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Chaotic scattering of two identical point vortex pairs revisited
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A new numerical exploration suggests that the motion of two vortex pairs, with constituent vortices
all of the same absolute circulation, displays chaotic scattering regimes. The mechanisms leading to
chaotic scattering are different from the “slingshot effect” identified by Price �Phys. Fluids A 5,
2479 �1993�� and occur in a different region of the four-vortex phase space. They may, in many
cases, be understood by appealing to the solutions of the three-vortex problem obtained by merging
two like-signed vortices into one of twice the strength and by assuming that the four-vortex problem
has unstable periodic solutions similar to those seen in the thereby associated three-vortex problems.
The integrals of motion, linear impulse and Hamiltonian are recast in a form appropriate for vortex
pair scattering interactions that provides constraints on the parameters characterizing the outgoing
vortex pairs in terms of the initial conditions. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2974830�

I. INTRODUCTION

In an analytical and numerical study, Eckhardt and Aref1

considered the scattering problem for two point vortex pairs.
When the two-vortex pairs had circulations, �� and ���,
with � and �� close in magnitude but not equal, an interest-
ing hierarchical scattering dynamics was observed. The scat-
tering time has an extremely complex structure with several
plateaus separated by sharp jumps. The two incoming pairs
first become dissociated into non-neutral pairs �� ,−��� and
�−� ,���. The non-neutral pairs move on large circles and,
when they encounter one another again, either scatter or re-
combine into the original �� and ��� pairs. When the latter
happens, the scattering process is over and the two pairs
depart the scattering region for infinity. However, the number
of times the non-neutral pairs meet and scatter, afterward
going for another loop, depends sensitively on the initial
conditions, i.e., on the values of the known integrals, im-
pulse, and energy. It is this sensitive variation that leads to
the chaotic scattering and the jumps and plateaus in the scat-
tering time as a function of impact parameter. The scattering
angle, measured as the deflection between directions of mo-
tion for an incoming and outgoing pair, also showed very
complex structure although it was not “quantized” in the
same way as the scattering time. The reader is referred to
Ref. 1 for more background and further details. This study
provided one of the first examples of chaotic scattering, or
“chattering” as it was also called, in a few-degrees-of-
freedom dynamical system. The phenomenon had previously
been suggested by preliminary numerical computations by
Manakov and Shchur.2 Some high precision calculations by
Zawadzki, showing the real-space complexity of the two-pair
scattering process, were later published in Ref. 3. While
there are serious limitations to how much of this behavior is
accessible experimentally with real vortices in an ordinary
fluid, the basic exchange-of-partners mechanism has been
beautifully illustrated.4 The first two interactions have even

been observed,5 but after that the vortices begin to decay, and
the multiplicity of scatterings necessary for chaos probably
cannot be observed in an ordinary fluid. Experiments in su-
perfluids or analog experiments in plasmas have, so far as we
know, not been attempted.

Although the chaos was observed to increase as �� and
� became more nearly equal, the limiting case �=��, sur-
prisingly, appeared much more regular. �This statement is
explained in more detail and quantified in Ref. 1 to which the
reader is referred.� Certainly, the exchange of partners and
the formation of non-neutral pairs upon interaction would be
absent as a mechanism in the limit �=��, but other mecha-
nisms might arise. If so, however, these regimes were not
readily apparent numerically. A continuous symmetry of the
Hamiltonian for all circulations of the same magnitude was
noted, and it was speculated whether this symmetry would
lead to an additional integral of the motion. On balance,
however, the relative regularity of the case of four vortices
with circulations of equal absolute magnitude was left as a
puzzle at the end of Ref. 1.

