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Giant geometrically amplified piezoresistance in metal-semiconductor
hybrid resistors
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Building 345E, DK-2800 Kgs. Lyngby, Denmark

�Received 15 August 2008; accepted 16 October 2008; published online 8 December 2008�

We show that very high geometrically amplified piezoresistance can indeed be obtained in
microstructured metal-semiconductor hybrid devices, even significantly higher amplification factors
than the factor of approximately 8 demonstrated recently by Rowe and co-workers may be achieved.
However, we also show that this amplification cannot be used to realize high sensitivity sensor
devices due to limitation of the applied voltage across the device when the transfer resistance is
smaller than the total resistance of the device. In that case, the sensitivity in units of V V−1 Pa−1 is
always less than the sensitivity of conventional piezoresistors fabricated in the same piezoresistive
material. © 2008 American Institute of Physics. �DOI: 10.1063/1.3033558�

I. INTRODUCTION

In 1954, Smith1 reported the first measurements of the
piezoresistance coefficients of silicon in his seminal paper.
Since then simple silicon piezoresistors have been used for
stress sensing in a wide variety of microelectromechanical
systems, including accelerometers, pressure sensors, and
chemical sensors2–5 due to the large gauge factor in silicon
compared with other materials. Micrometer scale silicon pi-
ezoresistors usually have gauge factors of approximately 120
or less, depending primarily on temperature, resistor orienta-
tion, doping level, and stress direction. Since an increased
gauge factor usually directly translates to an increased sensor
sensitivity, gauge factors increased beyond the native silicon
value are useful for the next generation of highly sensitive
sensors. Several reports of giant piezoresistive effects in
p-type silicon nanowires �SiNWs� have appeared recently;
gauge factors more than an order of magnitude larger than
seen in conventional microscale piezoresistors were
reported.6–8 It was convincingly suggested by Rowe9 that the
giant piezoresistive effect in SiNWs originates from a stress-
induced modulation of the surface depletion region due to
changes in surface state charge and neutral level; hence, the
observed large gauge factors may be difficult to apply to
stable piezoresistive sensors. Recently, Rowe et al.10 showed
that giant gauge factors may be realized in microscale de-
vices. By combining a conventional silicon piezoresistor
with an aluminum shunt into a metal-silicon hybrid piezore-
sistor, a giant geometrical amplification of the piezoresistive
effect may be obtained; a gauge factor of impressive 843 was
shown.10 The piezoresistance boost in metal-semiconductor
hybrid resistors is qualitatively identical to an observed
boost, extraordinary magnetoresistance, in the magnetoresis-
tance of the same type of structures.11,12 Contrary to SiNW

piezoresistors, the metal-silicon hybrid piezoresistor may
easily be fabricated using conventional UV lithography and
thus lends itself to mass production.

We present an analytical solution to the transfer resis-
tance of a simplified metal-silicon hybrid piezoresistor and
show that large geometrical amplification may be obtained.
However, we also show that the geometrical amplification
comes at the cost of an increased ratio between the applied
voltage and the measured voltage. Finally, we show that the
effective sensitivity of conventional silicon piezoresistors re-
mains superior to that of metal-silicon hybrids. The analyti-
cal results are compared to finite element model �FEM� cal-
culations.

II. THEORY

In practical stress measurements based on conventional
piezoresistive sensors the useful sensitivity is maximized13 in
a measurement setup as shown in Fig. 1�a�, where a constant
current I0 is forced through a simple resistor �here shown as
a transfer resistor for generality� of aspect ratio L /W, while
the voltage drop V across the resistor is monitored at the
relative position LV /L and the change in voltage drop �V
caused by the applied uniaxial stress � represents the real

