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The paper first illustrates how multilayered tori can arise through one or more pitchfork bifurcations
of the saddle cycle on an ordinary resonance torus. The paper hereafter describes three different
scenarios by which a multilayered torus can be destructed. One scenario involves a saddle-node
bifurcation in which the middle layer of a three-layered torus disappears in an abrupt transition to
chaos while the outer-layer manifolds and their associated saddle and unstable-focus cycles con-
tinue to exist and to control the transient dynamics. In a second scenario, the unstable focus cycles
of the intermediate layers in a five-layered torus turn into unstable nodes, and closed loop connec-
tions are established between the unstable nodes and the points of the stable resonance node on the
torus. Finally, a third scenario describes a transition in which homoclinic bifurcations destroy first
the outer layers and thereafter also the inner layer. The paper also illustrates how the formation and
destruction of multilayered tori can occur in the cluster dynamics of an ensemble of globally
coupled maps. This leads to three additional scenarios for the destruction of multilayered tori.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2959141�

Torus destruction represents one of the classic scenarios
for the transition to chaos. This transition is typical of
systems of coupled oscillators where it often replaces the
route to chaos via a cascade of period-doubling bifurca-
tions. In contrast to the well-described period-doubling
and intermittency routes to chaos, torus destruction in-
volves nonlocal bifurcations, and many aspects of the
mechanisms underlying torus destruction still remain to
be explored in detail. Descriptions of the torus destruc-
tion scenario typically start out from a pair of saddle and
node cycles on a resonance torus and follow how the
manifolds associated with these states start to fold, wind
or intersect. We have found that a torus can develop sev-
eral parallel sets of manifolds. This can occur, for in-
stance, if the original saddle solution undergoes a pitch-
fork or period-doubling bifurcation transverse to the
torus manifold. The paper describes the formation of
three- and five-layered tori in a system of two coupled
noninvertible maps and discusses different scenarios for
the breakdown of such multilayered tori. The paper also
considers an ensemble of globally coupled maps and
show how multilayered tori can occur in the asymptotic
dynamics of such systems as well. We suggest that the
formation of multilayered tori is directly related to the
noninvertibility of the examined maps.

I. INTRODUCTION

When two identical period-doubling systems are coupled
symmetrically one often observes that the period-doubling
transition to chaos is replaced by a transition through quasi-
periodicity and torus destruction. Such a replacement was

noticed, for instance, by Van Buskirk and Jeffries1 in experi-
ments with driven electronic resonators. When varying the
drive voltage, the single resonator showed a period-doubling
transition to chaos, whereas a pair of resistively coupled
resonators exhibited a transition through torus destruction.
The reason why this replacement occurs, is that for diffu-
sively coupled oscillators, a transverse period doubling pre-
cedes the normal symmetric period doubling at an early stage
in the bifurcation cascade, and the produced antisymmetric
period-2 cycle hereafter undergoes a Hopf bifurcation �or a
Neimark–Sacker bifurcation for map systems�.2–4

Afraimovich and Shilnikov5 have identified three differ-
ent scenarios for the transition from quasiperiodicity to chaos
for smooth, invertible maps. A description of these transi-
tions starts from a smooth resonance torus defined by the
union of a stable node cycle, the corresponding saddle cycle,
and the unstable manifold of the saddle cycle. With increas-
ing nonlinearity, this manifold begins to fold as it approaches
the points of the node. In this way the smoothness of the
torus is lost in the discrete points of the stable cycle. When
the system under variation of a parameter crosses out of the
resonance tongue, this nonsmoothness spreads to the entire
structure, and the torus is destroyed. It is also possible that
the node is transformed into a stable focus and the manifold
winds around the focus points or that the unstable manifold
starts to intersect the stable manifold of the saddle solution
such that a Smale horseshoe structure is formed, leading
again to the destruction of the torus and a transition to chaos.