In 1993 Price6 considered the case of two identical pairs
moving initially toward one another on parallel lines, where
one pair was much larger, and so much slower, than the
other. The smaller, faster-moving pair was aimed at one of
the constituent vortices of the larger pair and would thus
encounter it first in, essentially, a three-vortex interaction. An
event approximating pair-single-vortex scattering would then
occur. This three-vortex system and dynamics is integrable,
and the scattering can be calculated in full detail.7 The out-
come of a pair-single-vortex scattering event is that a pair of
equal separation to the incoming pair exits from the scatter-
ing region �except for two singular values of the impact pa-
rameter�. The outgoing pair may consist of the same two
vortices that entered the three-vortex scattering region, in
which case we call the process direct scattering. Alterna-
tively, an exchange scattering may take place wherein the
exiting pair contains the target vortex as one of its constitu-
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ents, while one of the vortices of the incoming pair is left
behind. Close to the two singular values of the impact pa-
rameter, where asymptotic trapping of all three vortices into
a relative equilibrium takes place, and where one crosses
over from direct to exchange scattering, the direction of the
outgoing pair relative to that of the incoming pair changes
rapidly with impact parameter, so large deflections are pos-
sible. If, as it exits from the first scattering, the outgoing
small pair, regardless of composition, is headed for the sec-
ond vortex of the large pair, a second three-vortex scattering
process may take place. For certain initial conditions several
such motions of the small pair, as it “bounces” back and
forth between the vortices of the large pair, may take place
�although the vortices of the large pair may, in fact, be ex-
changed with a vortex of the small pair upon one or more of
these scatterings�. Price6 referred to this as the “slingshot
mode” and he showed by numerical calculations that it leads
to chaotic scattering. This, in principle, resolved the problem
left open in Ref. 1 and restated in Ref. 3: The system of two
identical vortex pairs is not integrable, and a form of chaotic
scattering can take place.

We have reexamined this problem by numerical simula-
tion. We find that more conventional chaotic scattering pro-
cesses may also take place when two identical vortex pairs—
identical both as regards vortex strengths and initial
separations—are launched at one another such that the linear
momentum is nonzero. An essential element of the process is
that two of the like-signed vortices, either negative or posi-
tive, come together so closely that they form a bound state
for some time, around which the other two like-signed vor-
tices orbit. The dynamics of the four vortices resembles the
dynamics of the three-vortex problem �� ,� ,−2��, which has
again been integrated in detail.8,9 The four-vortex system fol-
lows this quasi-three-vortex motion for some time, eventu-
ally departing from it, maybe switching to another quasi-
three-vortex motion, but ultimately reassembling into two
neutral pairs that then depart for infinity. The length of time
that the four-vortex system remains close to such quasi-
three-vortex motions varies sensitively with the initial con-
ditions and this variation leads to chaotic scattering. This
paper contains an elaboration of this brief statement and il-
lustrates it by several examples obtained numerically. Analy-
sis of bounds on the vortex scattering process resulting from
the integrals of motion is also provided. We have also ex-
plored scattering of two pairs with identical circulations
when the separations of the vortices in the two pairs are not
identical, but where the ratio of separations is still small
compared to the ratios in Price’s study.6 Here also chaotic
scattering occurs and appeal to the dynamics in an associated
three-vortex problem is illuminating.

We conclude this section by stating the governing equa-
tions for the problem under consideration. There are four
point vortices at positions z1, z2, z3, and z4 in the complex
plane. Vortices 1 and 3 have circulation +� and vortices 2
and 4 have circulation −�. The equations of motion are

dz1
�

dt
=

�

2�i
�−

1

z1 − z2
+

1

z1 − z3
−

1

z1 − z4
� , �1a�

dz2
�

dt
=

�

2�i
� 1

z2 − z1
+

1

z2 − z3
−

1

z2 − z4
� , �1b�

dz3
�

dt
=

�

2�i
� 1

z3 − z1
−

1

z3 − z2
−

1

z3 − z4
� , �1c�

dz4
�

dt
=

�

2�i
� 1

z4 − z1
−

1

z4 − z2
+

1

z4 − z3
� . �1d�

The asterisk denotes complex conjugation. This dynamical
system is Hamiltonian, i.e., Eqs. �1a�–�1d� may be written as

�
dz�

�

dt
= 2i

�H

�z�

, � = 1,3; − �
dz�

�

dt
= 2i

�H

�z�

, � = 2,4,

�2a�

where

H =
�2

4�
log� �z1 − z2��z1 − z4��z2 − z3��z3 − z4�

�z1 − z3��z2 − z4�
� . �2b�

We are concerned with solutions to this system when the
initial conditions consist of two vortex pairs, 12 and 34, of
comparable size, which are initially separated by distances
much larger than the sizes of the pairs. Such initial configu-
rations lead to vortex pair scattering.