a�Electronic mail: ole.hansen@nanotech.dtu.dk. Also at CINF Center for In-
dividual Nanoparticle Functionality, Technical University of Denmark,
Building 345E, DK-2800 Kgs. Lyngby, Denmark.
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FIG. 1. Schematic top view of the different piezoresistor topologies consid-
ered. In �a� a simple transfer resistor with the aspect ratio L /W and a voltage
measurement point at LV is shown. �b� shows a schematic of half of the
symmetrical metal-semiconductor hybrid transfer resistor used in Ref. 10,
where one side of the resistor is in contact with a highly conducting metal
bar of width WAl. �c� shows a simplified metal-semiconductor hybrid trans-
fer resistor. A unidirectional stress � is applied normal to the long axis of the
resistors.
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measurement signal. The magnitude of the incremental volt-
age drop is limited since the magnitude of the voltage drop
across the full resistor structure is limited to some maximum
value due to material limitations �e.g., dielectric breakdown�,
application limitations �e.g., Joule heating�, and instrument
limitations. It follows that a proper comparison of piezore-
sistive sensors should be based on evaluation of
�V / �Vmax���= �V /Vmax��R / �R���, where Vmax is the maxi-
mum voltage across the sensor structure and �� is the
change in uniaxial stress to be measured, while �R is the
stress induced change in transfer resistance R=V / I0. For the
structure shown in Fig. 1�a� �V / �Vmax���= �LV /L��eff as is
easily verified; �eff=�R / �R��� is the effective piezoresis-
tance coefficient for the particular material and arrangement
of current and stress directions, while the geometrical factor
LV /L=V /Vmax. Obviously, a simple resistor with LV=L is the
better arrangement.

A. Metal-semiconductor hybrid transfer resistors

In Fig. 1�b� half of the symmetrical metal-semiconductor
hybrid transfer resistor used by Rowe et al.10 is shown sche-
matically; for simplicity, symmetry has been used to intro-
duce an isopotential ground plane. The bar shaped transfer
resistor is in contact with a metal bar of width WAl along one
side, while a current supply contact of length LE is placed on
the opposite side; this arrangement was experimentally
shown to cause a geometrical amplification of the piezoresis-
tive response �R / �R���.10 In Fig. 1�c� a simplified transfer
resistance structure without the contact is shown. This may
easily be analyzed analytically if a current is forced through
the top boundary in contrast to the structure in Fig. 1�b�
where an analytical analysis is not equally straightforward.

We shall assume that the devices are realized in a homo-
geneous silicon film of thickness h and with a stress free
resistivity �0. The uniaxial stress � is assumed to be along
the y-axis in a Cartesian coordinate system aligned to the
resistor bar with the long axis along the x-axis. In this coor-
dinate system the resistivity tensor is then diagonal with the
nonzero elements �xx��t=�0�1+�t��, �yy ���=�0�1
+����, and �zz��n=�0�1+�n��, where �t, ��, and �n are
the transversal, the longitudinal, and the normal piezoresis-
tance coefficients, respectively. A purely two-dimensional
current density J may thus be assumed for these structures.
Since the current density is divergence free � ·J=0, the two-
dimensional electrostatic potential ��x ,y� must satisfy

1

�t

�2�

�x2 +
1

��

�2�

�y2 = 0 �1�

and proper boundary conditions. Obviously, proper scaling
of the coordinates may turn Eq. �1� into a simple Laplacian,
from which transfer resistances are given by R
= ���t�� /h�R���t /��� results; here R�u� is a normalized
resistance function with geometry parameters such as the as-
pect ratios L /W, LV /W, and LE /W and a geometry dependent
topology. Thus the relative stress sensitivity of the transfer
resistance in general becomes

1

R

�R

��
=

1

2
��� + �t� +

1

2
��� − �t�SG, �2�

where SG is the geometrical amplification factor defined by

SG � −
1

R�u�
dR�u�

du
, �3�

with u=��t /��. The significance of SG may be illustrated by
considering the case of p-type silicon with the stress along a
�110� direction and current flow in a 	001
 plane, then the
longitudinal and transversal piezoresistance coefficient mag-
nitudes are approximately equal ���−�t �since ��=71.8
�10−11 Pa−1 and �t=−66.3�10−11 Pa−1 their magnitudes
are within 4% of the mean magnitude1�, and we may, for
simplicity, take ��=−�t=�0; hence the relative stress sen-
sitivity of the transfer resistance is proportional to the geo-
metrical amplification factor and the piezocoefficient magni-
tude only ��R /��� /R=�0SG. For simple transfer resistors
SG= �1.