In recent years, the Afraimovich–Shilnikov theory has
been extended to describe some of the modifications that can
arise for noninvertible maps6–9 and for piecewise-smooth
systems. In the first case, one can observe that the folding
and winding manifolds produce self-intersecting loops,10 and
in the latter case the mechanism of torus destruction can
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involve border-collision bifurcations where the multipliers of
an orbit suddenly jump from one position in the complex
plane into another.11,12

The purpose of the present study is to examine the for-
mation and destruction of tori that are formed as layered
structures of several sets of parallel manifolds each with their
associated stable or unstable resonance modes. Such tori can
arise, for instance, if the saddle cycle on a resonance torus
undergoes one or more period-doubling or pitchfork bifurca-
tions transversely to the torus. We have recently observed the
formation of double-layered tori in connection with the
analysis of a dc/dc converter with two-zone pulse-width
modulated control.12 The present paper first considers a sys-
tem of two linearly coupled, identical one-dimensional maps:

f:�x

y
� � � f�x� + ��y − x�;

f�y� + ��x − y� ,
� �1�

where f�x�=x�1−x��ax2+ �b2−da�x+c� and � is the coupling
parameter. The individual map f�x� is illustrated in Fig. 1.
Here, we have chosen b2=2.85, c=3.5, and d=0.85. In the
following bifurcation analysis, we shall use the coupling pa-
rameter � and the nonlinearity parameter a as control param-
eters.

The map f�x� represents the canonical map for discus-
sions of transitions to chaos via type I intermittency. Transi-
tions of this type occur in practical all systems that display
deterministic chaos, and the saddle-node bifurcations lead-
ing, for instance, to the formation of the characteristic peri-
odic windows in the logistic map are all transitions from
intermittency I to regular periodic dynamics. Transitions to
chaos via type I intermittency have historically played a sig-
nificant role in discussions of the onset of turbulence13,14 and
they continue to be the main route to chaos in many biologi-
cal models.15,16

For 16.5�a�22.1, f�x� displays four fixed points of
which the fixed point in x=0 is unstable for the parameters of
interest in the present study. The fixed point near the top of
the map arises in a saddle-node bifurcation for a	22.1 and
remains stable until a	16.1, where it undergoes the first of a
cascade of period-doubling bifurcations.

For a�16.5, f�x� displays two intermediate fixed points
of which the lower fixed point for the considered values of a
is a node and the upper a saddle. At a	16.5, these two fixed
points merge and disappear in a tangent bifurcation, and in a
certain interval of a the map hereafter displays type I

intermittency.13,14 The coupled map system �1� has previ-
ously been used17 to study chaotic synchronization and
riddled basins of attraction18–20 for coupled intermittency
maps. The idea of the present study is to follow the transi-
tions that occur for the transverse period-2 node N
= �N1 ,N2� as the parameters a and � are changed. This leads
us to describe the formation of tori with both three and five
layers of parallel manifolds and to consider three different
mechanisms for the breakdown of such tori. We also show
that multilayered tori can arise in the symmetric and asym-
metric two-cluster dynamics for a system of many coupled
intermittency maps. In this case, yet a different set of mecha-
nisms of multilayered-torus breakdown are active.

II. BIRTH OF A THREE-LAYERED TORUS

As long as the coupling parameter � is small enough, the
map �1� has two stable fixed points on the diagonal x=y.
When the value of � is increased, the top most fixed point N0

becomes transversally unstable and undergoes a supercritical
transverse period doubling. This produces a stable
period-2 cycle N= �N1 ,N2� transverse to the diagonal x=y. In
accordance with the above discussion,2–4 the transverse pe-
riod doubling occurs before the synchronized period dou-
bling. Moreover, the symmetric period-2 cycle arising in the
synchronous bifurcation is born as a saddle cycle, and the
next bifurcation to take place for the asymmetric
period-2 cycle is a Neimark–Sacker bifurcation.