II. NUMERICAL SCATTERING EXPERIMENTS

Let us parametrize the initial condition in the following
way: We start from two vortex pairs with strengths �� and
separations d1 and d2, respectively. Consider the centers of
the two vortex pairs to be at a large distance from the origin,
i.e., that the constituent vortices have coordinates of the form
�L1 , �d1 /2�, respectively �L2 , �d2 /2�. Now turn the first
pair through an angle �1, the second through an angle �2. See
the lower left hand portion of Fig. 1. The initial positions of
the vortices in the first pair may then be written as

�

�

�

�

�

�

�
�

�

�
�

�
�

�
�
�

�

�
�
�

�

FIG. 1. Schematic of the scattering of two vortex pairs. The initial condi-
tions �Eqs. �3� and �3��� are shown as well as the scattering axis �defined in
the text� and the outgoing pairs.
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+ �: �L1 cos �1 +
d1

2
sin �1,L1 sin �1 −

d1

2
cos �1	 ,

�3�

− �: �L1 cos �1 −
d1

2
sin �1,L1 sin �1 +

d1

2
cos �1	 .

Similarly, the vortices in the second pair are at

+ �: �L2 cos �2 +
d2

2
sin �2,L2 sin �2 −

d2

2
cos �2	 ,

�3��

− �: �L2 cos �2 −
d2

2
sin �2,L2 sin �2 +

d2

2
cos �2	 .

The values of the integrals, linear and angular impulse, for
this initial condition are

X + iY = 

�=1

4

���x� + iy��

= ��d1 sin �1 + d2 sin �2�

− i��d1 cos �1 + d2 cos �2� ,

�4�

I = 

�=1

4

���x�
2 + y�

2� = 0.

The distances L1 and L2 do not enter these integrals. For a
vortex system of the kind we are considering, where the net
circulation is zero, one can change the value of the angular
impulse by shifting the origin of coordinates. The value of
the linear impulse is not changed by such a shift. We have
clearly chosen our origin of coordinates such that I=0. In
these coordinates the set of points for which I=0 is a line
through the origin perpendicular to the linear impulse, i.e.,
the line with equation xX+yY =0. Let us call this line the
scattering axis.

The Hamiltonian equation �2b� is also conserved during
the two pair scattering event. In the limit L1 ,L2→�, the
Hamiltonian has the value H= ��2 /4��log d1d2 for our cho-
sen initial condition.

Figure 1 provides a schematic of the scattering between
two vortex pairs based on numerical experiments. �A sam-
pling of actual trajectories is in Fig. 2.� Two pairs of separa-
tions d1 and d2, respectively, have been set on a collision
course. There are three distinct phases of the scattering pro-
cess: Impingement, interaction, and separation. During the
impingement phase the two pairs propagate with minimal
effect of their interaction, essentially along intersecting
straight lines and essentially with the velocity of a vortex
pair alone on the infinite plane. As they approach one an-
other, a complex interaction phase takes place �we will dis-
cuss details of this process later� in which all four vortices
orbit one another for some time. Ultimately, in the separation
phase, two pairs emerge from this interaction �for almost all
initial conditions� and propagate to infinity again essentially
as two freely moving pairs on the infinite plane. During the
interaction phase the four-vortex system may propagate for
some considerable distance �see Fig. 2�. As indicated in Fig.

1, let the outgoing pairs have separations d̂1 and d̂2, respec-
tively. Consider the perpendicular bisectors of the two out-
going pairs. They will, in general, intersect at some point
relative to which the vortices in the outgoing pairs must
again have coordinate formulas of the same form as the vor-
tices in the incoming pairs, Eqs. �3� and �3��, except that the
sense of the vortices is reversed such that the pairs propagate
away from the interaction region. In particular, the point at
which the outgoing pairs separate must also be on the afore-
mentioned scattering axis. The vectors of length d1 and d2,
respectively, connecting negative to positive vortex in each
incoming pair add up vectorially to the linear impulse
�modulo a factor ��. Hence, if we add these two vectors and
draw the line perpendicular to the resultant through the point
of impingement of the incoming pairs, we get the scattering
axis. The point at which the two outgoing pairs separate must
also be on this line, and the vector resultant of the separa-
tions pairwise in the outgoing pairs is the same as for the
incoming pairs. This is all summarized in Fig. 1.