For the structure in Fig. 1�c� the boundary conditions are
��x ,−W�=��0,y�=0, Jy�x ,0�=0, and Jx�−L ,y�=J0�y�, if
zero resistivity of the metal bar is assumed; J0�y� is the cur-
rent density injected at the top boundary of the structure. In
the interest of mathematical simplicity, we shall assume that
the injected current density matches the first Fourier mode of
the structure. The resulting potential is then

��x,y� =
− I0

��t��

h

sinh���t

��

�x

2W


cosh���t

��

�L

2W
 cos� �y

2W
 . �4�

It follows that the transfer resistance becomes

R =
��− LV,0�

I0
=

��t��

h

sinh���t

��

�LV

2W


cosh���t

��

�L

2W
 , �5�

in agreement with the general resistivity dependency of the
transfer resistance. The geometrical amplification factor is
easily obtained by differentiation

SG =
�L

2W
tanh��L

2W
 −

�LV

2W
coth��LV

2W
 . �6�

At sufficiently large values of the aspect ratios, L /W and
LV /W, the geometrical amplification factor may be approxi-
mated by SG���L−LV� / �2W�, while at low values of the
aspect ratios SG�−1, as expected. Obviously, very large
geometrical amplification factors may be obtained by proper
selection of the aspect ratios.

The potential ratio V /Vmax=��−LV ,0� /��−L ,0� of the
voltage at the voltage measurement point to the maximum
voltage across the structure obtained from Eq. �4� is
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V

Vmax
=

sinh���t

��

�LV

2W


sinh���t

��

�L

2W
 � exp�−��t

��

��L − LV�
2W

� .

�7�

The approximation is valid at sufficiently large values of the
aspect ratios L /W and LV /W, where extremely low values of
the potential ratio may result. Unfortunately, the tall price
paid in terms of low voltage ratio in order to obtain high
geometrical amplification more than offsets the advantage
gained since the proper dimensionless amplification factor is
SGV /Vmax for which the simple model predicts SGV /Vmax

�1 /e. Note, a large SG is intimately linked to a strong posi-
tion dependency of V /Vmax.

B. Conformal mapping

Support of conclusions based on the simple derivation
above may be obtained by analyzing the resistor structures
using conformal mapping techniques.14 The structure in Fig.
1�b� may be mapped on a simple transfer resistor as de-
scribed by Trefethen;15 the mapping, however, is rather in-
convenient for simple analysis due to the elliptic integrals
involved. From such mapping the total current in the resistor
may be approximated by

I0 �
hVmax

��t��

�LE

W
��t

��

+ 	 , �8�

with 	�0.4 accounting for the spreading current. An equally
simple approximation to the potential at the voltage measure-
ment point was not found. However, the potential in a struc-
ture similar to Fig. 1�b�, but with an infinitely long extension
LE fully covered by an isopotential current supply contact,
may easily be determined using the conformal mapping

z2 =
2Vmax

�
arcsin

sinh� �z

2W
��t

��


sinh��L

2W
��t

��
 . �9�

Here z=x+ iy��� /�t represents the position in the resistor
structure, while z2=�+ i
 is the potential-flux function,
with � as the potential and 
 as the flux function, while
i=�−1. The resulting voltage ratio may be used as a good
approximation to the voltage ratio even in the structure with
finite contact length

V

Vmax
=

2

�
arcsin

sinh��LV

2W
��t

��


sinh��L

2W
��t

��


�
2

�

sinh��LV

2W
��t

��


sinh��L

2W
��t

��
 , �10�

where the approximation is valid if LV�L, and differ from
Eq. �7� only by the prefactor 2 /�. Calculations of SG based
on Eqs. �8� and �10� agree well with Eq. �6�.