Figure 2 shows a chart of the dynamical modes in the
�� ,a� parameter plane for the map �1�. �2 denotes the region
of existence for the stable asymmetric period-2 cycle, and N�

is the Neimark–Sacker bifurcation curve along which the
period-2 cycle is transformed into a two-band quasiperiodic
attractor. The region of quasiperiodicity is denoted ��. In
this region we find the usual dense set of resonance tongues,
with �6 and �10 representing two of the most prominent
tongues. In these tongues the system displays period-6 and
period-10 dynamics, respectively. In the lower right part of

FIG. 1. Variation of the map f�x� for different values of a ranging from
a=15 to a=19.

FIG. 2. �Color online� Chart of the dynamical modes in the parameter plane
�� ,a�. �2 is the domain of existence of the stable period-2 cycle. �6 and
�10 are the regions of period-6 and period-10 resonant dynamics, respec-
tively. N� is the Neimark–Sacker bifurcation boundary and �� is the domain
of quasiperiodicity. In the lower right part of the figure, the white region,
interrupted by narrow resonance zones, denotes the occurrence of determin-
istic chaos.
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the figure, the white region, interrupted by narrow resonance
zones, denotes the occurrence of deterministic chaos.

Let us first examine the transition that occurs as we
move along the direction A in the resonance tongue �10, i.e.,
as we reduce the parameter a from 15.75 to 15.43 while
maintaining the coupling parameter constant at �=0.27. This
transition is shown in Fig. 3. At the starting point, i.e., for
a=15.75, the map �1� displays an invariant torus that is the
union of the unstable manifold of the period-10 saddle cycle
S, the saddle cycle itself, and the points of the stable
period-10 node N. Since the map is symmetric with respect
to the diagonal x=y, the figure only shows the five saddle
points S that belong to one branch of the torus. As a is
reduced, the stable node N first turns into a focus F1 �as its
multipliers become complex�, and the unstable manifolds of
the saddle start to wind around the stable cycle. This is illus-
trated in the phase portrait in Fig. 4. At this stage, the torus is
no longer smooth in the points of the period-10 focus F1. At
a	15.62 the saddle period-10 cycle S undergoes a pitchfork
bifurcation. The original saddle cycle S turns into a repellor
�an unstable node�, and two new saddle period-10 cycles S1

and S2 appear �Fig. 3�. As a result, a three-layered torus
structure softly arises from the original resonance torus.

Figure 5 presents the phase portrait of the map for the
fully developed three-layered torus. A magnified part of this

phase portrait, outlined by the rectangle in Fig. 5�a�, is
shown in Fig. 5�b�. The external layers of the three-layered
torus are formed by the unstable manifolds of the saddle-
cycles S1 and S2. Such a closed invariant curve is often re-
ferred to as a saddle-stable focus connection.21 The middle
layer is repelling and is composed by the nonleading un-
stable manifold of the unstable node period-10 cycle R.

III. FORMATION AND DESTRUCTION
OF A FIVE-LAYERED TORUS

Let us now examine how the three-layered torus is trans-
formed into a five-layered torus to finally be destroyed as we
leave the resonance tongue �10 in the direction B �see Fig.
2�. We have observed several different scenarios for this
transformations. They will be illustrated through a series of
detailed, numerically calculated phase portraits and bifurca-
tion diagrams that show both the formation of loop tori, the
formation of a five-layered torus, and the processes through
which the multilayered torus is finally destroyed.

First, the external layers of the three-layered torus trans-
form into loop tori as infinite sequences of self-intersecting
loops arise along the unstable manifold of the saddle-cycles
near the stable node.7 The middle layer also turns nonsmooth
due to folding of the unstable manifold near the stable node
but without intersections. As an example, Fig. 6 shows the
phase portrait of the map for �=0.2437 and a=15.3 after the
transformation from nonsmooth torus to loop or cusp torus.
The mechanisms of transition from the nonsmooth torus to
loop torus were described in detail by Maistrenko et al.10

FIG. 3. Birth of the three-layered torus through a pitchfork bifurcation as
the nonlinearity parameter a is reduced through the bifurcation point at
a	15.62. S, S1, and S2 are period-10 saddle cycles, and R is an unstable
node period-10 cycle �the repeller�. Since the map is symmetric with respect
to the diagonal y=x we only show five points, belonging to the lower right
branch, for each of the three saddle cycles. When the bifurcation occurs, the
stable period-10 cycle has turned into a focus cycle �Fig. 4�.