Let the corresponding polar angles for the outgoing pairs

be �̂1 and �̂2. Conservation of X and Y then gives

d1 sin �1 + d2 sin �2 = − d̂1 sin �̂1 − d̂2 sin �̂2,

�5�
d1 cos �1 + d2 cos �2 = − d̂1 cos �̂1 − d̂2 cos �̂2,

while conservation of H tells us that

d1d2 = d̂1d̂2. �6�

Squaring Eq. �5�, adding, using Eq. �6�, and setting r
=d1 /d2, �=�1−�2, we see that the quantity M ��X2

+Y2� / �2d1d2�2�, i.e.,

M =
1

2
�r +

1

r
	 + cos � = cosh�log r� + cos � , �7�

is invariant during the scattering. The second form may seem
slightly artificial but the reason for writing M this way will
become clear momentarily.

Equation �5� contains information about the direction of
the linear impulse as well. Note that X+ iY =−i�d1ei�1

+d2ei�2�. If we set

X + iY = �X + iY�ei� = 2d1d2�2Mei�, �8�

we have

− �X + iY�2/�2 = �d1ei�1 + d2ei�2�2

= d1
2ei2�1 + d2

2ei2�2 + 2d1d2ei��1+�2�

= 2d1d2ei��1+�2��1

2
�rei� +

1

r
e−i�	 + 1�

= 4d1d2ei��1+�2� cosh2�1

2
log r + i

�

2
	 .
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Thus, from −�X+ iY�2 /�2=2d1d2Mei�2�−��, we have finally
that

� =
�

2
+

1

2
��1 + �2� + arg�cosh�1

2
log r + i

�

2
	� �9�

must also be conserved during the collision process. Equa-
tions �7� and �9� connect log r and � before and after the
scattering process. Equation �9� also involves the average of
the two impingement angles �and for the exiting pairs the

average of the two angles into which they have been scat-
tered�.

If the separation ratio is unchanged by the scattering, r̂

=r or r̂=1 /r. Conservation of M then implies �̂= ��. We

can always choose to number the outgoing pairs so that �̂

=�. Using the conservation of �, this leads to ��̂1 , �̂2�
= ��1 ,�2�. The vortex pairs are thus essentially unaffected by
the interaction, the only possible change being a finite dis-
placement of the whole trajectory after the interaction. Note
that for the integrable cases of collision of two pairs when

(a) (b)

(c)

(d) (e)

FIG. 2. Sample trajectories of two vortex pairs impinging on one another, scattering through an extended process, and finally separating into two pairs. In
terms of the parameters defined in the text �a� corresponds to �r ,� ,	�= �1,−3� /5,0.979, . . .�, �b� �2,� ,0.7745, . . .�, �c� �2,0 ,1.2551, . . .�, �d� �1,
−� /2,0.975, . . .�, and �e� �1.2,−2� /5,−0.152�. The case shown in �a� is analyzed further in Fig. 5. For clarity, incoming and outgoing pairs are identified by
arrows.
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X=Y =0, the angle � is indeterminate so that its conservation
is not a constraint. This is equivalent to M =0 which is only

possible if r=1 and �=�. It then follows that r̂=1 and �̂

=� as well. This accommodates the solution wherein the two
pairs exchange partners, which proceed to infinity along lines
at right angles to the direction of propagation of the incom-
ing pairs. For two pairs of different sizes with a common
axis, the motion is integrable because of the symmetry. The
resulting pairs, which still are symmetric with respect to the
common axis, can either have r̂=r or r̂=1 �see Ref. 1, Ap-
pendix B�.

Scattering will most often result in a change in r. For
example, the collision of equal-size pairs in Fig. 2�a� clearly
produces outgoing pairs of unequal size. A complex interme-
diate interaction plays out, with all four vortices within close
range of one another for a finite time. Different realizations
of the interaction region, produced by varying initial condi-
tions, are shown in the various panels of Fig. 2. The interac-
tion region is along the scattering axis, and the points of
impingement and separation of incoming and outgoing pairs,
respectively, define the end points of this region. The length
of the interaction region depends sensitively on the initial
conditions in much the same way that the interaction se-
quence for unequal pairs showed sensitive dependence. This
is a new mechanism for chaos in the scattering dynamics of
two identical vortex pairs, quite distinct from the slingshot
mechanism identified by Price,6 and more in keeping with
the notion of a scattering event between two-vortex pairs
than the slingshot mode. Taken together, this study and
Price’s work6 leave no doubt that the system of two identical
vortex pairs is nonintegrable, and so resolve the issue left
open in Ref. 1.

