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Presented in this paper is a mode-coupling analysis for the nonlinear excitation of the geodesic
acoustic modes �GAMs� in tokamak plasmas by finite beta drift waves. The finite beta effects give
rise to a strong stabilizing influence on the parametric excitation process. The dominant finite beta
effect is the combination of the Maxwell stress, which has a tendency to cancel the primary drive
from the Reynolds stress, and the finite beta modification of the drift waves. The zonal magnetic
field is also excited at the GAM frequency. However, it does not contribute to the overall stability
of the three-wave process for parameters of relevance to the edge region of tokamaks. © 2008
American Institute of Physics. �DOI: 10.1063/1.3028311�

I. INTRODUCTION

Geodesic acoustic modes �GAMs� are a class of low-
frequency toroidal modes which are primarily electrostatic
modes that are observed in a variety of tokamaks.1–7 These
modes were first predicted theoretically by Winsor et al.8

Their observation has stimulated theoretical and computa-
tional investigations to understand the excitation mechanism.
In addition, the significance of the role of GAMs, observed
in the edge region of tokamaks, in triggering the low to high
confinement �L-H� transitions is an interesting question that
needs to be addressed both observationally and theoretically.
Presently there are two methods of excitation of modes in the
GAM range of frequencies that are being investigated. The
first is a linear process involving energetic ions. The low-
frequency chirps observed on Mirnov coils have been found
near the GAM frequency and are believed to be excited by
the neutral beam ions.9,10 The second class of modes near the
GAM frequency are observed in the edge region of tokamaks
by a variety of diagnostic methods, and these are believed to
be excited by nonlinear processes.11–13 In this study we will
focus on the nonlinear type of excitation and extend our
earlier work by including finite beta effects.

II. BASIC FINITE � EQUATIONS

The basic equations used in this investigation are those
for finite beta drift waves and shear Alfvén waves �with dia-
magnetic drift effects�.14–16 Here we use fluid equations to
investigate the excitation of the GAMs by the nonlinear
terms. In the edge region the contribution to the Landau
damping is weak since the safety factor q�3 and hence
kinetic effects will not contribute to the dynamics:
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In these equations, the density, scalar, and vector potentials
are normalized as follows: n= ñ /n0, �=e�̃ /Te0, and �

=vA�̃ /�scsB0. Here, �� =��0+ ��scs /vA�ẑ��� ·� with ��0

��1 /qR��� /��� representing the parallel wave number in the
equilibrium magnetic field. J=�S

2vA��
2 �, cs

2=Te0 /mi, vA
2

=B2 /4�min=�i=eB0 /mic, and Ĉ= �cos � /a��� /���
+sin � � /�x. In addition, d /dt=� /�t+�scsẑ��� ·�. Here, e
is the electronic charge, Te0 is the equilibrium electron tem-
perature, a the minor radius, mi the mass of the ions, Ln the
density gradient scale-length, cs the ion acoustic speed, vA

the Alfvén speed, and �i the ion cyclotron frequency. Ĉ is
the curvature operator, which includes both the normal cur-

vature contribution �first term in Ĉ� and the geodesic curva-
ture. The parallel dynamics for the ions is neglected in this
study since for GAMs it makes a minor contribution to the
frequency in the edge region �where the safety factor q is
large�.

To investigate the linear parametric excitation of GAMs
by a “pump” drift wave the basic modes needed for this
analysis is the pump wave, which for the present study is
assumed to be a drift wave:

	0 = �
m

	m
0 e−i
0t+in�+im�. �4�

Here, 	 represents the density, scalar, and vector potential
perturbations associated with the pump drift wave. The sum-
mation over m is for a few symmetric sidebands around the
primary mode number m0=n /q, where q is the safety factor
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at the rational surface. This mode can couple to the GAM
mode, which is represented as

	G = ��G,�G,nG����e−i
t+iqrx. �5�

For the GAM, the potential is independent of the variable �,
while the density has a sin � dependence. The GAM is pri-
marily an electrostatic mode. So in a linear mode analysis
there is no vector potential term which modifies the electro-
static dispersion relation. However, since we are exciting the
GAM by a finite beta drift wave, the zonal magnetic field
will be driven at the GAM frequency.