FIG. 4. Phase portrait of the map immediately before the pitchfork bifurca-
tion in Fig. 3. �=0.27 and a=15.64. S represents the points of the period-10
saddle cycle and F1 the points of the stable resonance cycle. This cycle has
now turned into a focus, and, although this is difficult to see in the figure,
the unstable manifold from the saddle cycle winds around the points of the
stable cycle.

FIG. 5. Birth of a three-layered torus through the pitchfork bifurcation of
the saddle cycle. �a� Phase portrait for the fully developed three-layered
torus. �=0.27 and a=15.61. �b� Magnified part of the phase portrait that is
outlined by the rectangle in �a�. Here F1 is a stable period-10 focus cycle.
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As a next step in the transformation, the unstable node R
undergoes a new pitchfork bifurcation as one of its multipli-
ers passes through +1 and becomes less than +1. In this
bifurcation, as illustrated in Fig. 7, two unstable nodes, the
repellors R1 and R2, softly arise from the unstable node R,
and the unstable node R becomes a saddle S0. This bifurca-
tion leads to the birth of a five-layered torus.

Figure 8 shows the phase portrait of the map after the
pitchfork bifurcation for �=0.24365 and a=15.3. The mag-
nified part of the torus outlined by the rectangle in Fig. 8�a�
is shown in Fig. 8�b�. The middle and two external layers of
this torus are attracting. These layers are composed by the
unstable manifolds of the saddle cycles S0, S1, and S2. The
two intermediate layers, formed by the unstable manifolds of
two unstable nodes R1 and R2, are repelling.

With further change of parameter a along the direction
B, one can observe the reverse transition from a five-layered
torus to a three-layered torus. As illustrated in the phase por-
trait of Fig. 9, this transition involves the transformation of
the unstable nodes R1 and R2 in Fig. 8 into the unstable focus
cycles F1 and F2, as the real multipliers of the unstable nodes
become complex. As a result the two intermediate layers
disappear, and we are left with a three-layered torus with two
embedded focus cycles.

In the first scenario to be presented, the three-layered
torus is destroyed through a saddle-node bifurcation: the
stable node N and the saddle S0 merge and disappear as we
leave the resonance tongue �10. Our numerical experiments
indicate that this leads to an abrupt transition from periodic

FIG. 6. Three-layered torus before the second pitchfork bifurcation.
�=0.2437 and a=15.3. Magnification of part of the phase portrait �b�. Note
how the manifolds of the three-layered torus fold as they approach the
points of the stable node. For the two outer layers, this folding produces a
loop or cusp torus �Ref. 10�.

FIG. 7. Birth of the five-layered torus through the pitchfork bifurcation that
occurs as the coupling parameter is reduced through the bifurcation point �

*
.

R, R1, and R2 are the unstable node period-10 cycles �the repellors�, S0 is the
saddle period-10 cycle.

FIG. 8. �a� The fully developed five-layered torus. �=0.243 65 and a=15.3.
�b� Magnified part of the phase portrait that is outlined in �a� by the
rectangle.
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to chaotic oscillations. Figures 10–12 illustrate the main
stages of this process when the parameter a is changed along
the direction B in the region �10.

Figures 10 and 11 show the phase portrait of the map
immediately before and in the point of saddle-node bifurca-
tion at the edge of the resonance tongue. Further change of
the parameter a leads to the appearance of chaotic oscilla-
tions. Figure 12 illustrates the phase portrait of the map after
the torus destruction and the transition to chaos. In the nu-
merical experiments we observe a hard transition from peri-
odic to chaotic oscillations. Note that the two saddle cycles
S1 and S2 continue to exist, and the same is true for the focus
cycles F1 and F2. As shown in Fig. 12, the unstable mani-
folds associated with these cycles are drawn into the chaotic
set.

