the values
of cv and a=0.54, we obtain

l/R0 = 0.36De−0.30. �13�

This corresponds to 1/10 /R0=0.83De−0.30, which is also in
excellent agreement with the numerical results �see Fig. 8�.
We have concentrated on the localization length here, but the
full velocity profile, which turns out to be only approxi-
mately exponential, can be numerically calculated from it.
As Fig. 6 shows, the result is in close agreement with the
data.
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FIG. 6. Normalized velocity profiles in the foam for a range of
values of the parameter �=cb /cw. Shear close to the moving bound-
ary is enhanced as wall friction is increased, i.e., with decreasing �.
The solid lines, which agree closely with the data, were obtained
numerically from the continuum model, using the Herschel-Bulkley
index a=0.54.
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IV. CONCLUSIONS

By means of numerical simulations based on the soft-disk
model, we have shown that the Herschel-Bulkley rheology of
a 2D foam can be derived from a discrete model with good
agreement with experiments. Our model also predicts a dy-
namic dilatancy, that is, a tendency of the foam to increase
its volume when sheared. Finally, we added to the classical
bubble model the viscous friction experienced by a foam
under confinement, which resulted in the formation of shear
bands, as had been observed in experiments and derived with
a continuum model. Adapting this rheological model to our
parameters led to a consistent picture of the link between the
local and global descriptions. This must be regarded as a
strong indication for the theory, but it will be important to
examine the limits of that conclusion.

Previous quasistatic simulations �24� suggest that disorder
�polydispersity� plays a role. So far, our interpretation is that
wall drag is responsible for localization, as prescribed by the
continuum model, but that the eventual localization length
contains an additional contribution from polydispersity, not
contained within the continuum description.

In further studies, we will explore this by concentrating
on the limit in which →0 for the continuum model, and
seek to identify the effect of polydispersity, which is ex-
pected to be significant in that limit. It will also be informa-
tive to repeat simulations with different local forces, to try to
establish the precise relation �if any� of the Herschel-Bulkley
parameters to these forces. Finally, if our conclusions are
sustained for this and similar models, the core theoretical
problem of the origin of the Herschel-Bulkley nonlinearity
will remain.
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APPENDIX: DEFINITION OF LOCALIZATION LENGTH

The precise definition of localization length is, in general,
arbitrary. For the analysis of our numerical results we chose
to use

v�1/10� = V/10, �A1�

where v�y� is the local average bubble velocity, measured a
distance y away from the boundary, which moves at velocity
V.

In the continuum theory an alternative definition was used
�28�

v�l� = V/e . �A2�

There is no general relation between these two, but since
localization is, in general, approximately exponential, we
may use

1/10 � ln 10l � 2.30l �A3�

to adjust the theoretical prediction. We have adopted this
procedure in Sec. III B.
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