We note that one can have chaotic scattering even for
�=� �head-on collision, Fig. 2�b�� and for �=0 �tail-to-tail

collision, Fig. 2�c��. For a head-on collision, cos �̂
cos �

=−1. Hence, using Eq. �7� we get r̂+ r̂−1�r+r−1, i.e., the
ratio of separations for the outgoing pairs, r̂, is bounded by
the ratios of separations for the incoming pairs, d1 /d2 and
d2 /d1. These interactions, then, tend to focus the distribution
of energy over length scales in the flow. Conversely, for tail-

tail interactions, we have cos �=1
cos �̂, so r̂+ r̂−1
r
+r−1, and r̂ is either larger than max�d1 /d2 ,d2 /d1� or smaller
than min�d1 /d2 ,d2 /d1�. These interactions, then, will tend to
disperse energy over length scales of the flow.

In Fig. 2 we have shown the incoming and outgoing
pairs by arrows. However, since the dynamics is reversible,
one could equally well “read” these trajectory plots by
switching final and initial pairs. This would correspond to
reversing the signs of all vortex circulations and the direction
of all arrows. In later plots we therefore drop the arrows, in
effect capturing two scattering experiments in one diagram.

In order to do a sweep through different initial condi-
tions, we proceed as follows: In place of the initial condi-
tions given for the second pair, we use

+ �: �L2 cos �2 + �d2

2
+ 		sin �2,

L2 sin �2 − �d2

2
+ 		cos �2� ,

�10�

− �: �L2 cos �2 − �d2

2
− 		sin �2,

L2 sin �2 + �d2

2
− 		cos �2� ,

i.e., we have shifted the second vortex pair up or down along
the y-axis by 	 before rotating it through the angle �2. �Shifts
down correspond to positive 	; shifts up to negative 	.� Such
a shift does not change the values of the components of the
linear impulse, X or Y. However, the angular impulse is now
I=2�d2	. A sweep in 	 may therefore be considered to be a
sweep through various values of the angular impulse for
fixed values of the linear impulse and the Hamiltonian. Note
that since X and Y are unchanged, we will still have conser-
vation of M �Eq. �7�� and of � �Eq. �9��.

A somewhat different interpretation arises by reasoning
as follows: The velocities of free propagation of the two
initial pairs are v1=� /2�d1 and v2=� /2�d2. Set L1=v1T,
L2=v2T, where T is a large time interval. The initial condi-
tions �10�, which we are using in the sweep through different
values of I, have shifted the vortices in the second pair by
	�sin �2 ,−cos �2� relative to Eqs. �3� and �3��. This means
that the point of intersection of the two lines corresponding
to freely propagating pairs has been shifted. A simple calcu-
lation gives that the “free flight” distances L1 and L2 from
Eqs. �3� and �3�� should be changed to L1�=L1+	 csc � and
L2�=L2+	 cot �, respectively. The time from initial launch of
the vortex pairs until they impinge upon one another is thus
changed by 2�	�d1 csc �+d2 cot �� /�. At fixed d1, d2, and
�, this delay is simply proportional to 	.

When the two pairs scatter we can define various scat-
tering angles: We could monitor the absolute angle between
the direction of an outgoing pair and the direction of an
incoming pair. The outgoing and incoming pairs may be
made up of different vortices. We can both have interactions
where the same two pairs enter and exit the scattering region,
as well as interactions of the form 12+34→14+23 �using an
easily understood notation�. Interactions of the first kind will
again be called direct scattering, interactions of the second
kind exchange scattering. One should, therefore, look at the
angle between the outgoing pair containing a given vortex
and the incoming pair containing that same vortex.
Alternatively—and this is the measure we have used—one
can consider the value of �=�1−�2 before and after colli-
sion.

The result of performing multiple numerical scattering
“experiments” at many values of 	, with an initial condition
for which �=−3� /5 and r=d1 /d2=1, is shown in Fig. 3 �top
panel�. The abscissa shows 	 in units of the original, com-

mon vortex pair size d. The ordinate gives cos �̂, the cosine
of the angle difference between the outgoing pairs. We have
used L1=L2�d and checked that the general nature of the
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results is independent of the specific values of L1 and L2,

although the exact positions of the various spikes in cos �̂, to
be discussed below, will, of course, vary slightly as these
parameters are changed. Except for 	�1, the result of the
scattering appears relatively featureless. When �	��1, the
two pairs “miss” one another by a wide margin, and both
continue along their straight line trajectories essentially un-

perturbed. In that limit, then, cos �̂=cos �=cos�3� /5�
= 1

4 �1−5��−0.309. This is the level shown by the horizon-
tal dotted line. In general, we have M =1+cos �= 1