IV. ALTERNATIVE MECHANISMS
FOR THE DESTRUCTION OF MULTILAYERED TORI

In our second scenario, the five-layered torus is de-
stroyed through the formation of a three-layered torus with
an “unstable node-stable node” structure. The five-layered
torus first transforms into a three-layered torus as described

in Figs. 8 and 9, i.e., the unstable node cycles R1 and R2 turn
into the unstable focus cycles F1 and F2 �see, for example,
Fig. 9� as the real multipliers of the unstable nodes become
complex. This leads to the destruction of the two intermedi-
ate layers. Hereafter, the unstable focus cycles F1 and F2

transform into unstable nodes R1 and R2 �see Fig. 13� as their
the multipliers again become real. This leads to the formation
of unstable node-stable node loops. Figures 13 and 14 illus-
trate the phase portraits of the map after this transition. Fig-
ure 13 shows a three-layered torus with “unstable node-
stable node” loops, and Fig. 14 illustrates these loops
separately.

As we can see from Fig. 14, the nonleading manifolds of
the unstable nodes R1 and R2 form loops that fold near the
points of the stable period-10 cycle. Finally, the unstable
nodes R1 and R2 merge with the saddles S1 and S2 and dis-
appear. This leads to the destruction of the two external lay-
ers. However, the middle layer continues to exist. When we
leave the resonance tongue, this layer is destroyed through a
saddle-node bifurcation according to the classic scenario.

In a third scenario, which is observed if we leave the
resonance tongue �10 along the direction C, the three-

FIG. 9. �a� Phase portrait of the map after destruction of the two interme-
diate layers through transformation of the unstable nodes R1 and R2 into
unstable focus cycles. �=0.243 62 and a=15.3. �b� Magnified part of the
phase portrait outlined by the rectangle in �a�.

FIG. 10. �a� Phase portrait of the map near the saddle-node bifurcation
boundary of the resonance zone �10. �=0.243 59, and a=15.3. �b� Magni-
fied part of the phase portrait outlined by the rectangle in �a�.
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layered torus is destroyed through a homoclinic bifurcation
in the following way: first, two external layers are destroyed
when the stable and unstable manifolds of the saddle peri-
odic orbit become tangent to each other. The middle layer
continues to exist. Finally, the middle layer is destroyed in a
similar manner. Figures 15 and 16 demonstrate the main
stages of this process.

Figure 15�a� shows the phase portrait of the map before
the first homoclinic tangency. The external layers of this
torus are formed by the a saddle-stable focus connection.
These layers contain loops �Figs. 15�b� and 16�a��. The
middle layer is composed by the nonleading unstable mani-
fold of the unstable node period-10 cycle. Before its destruc-
tion the middle layer transforms from a nonsmooth torus to a
loop torus via the usual cusp torus.10

V. MULTILAYERED TORI IN ENSEMBLES
OF GLOBALLY COUPLED MAPS

Let us hereafter consider an ensemble of N globally
coupled, identical maps,22–24

xk�i� = �1 − ��f�xk−1�i�� +
�

N


j=1

N

f�xk−1�j��, k = 1,2, . . . ,

where k is a discrete time step and i represents the number of
a particular oscillator in the ensemble �i=1,2 , . . . ,N�. xk�i�
describes the dynamics of the individual map, and � is the
coupling constant.

The concept of an ensemble of globally coupled oscilla-
tors is complementary to the concept of coupled map lattices
�CMLs�.25 Where the oscillators in a coupled map lattice are
considered to be arranged in a regular spatial structure and to
interact with their immediate neighbors, an ensemble of glo-
bally coupled maps disregards the spatial organization and
considers all oscillators to interact with each other. In the
biological realm, a CML may be used, for instance, to model
interacting muscle cells in the heart26 or interacting insulin
producing cells in the pancreas27 where local coupling via
gab-junctions between the cells causes different forms of
electrochemical waves to propagate across the tissue. An en-
semble of globally coupled oscillators, on the other hand, can
be used to model interacting nerve cells in the brain where

FIG. 11. �a� Phase portrait of the map at the saddle-node bifurcation.
�=0.243 58 and a=15.3. �b� Magnified part of the phase portrait outlined by
the rectangle in �a�.