These two modes, namely, the pump drift wave and the
GAM, excite a resonant sideband

	s = �
m

	m
s e−i�
−
0�t−in�−im�+iqrx. �6�

Using these representations, the equations for the driven
GAM and sideband modes �retaining only the dominant non-
linear coupling� can be written as
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As shown in earlier work,12 the dominant nonlinear coupling
is to the primary mode m0=n /q, where q is the safety factor
at the rational surface. There are couplings to the m0
1
sidebands, which turn out to be 1 /m0 smaller than the domi-
nant terms. Equation �7� represents the excitation of the
GAM by the beating of the pump wave �p and the sideband
�s. The second term on the right hand side arises from the
finite � effects of the drift wave branch. The zonal field �G

�Eq. �8�� is driven by the pump and the sideband. This vector

potential is nonresonant in character and therefore will not
play a significant role in the excitation/suppression of the
GAM. Nevertheless, it can be driven by the coupling pro-
cess, and hence may be observed by pick-up coils which
record the perturbed magnetic fields.

Finally, the equation for the drift wave sideband driven
by the GAM and the pump wave is given by Eq. �9�. Once
again, the new terms in this calculation are the finite � ef-
fects in the coupling coefficients in F1 and F2, which arise
from the electromagnetic nature character of the pump and
the drift wave, and the extra term on the right hand side due
to coupling to the zonal field. This system of equations then
can be analyzed to understand the excitation of GAMs by
finite beta drift waves.

Making the approximation that 
=
G+�
, with �

�
G, the final dispersion relation for the excitation of
GAMs by finite beta drift waves is given by

�
2 + �0
2 = 0, �10�
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and 
s0=
0−
G. If the sideband is a drift wave, the reso-
nance condition demands that

qr�s = 
− 1 − ky
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*
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+

s0�
s0 − 
*�

k�
2vA

2 �1/2

. �11�

This condition therefore selects a specific value of the radial
wave-vector qr of the GAM which will be preferentially ex-
cited. Furthermore, the dispersion relation �Eq. �10�� reduces
to the earlier electrostatic result12 in the limit vA→�. There
are a number of finite beta modifications in this dispersion
relation. The finite beta corrections in the terms F1, F2, and A
are due the finite beta nature of the pump and sideband drift
waves. Another important finite beta effect is the term C, the
second term inside the bracket. This is the contribution from
the Maxwell stress, which tends to cancel the first term from
the Reynolds stress. This competition between these two
stresses has been observed and investigated in many simula-
tions which examine the energetics of zonal flow generation
by a combination of Reynolds stress, Maxwell stress, and
geodesic curvature drives.17–19 In the next section we evalu-
ate the dispersion relation for typical tokamak plasma edge
parameters.

III. NUMERICAL RESULTS

As in earlier work on the excitation of zonal flows by
finite beta drift waves,20 to evaluate the growth rate for the
excitation of the GAMs and the effect of the finite beta,
following normalization is used. For the pump wave, the
frequency is normalized to the drift frequency. Hence, the
normalized dispersion relation for the pump is
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1 + k̂y
2 −

1

�0
− k̂y

2�̂�0��0 − 1� = 0. �12�

There are basically two dimensionless parameters, �1� k̂y

=ky�s and �2� �̂=�q2R2 /2Ln
2, where � is the ratio of plasma

pressure �electron� to the magnetic field pressure. In Fig. 1 is

shown the drift wave branch as a function of �̂ for k̂y

=0.1, 0.2, 0.3, 0.4, 0.5.
Now, from the resonance condition for the three-wave

interaction, the radial wave number given by Eq. �11� can be
evaluated. The normalized version of Eq. �11� with q̂r

=qr�s is

q̂r = 
− 1 − k̂y
2 +

1

�s0
+ k̂y

2�̂�s0��s0 − 1��1/2
. �13�

Here, �s0=�0−�G with �G=�2�n / k̂y the normalized GAM
frequency and �n=Ln /R.