2 �r̂+ r̂−1�
+cos �̂
1+cos �̂, where the hats refer to quantities after

the scattering. Thus, cos �̂�cos �, and the angle between
the outgoing pairs must be at least as obtuse as the angle
between the incoming pairs. This is clearly evident in the

scattering process of Fig. 2�a�. The peaks in cos �̂ �Fig. 3�
will thus, at best, reach the initial value of cos �.

If one probes the scattering diagram in Fig. 3 in a narrow
band of 	-values around 	=1, the spike visible in the top
panel of Fig. 3 reveals considerable fine structure. In the
middle panel of Fig. 3 we have magnified a segment of the
	-axis, 0.975	0.985, indicated in the top panel by the
thin gray rectangle. We see that what appeared as a single
spike in the top panel resolves itself into a multitude of
spikes. Many of these reach up to cos �, which, from the
conservation of M during scattering, means that the outgoing
pairs also have the same size, which must be equal to the
common size of the incoming pairs by conservation of the
Hamiltonian. In between these maxima we have additional

structure in the scattering angle �̂. This process of selecting

and magnifying a piece of the 	-interval may be repeated.
The gray rectangle shown in the middle panel of Fig. 3 has
been magnified in the bottom panel of Fig. 3, which now
explores the interval of 0.9784	0.9788. Again we see
that the fine structure apparent in the middle panel of Fig. 3
continues to exist as we zoom in on smaller and smaller
intervals of 	. The curve continues to have fine structure as
the 	-interval is probed on finer and finer subintervals. This
is the hallmark of chaotic scattering and is quite similar to
what was observed in Refs. 1 and 3 and in other chaotic
scattering problems.

The complexity of Fig. 3 can be understood in terms of
the sample scattering process in Fig. 2�a�. The length of the
scattering process seen in this figure depends sensitively on
the initial conditions, i.e., on 	. In the chaotic scattering re-
gion, a change in 	, however slight, can result in dramatic
changes in the scattering process, making it either shorter or
longer and altering the resulting scattering angle. One can
also monitor the scattering time, i.e., the time between the
initial encounter of the two pairs and their final separation.
This diagnostic again shows sensitive dependence on the ini-
tial conditions. The scattering time as a function of 	 is not
as dramatically quantized as it was for the case of two un-
equal pairs,1 where each loop of two non-neutral pairs added
a step in the scattering time. However, it does again have a
ramified structure much as the scattering angle shown in Fig.
3. Furthermore, the structure in the scattering time corre-
sponds to the structure in the scattering angle plot, further
bolstering the argument that we are witnessing a chaotic
scattering process.

We have also conducted scattering experiments with
pairs of unequal separation in the initial condition. Figure 4
shows the cos � diagnostic as a function of 	 for two incom-
ing pairs with a separation ratio of r=2. There are now sev-
eral peaks, each of which resolves into further fine structure
if a segment of the 	-interval is magnified. Conservation of

M now yields 1
2

�2+ 1
2

�+cos �
1+cos �̂ or cos �̂�
1
4

+cos ��−0.059. This gives the height of the tallest peaks in
Fig. 4, which occur when the outgoing pairs have equal size.

In order to obtain a better understanding of the motion
depicted in Fig. 2�a�, and how it might originate, we have
explored the vortex trajectories in more detail. See the analo-
gous study for the case of unequal pairs in Ref. 3. The results
are shown in Fig. 5. The first panel �Fig. 5�a�� shows one

FIG. 3. The cosine of the scattering angle �angle between the two outgoing

vortex pairs�, cos �̂, as a function of the parameter 	, introduced in the text,
which measures the angular impulse of the vortex system; 	 is measured in
units of the common initial separation of the two identical incoming pairs.
�Top panel� Scan of a larger range of 	; �middle panel� magnification of the
region around 	=1; and �bottom panel� further magnification showing more
fine structures. The dotted line indicates the value of cos � for the initial

pairs, i.e., for r=1. In general, cos �̂cos � and only reaches cos � when
the outgoing pairs are also identical.