FIG. 12. �a� Phase portrait of the map after the torus has been destroyed.
�=0.2435 and a=15.3. �b� Magnified part of the phase portrait outlined by
the rectangle in �a�. Note that both the saddle cycles S1 and S2 and the focus
cycles F1 and F2 continue to exist.
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synchronization of the spiking dynamics for clusters of cells
is thought to represent the problem underlying Parkinsonian
and other forms of tremor.28

In such ensembles, the multimode dynamics of the un-
coupled system is often suppressed by a tendency of the
oscillators to entrain. For certain values of the parameters a
and �, the state of full synchronization may attract most tra-
jectories. For other parameter values, however, the ensemble
may split up in two or more clusters such that oscillators
within a given cluster operate in synchrony, but not in syn-
chrony with oscillators in other clusters. Two-cluster dynam-
ics, for instance, may be described by the equations

xk = f�xk−1� + p��f�yk−1� − f�xk−1��;

yk = f�yk−1� + �1 − p���f�xk−1� − f�yk−1��, k = 1,2, . . . , �2�

f�x� = x�1 − x��ax2 + �b2 − da�x + c� ,

where p �p� �0,1�� defines the distribution of oscillators be-
tween the two clusters. If N1 oscillators in the ensemble syn-
chronize in one asymptotic state and the remaining N2=N
−N1 synchronize in another state, then p=N1 /N2. For suffi-
ciently large values of N, p can be considered as a pseudo-

continuous variable, and the absolute number of oscillators
no longer matters for a description of the asymptotic dynam-
ics of the ensemble. p=0.5 corresponds to a symmetric clus-
ter splitting and p�0.5 represents an asymmetric splitting.
In general, one does not expect the behavior of the system to
be critically dependent on small asymmetries,24 except, of
course, that a pitchfork bifurcation in the symmetric case
�p=0.5� may be replaced by a saddle-node bifurcation in the
asymmetric case �p�0.5�. This will be illustrated in Fig. 19
below. At the same time we should emphasize that we are
now considering a situation where the coupling takes place
via the functional values of the map f�xk−1� rather than via
the argument xk−1. This distinction is sometimes referred to
as “nonlinear” rather than “linear” coupling. Finally, to relate
the observed phenomena to previous work on chaotic
synchronization,17 we shall take the coupling parameter � to
be negative. With these conditions we again observe the for-
mation of multilayered tori, but the mechanisms of destruc-
tion of these tori differ from the scenarios, that we observed
for the map �1�.

Figure 17�a� shows a chart of the dynamical modes in
the parameter plane �p ,a� for the two-cluster system �2� with
�=−1.4. The domain of stability for period-2 cycle is de-
noted as �2. This domain is bounded to both sides by a curve

FIG. 13. Three-layered torus with the “unstable node-stable node” loops.
�=0.244 75 and a=15.3. �b� Magnified part of the phase portrait outlined by
the rectangle in �a�.

FIG. 14. “Unstable node-stable node” loop. �=0.244 75 and a=15.3. �b�
Magnified part of the phase portrait outlined by the rectangle in �a�.
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N− of a period-doubling bifurcation. The upper boundary of
the domain �2 is the Neimark–Sacker bifurcation curve N�

were an invariant torus arises from the stable period-2 cycle.
The domain �� in Fig. 17 is the region of quasiperiodicity.
Within this region one can see a large number of periodic
windows �e.g., �10, �14, �18� corresponding to various reso-
nance modes.