C. Finite metal resistivity

A first order correction for finite resistivity �Al of the
metal bar is obtained by noting that the most of the current is
flowing in the metal �thickness hAl�. Thus a correction poten-
tial ���x�=−I0�Alx / �hAlWAl� may be added to the potential
equation �4� and the potential leading to Eq. �10�. If the
metal resistivity is assumed unaffected by stress the effective
geometrical amplification factor SG eff corrected for finite
metal resistivity becomes SG eff=SG / �1+RAl /R�, with RAl

=�AlLV / �hAlWAl�. This severely limits the effective geo-
metrical amplification at high aspect ratios where extremely
low values of the transfer resistance results.

III. FEM AND DISCUSSION

A FEM of the metal-semiconductor hybrid resistor struc-
ture was implemented in COMSOL MULTIPHYSICS 3.3 using a
stress free silicon resistivity of �0=0.1  cm and using
Smith’s piezocoefficients1 to model the stress dependence,
while the resistivity of Al was assumed to be �Al=2.65
�10−6  cm. A configuration identical to the sketch in Fig.
1�b� was implemented with the aluminum width equal to the
active resistor length WAl=L, and a thickness equal to the
silicon thickness hAl=h, while the length of the current sup-
ply contact was LE=L /10. The position of the voltage mea-
surement point was varied such that LV /L
� �1 /10,1 /3,1 /2,2 /3�, and the relative resistor width var-
ied in a wide range W /L. These calculations were repeated
with Al replaced by a perfect conductor.

Figure 2 shows the voltage ratio V /Vmax from the FEM
calculations as a function of �L−LV� /W �full symbols: finite
metal resistivity and open symbols: zero metal resistivity�
along with curves calculated from Eq. �10� corrected for
finite Al resistivity �full lines�. Except at low values of
�L−LV� /W all data and curves can hardly be distinguished,
only data for LV /L=1 /10 separate slightly from the rest. In
all cases, Eq. �10� approximates the FEM data very well. The
effect of finite Al resistivity is visible at large L /W ratios.
The simple result �Eq. �7�� �dashed line� is shown for com-
parison and is seen to be in fair agreement with the FEM
data.

Figure 3 shows the geometrical amplification factor SG

from the FEM calculations as a function of �L−LV� /W �full
symbols: finite metal resistivity and open symbols: zero
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metal resistivity� along with model calculations using Eqs.
�10� and �8� corrected for finite Al resistivity �full lines� and
the simple result �Eq. �6�� �dashed lines�. All perfect conduc-
tor FEM data group in a narrow band with SG increasing
somewhat faster with increasing �L−LV� /W than the simple
model predicts; the reason is a somewhat stronger position
dependency of the potential in the real structure compared to
that of the simplified model structure as verified by FEM
data. Finite Al resistivity limits the magnitude of SG to some
peak value at moderate �L−LV� /W in agreement with the
model; the actual value depends on the resistivity ratio
�0 /�Al and increases when it is increased. Obviously, quite
large geometrical amplification is possible.

Finally, Fig. 4 shows the proper quality measure
SGV /Vmax as a function of �L−LV� /W. The general trend of
FEM �full symbols: finite metal resistivity and open sym-

bols: zero metal resistivity� and model calculations �full and
dashed lines� agree, and the effect of finite Al resistivity is
hardly visible. The important point here is that for the metal-
semiconductor hybrid, the magnitude of SGV /Vmax is smaller
than both that of a simple piezoresistor �SGV /Vmax= �1� and
that of a simple transfer piezoresistor �SGV /Vmax= �LV /L�.
FEM model calculations on devices with a finite size of the
voltage measurement contact agree with the data shown.

IV. CONCLUSION

We have shown analytically that a giant geometrically
amplified piezoresistive response �R / �R��� is indeed pos-
sible in metal-semiconductor hybrid resistor structures, but
the advantage gained is more than lost due to the very low
ratio of the measured voltage to the full applied voltage or,
equivalently, due to the extremely low transfer resistance of
the structure. Moreover, we note that the noise resistance of
the hybrid structure may be significantly larger than the
transfer resistance, thus the resolution will suffer. It follows
that even though the geometrical amplification effect is in-
teresting, hybrid structures in which the transfer resistance is
smaller than the total resistance will be of little practical use
since conventional piezoresistors have superior sensitivity
and resolution.
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