Finally, the normalized dispersion relation for excitation
of GAMs can be written as
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In Fig. 2, q̂r given by Eq. �13� is plotted as a function of �̂

for the same five values of k̂y as in Fig. 1 and for �a� �n

=0.02 and �b� �n=0.05. For larger �n, the radial wave num-
ber shifts to larger values. In fact, for corelike �n�1, the
resonance condition is not satisfied and hence the mechanism
being investigated in this paper in the local limit does not
excite modes in the core region of tokamaks.

Finally, the normalized growth rate ��̂= q̂rk̂y��

=�
Ln /cs
�̂p
 with �̂p=0.01 for the excitation of the GAMs

is plotted in Fig. 3 as a function of �̂ for the same values k̂y

as in Fig. 1 for �a� �n=0.02 and �b� �n=0.05. There are
various interesting features that can be gleamed from these

plots. Each of the traces shows that with increasing �̂ the
growth rate for the GAM is suppressed and is completely

stabilized beyond a critical value of �̂= �̂C, which increases

with k̂y. The dominant finite beta effect which is responsible

0 50 100
0

0.5

1

0Ω

�β
FIG. 1. Pump wave frequency as a function of �̂ for k̂y =0.1 �crosses�, 0.2
�squares�, 0.3 �diamonds�, 0.4 �circles�, and 0.5 �triangles�, respectively.
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FIG. 2. Radial wave number q̂r �Eq. �13�� as a function of �̂ and k̂y =0.1
�crosses�, 0.2 �squares�, 0.3 �diamonds�, 0.4 �circles�, and 0.5 �triangles�,
respectively, for �a� �n=0.02 and �b� �n=0.05.
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for the stabilization is a combination of the Maxwell stress
term and the finite beta modifications of the drift waves,

which lead to the appearance of the �̂-dependent terms in F1.
The zonal field gets excited by the mode coupling but plays
no role in the growth �or suppression� of the GAM mode.

Finally, plotted in Fig. 4 is the stability boundary �̂c in the

��̂ , k̂y� space ��̂c is the critical value of �̂ above which the
GAMs excitation is suppressed by finite beta effects� for four
different values of �n.

For each value of �n, the GAMs can be excited by cou-

pling to finite beta drift waves for values of �̂ below the
corresponding critical curve. Above the curve, the excitation
by the resonant parametric process is suppressed by finite
beta effects. Nevertheless, as can be seen from Fig. 4, GAMs
can be excited over a broad range of parameters relevant to
the edge region of tokamaks by the process studied in this
paper. Qualitatively one can see that for reasonable values of
the low �L� mode edge parameters, namely, �n=0.05, the

GAMs are strongly stabilized for rather low values of �̂.
Hence, they may become stable before the discharge reaches

values of �̂ for a L-H transition. There are interesting obser-
vations on Doublet III-D �DIII-D�,21 which show GAM
suppression22 before the discharge reaches the parameters at
which the L-H transition occurs. However, a more careful
investigation of this issue and comparison with data will be
undertaken in the future.

IV. CONCLUSIONS

In this paper, we have presented calculations which ad-
dress the issue of excitation of the geodesic acoustic mode
by nonlinear mode-coupling to finite � drift waves. This is
an extension of our earlier work in which the modes were
primarily electrostatic. The present study shows that the in-
clusion of the finite beta effects lead to stabilization of the
three-wave resonant process as the dimensionless parameter

�̂ increases. There are three dimensionless parameters in the

present problem; namely, �̂, �n, and k̂y. The resonance con-
dition determines the radial wave number of the excited
GAM as a function of these three dimensionless parameters.
The dominant stabilization arises from a combination of the
Maxwell stress associated with the finite beta modification of
the drift waves �both pump and sideband�. Also due to the
finite beta effect there is the excitation of a zonal field at the
GAM frequency. Though this field does not contribute to the
overall stability of the GAM excitation, it can provide a mag-
netic signature for the GAM which is excited by the pro-
posed mechanism. Finally, the stability boundary in the

three-dimensional space �̂,�n,k̂y is computed.
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