Let us start our bifurcation analysis by moving from the
region �2 into the region of quasiperiodicity along the direc-
tion A. Figure 18 shows a bifurcation diagram for the two-
cluster system with p=0.5. Within the region �2 the system
has a single stable period-2 cycle. On the line N� the
period-2 cycle undergoes a Neimark–Sacker bifurcation.
With further increase of the value of parameter a, the system
enters an Arnold tongue �10 with stable period-10 dynamics.
This produces a one-layered resonance torus. Right after its
formation, the stable period-10 cycle is a node.

FIG. 15. Torus destruction through a homoclinic bifurcation. �a� Phase por-
trait of the map before the first homoclinic tangency. �b� Phase portrait
immediately after the homoclinic tangency.

FIG. 16. Torus destruction through the homoclinic bifurcation. �a� Phase
portrait of the map after the external layers have been destroyed. The middle
layer continues to exist. �b� Phase portrait of the map after destruction of the
middle layer.

FIG. 17. �Color online� �a� Chart of the dynamical modes in the parameter
plane �p ,a�, �=−1.4. �2 is the domain of existence of the stable
period-2 cycle. �4,1 and �4,2 are the domains where the stable
period-4 cycle exist. �10, �14, and �18 are the regions of period-10, period-
14, and period-18 resonant dynamics, respectively. N� is the Neimark–
Sacker bifurcation boundary and �� is the domain of quasiperiodicity. N+

denotes a saddle-node bifurcation curve and N− is a period-doubling bifur-
cation curve. �b� Chart of the dynamical modes near the top of the resonance

tongue �10. N̂+ is the saddle-node bifurcation curve where the unstable node
period-10 cycle R merges with the saddle period-10 cycle and disappears.
�20 is the domain of existence of the stable period-20 cycle and �� is the
“triangle of quasiperiodicity,” bounded by the three Neimark–Sacker bifur-
cation curves N�.
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Note that the boundary of the resonance tongue �10,
similar to the boundary of region �2 �see Fig. 17�b��, con-
sists of three different bifurcation curves. The upper bound-
aries of the left and right wings denoted by N−, are curves at
which the period-10 cycle undergoes a period-doubling bi-
furcation, and the narrow middle part N� is a curve of
Neimark–Sacker bifurcation for the stable resonance cycle.
The lower boundary of �10 is the saddle-node bifurcation
curve N+.

When the system leaves the resonance tongue �10

through the boundary N�, the stable node period-10 cycle
turns into a stable focus to soon undergo a secondary
Neimark–Sacker bifurcation and become an unstable focus.
Before this happens, however, the one-layered torus has
turned into a three-layered torus through a transverse pitch-
fork bifurcation of the saddle cycle. Figures 18, 19�a�, and
19�b� allow us to follow the changes in the system’s dynam-
ics and phase portrait during these transformations. In par-
ticular, Fig. 19 illustrates the formation of the three-layered
torus. Figure 19�a� presents the phase portrait immediately
above the saddle-node bifurcation curve N+ where the two-
cluster system �2� displays an ordinary one-layered torus. In
this figure, F0 denotes the unstable nearly symmetric
period-2 focus cycle.

As a increases, the period-10 saddle cycle undergoes a
transverse pitchfork bifurcation, and a three-layered torus is
formed �see Fig. 19�b��. In the asymmetric case, p=0.4995,
the pitchfork bifurcation is replaced by a saddle-node bifur-
cation in which the unstable node R and the saddle cycle S1

are simultaneously born on the curve N̂+ �Fig. 17�b��. The
result of this alternative route to the formation of a three-
layered torus is shown in Fig. 19�c�. We note the similarity
with the phase portrait in Fig. 19�b�, but also the lack of
symmetry between the two saddle cycles S1 and S2.

Figure 20 shows the phase portrait after the second
Neimark–Sacker bifurcation. This figure again refers to the
symmetric case p=0.5. The period-10 focus has now turned
unstable and is surrounded by a region of quasiperiodic dy-
namics while both the inner and the outer layers of the three-
layered torus continue exist. Figure 20�a� provides an over-
view of the full structure, while Figs. 20�b� and 20�c�

illustrate the local behavior of the middle-layer manifold and
of one of the outer-layer manifolds, respectively.