FIG. 4. The cosine of the scattering angle �angle between the two outgoing

vortex pairs�, cos �̂, as a function of the parameter 	, introduced in the text,
for two incoming pairs with separations d and 2d �r=2�; 	 is measured in
units of d. The dotted line is again at cos � for the initial pairs �and �

=−3� /5�, but since r=2, the peaks in cos �̂ can now reach higher as ex-
plained in the text.
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incoming pair as solid black and gray lines, the other as
dashed lines. Positive vortices are black, negative vortices
are gray. We see, first of all, that an exchange scattering
process has taken place. In Fig. 5�b� we have magnified a
portion of the trajectories that appears to be repeated over
and over. �We have also added a fifth “trajectory” as dis-
cussed in what follows.� We see that the two negative vorti-
ces move to the inside of the long structure seen in Figs. 2�a�
and 5�a�, and that the two positive vortices orbit on the out-
side of this structure. If we think of this bound state of the
two negative vortices as equivalent to a single vortex of
strength −2�, we may look to the integrable three-vortex
problem �� ,� ,−2�� for understanding. �The thicker solid
gray curve that has been superimposed in Fig. 5�b� is the
trajectory of 1

2 �z2+z4�.� In this problem there are regimes of
motion similar to what is seen in Figs. 5�a� and 5�b�. The trio
of vortices propagates along, in a direction given by the total
linear impulse, while the two positive vortices orbit one an-
other and the stronger negative vortex. To illustrate this more
clearly, we have subtracted out the mean translation velocity
of the entire group in Fig. 5�c�. The negative vortices are
now clearly seen to orbit “on the inside” with the two posi-
tive vortices orbiting around them. To bolster this interpreta-
tion further, we have calculated trajectories for the three-
vortex system �� ,� ,−2�� starting from an initial condition
produced as follows: While the four-vortex motion is under-
going the interactions seen in Fig. 5�a�, we recorded the po-
sitions of the four vortices at some instant. We then took the

two positive vortices as vortices 1 and 2 of a three-vortex
problem, and we took the location of the midpoint of the line
connecting the two negative vortices as the location of vortex
3 of strength −2�. A calculation was then started for these
three vortices and trajectory plots analogous to those in Figs.
5�b� and 5�c� were produced. These are shown in Figs. 5�d�
and 5�e�. The two positive vortices have trajectories that cor-
respond well to those in the original four-vortex problem.
The negative vortex of strength −2� has a trajectory that is
very similar to the trajectory of 1

2 �z2+z4� in the four-vortex
problem. This comparison between three-vortex and four-
vortex trajectories is quite convincing that, indeed, an inter-
mediate state reminiscent of the periodic three-vortex motion
is observed.

Hence, the qualitative explanation of the chaotic scatter-
ing is that the four-vortex system has unstable periodic orbits
reminiscent of those in the naturally associated three-vortex
problem, and that these can produce long term transients. We
hypothesize that there is an infinity of such periodic orbits,
continuously distributed in terms of the values of the inte-
grals of motion, and that they can be accessed as the scatter-
ing parameter 	 is continuously varied. The point at which
the four-vortex problem begins following the periodic orbit,
and the point at which it again deviates from it, would be
expected to depend sensitively on the initial conditions.

Generally, there are four possible regimes in the three-
vortex problem �� ,� ,−2��. In one the two positive vortices,
1 and 2, “pair up” and orbit as an entity with vortex 3 fol-

(a) (b) (c)

(d) (e)

FIG. 5. �a� Trajectory from Fig. 2�a� with vortices identified, r=1, �=−3� /5, and 	�0.979. �b� Detail of the trajectories of the four vortices with the
trajectory of the midpoint of the two negative vortices superimposed. �c� Trajectories relative to a frame of reference translating with the mean velocity of the
group. �d� Comparison trajectories to panel �b� for the system �� ,� ,−2��. �e� Comparison to panel �c� for the system �� ,� ,−2��.
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lowing along at some distance. We could write this as �12�
+3. In another, one positive and one negative vortex pair up,
say 1 and 3, and they orbit with vortex 2 following along. In
this regime the vortex system has aspects of a vortex pair
with one constituent being the bound state of vortices 1 and
3, the other being vortex 2. We could write this as 2+ �13�.
Similarly, vortices 2 and 3 can pair up and vortex 1 then
follows along at a distance, i.e., we would have 1+ �23�.
Finally, no two vortices need to pair up and the vortices all
interact at all times. We might call this the “collective re-
gime.” See Refs. 8 and 9 for the derivation of these results.
The motion in Fig. 5�d� and, hence, the four-vortex scattering
process seen in Fig. 5�a� correspond to this collective regime.

The question then arises if the other three-vortex regimes
mentioned are possible as intermediaries in a scattering pro-
cess. Regime �12�+3 necessitates the simultaneous pairing
of the two positive and the two negative vortices, and thus
projects the four-vortex problem onto a two-vortex problem.
We have only seen this happen for very short periods of time.
However, the other two regimes—where one has the two
negative vortices orbiting as, effectively, a single vortex of
strength −2�, and this is “paired” with one of the positive
vortices, leaving the last positive vortex to follow along at a
distance—are more easily found. Figure 6 shows such an
intermediate motion �and see also Figs. 2�d� and 2�e��. One
has to start with r�1 and one has to find a propitious value
of 	. We used r=2, �=−3� /5, and tuned the value of 	
�0.820 to produce the trajectories in Fig. 6, which clearly

have the sought after features. We show the full scattering
process in Fig. 6�a� with the vortex trajectories differentiated
�the net process is a direct scattering�, the motion with the
mean translation velocity subtracted out in Fig. 6�b�, the tra-
jectories in the associated three-vortex problem �� ,� ,−2��
started from simultaneous values of z1, z3, and 1

2 �z2+z4� in
Fig. 6�c�, and the same three-vortex trajectories with the
mean translation velocity subtracted out in Fig. 6�d�.

Finally, to illustrate the richness of periodic solutions
that the four-vortex problem can approach and follow for
varying amounts of time, we show in Fig. 7 a trajectory plot
produced for r=2, �=−3� /5, and 	�0.819. In this case, we
see that the bound motion of the four vortices starts out close
to the three-vortex problem �� ,� ,−2�� as before, but now in
the mode 1+ �23�, then switches to a similar mode of the
three-vortex problem �2� ,−� ,−��. Then there is a brief pe-
riod where it appears that the motion follows the integrable
“leapfrogging” mode of two coaxial vortex pairs �see Ref. 1.
where the historical Refs. 10 and 11 are discussed�. We get
one loop of the first three-vortex-like motion before the
original vortex pairs depart for infinity. The net result of this
lengthy interaction is a direct scattering process.

The various patterns of appearance of intermediate
bound states could be labeled with letters as was done in Ref.
1, e.g., the regime numbers for the various associated three-
vortex problems, supplemented by L for leapfrogging. Alter-
natively, the braids in three-dimensional space-time could be

(a) (b)

(c) (d)

FIG. 6. �a� Trajectories with all vortices identified—a four-vortex motion that corresponds to the three-vortex problem �� ,� ,−2�� in the regime 1+ �23�. �b�
Trajectories relative to a frame of reference translating with the mean velocity of the group. �c� Comparison trajectories to panel �a� for the three-vortex
system. �d� Comparison to panel �b� for the three-vortex system.
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used12 to classify the various intermediate motions. Either
way, strings of finite length are obtained and the chaotic
scattering is manifested by the ability to obtain arbitrarily
long strings where the length of the string depends sensi-
tively on the initial conditions.

Leapfrogging is an integrable four-vortex motion. One
might ask if other integrable cases of four-vortex motion13,14

appear as intermediate states during the scattering process.
This would require that both X and Y are almost 0. Figure
2�b� provides an example as the reader will see by comparing
it to Fig. 13, panel III �IV, V, and VI�, of Ref. 14.

III. CONCLUSIONS

A new mechanism for chaotic scattering of two identical
point vortex pairs has been found. The mechanism appears as
a natural extension of work on the scattering of two vortex
pairs with strengths that were close in magnitude but not
identical.1 The new mechanism is distinct from the “sling-
shot” mechanism proposed by Price.6 It hinges on the appar-
ent existence of unstable motions of the four-vortex system
that have periodic relative motion of the four vortices and
that resemble solutions to the three-vortex problems �� ,� ,
−2�� and �2� ,−� ,−��. The four-vortex system approaches
such solutions and follows them for a time that depends sen-
sitively on the initial conditions. Taken together, Ref. 1 and

the present work show that the scattering of one vortex pair
by another is chaotic for all choices of strengths of the two
incoming pairs.
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