We have observed three different ways for the destruc-
tion of the three-layered torus in our two-cluster system:

FIG. 18. Bifurcation diagram showing the transition from a stable
period-2 cycle to a quasiperiodic orbit in a Neimark–Sacker bifurcation. The
generated torus has two branches, one on either side of the diagonal. a

*
is

the point of the secondary Neimark–Sacker bifurcation.

FIG. 19. �Color online� Birth of the three-layered period-10 resonance torus
as the nonlinearity parameter a is varied. �a� Phase portrait of the map
before the pitchfork bifurcation, p=0.5 and a=27.2. �b� Three-layered reso-
nance torus, p=0.5 and a=27.26. Here F0 is the asymmetric unstable
period-2 focus cycle, F is the stable period-10 focus resonance cycle, S1 and
S2 are the saddle period-10 cycles, R is the unstable node period-10 cycle
�the repeller�. �c� Phase portrait of the map for p=0.4995 and a=27.28. In
this case R and S1 arise in a saddle-node bifurcation rather than in the
pitchfork bifurcation that occurs between �a� and �b�.
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In the first case, the three-layered torus is destroyed
through a saddle-node bifurcation when we leave the reso-
nance tongue �10 along the direction B �see Fig. 17�b��.
First, the unstable node period-10 cycle R and the saddle
cycle S merge and disappear in a saddle-node bifurcation on

the line N̂+. This bifurcation leads to the disappearance of the
middle and one external layer of the three-layered torus.

With further change of parameters along the direction B, the
one-layered torus is destroyed in accordance with the classic
scenario through a cascade of period-doubling bifurcations
of the stable resonance cycle.

The second case describes how the three-layered torus is
destroyed as we follow the direction C from the domain �10

into the region �20. Figures 21 and 22 show phase portraits

FIG. 20. �Color online� Secondary Neimark–Sacker bifurcation at the point
a=a

*
in Fig. 18. �a� Phase portrait of the map �2� after the secondary

Neimark–Sacker bifurcation. F is the unstable period-10 focus cycle. �b�
Magnified part of the phase portrait outlined by the rectangle in �a� showing
one of the external layers. �c� The middle layer of three-layered torus,
p=0.5.

FIG. 21. �Color online� �a� Phase portrait of the map before the period-
doubling bifurcation when the stable period-10 focus cycle F turns into a
stable node period-10 cycle N with negative multipliers. a=27.32 and p
=0.4992. �b� Magnified part of the phase portrait outlined by the rectangle in
�a� showing the external layer. �c� The middle layer of three-layered torus.
The nonleading manifold of the unstable node R cycle winds around the
stable node period-10 cycle instead of approaching it smoothly.
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illustrating the main stages of this process. First, the stable
period-10 focus cycle F �see Figs. 19�b� and 19�c�� turns into
a stable node N with negative multipliers. As illustrated by
Figs. 21�b� and 12�c�, the external layers contain loops, and
the middle-layer manifold winds around the stable node
period-10 point N instead of approaching it in a more uni-
form manner. With further variation of the parameters, the
period-10 cycle loses its stability as one of the multipliers
leaves the unit circle through −1, and a cycle with twice the

period arises �Fig. 22�. Here we can observe the transition to
chaos through an infinite sequence of period-doubling bifur-
cations.

In the third case the three-layered torus is destroyed
through a homoclinic bifurcation. Figure 23�a� shows the
phase portrait of the map before the homoclinic bifurcation.
The external layers of this torus are formed by the saddle-

FIG. 22. �Color online� �a� Phase portrait of the map after the period-
doubling bifurcation, p=0.4987 and a=27.32. �b� Magnified part of the
phase portrait outlined by the rectangle in �a�. Local behavior one of the
external layer manifolds. �c� The middle layer manifold. N1 and N2 are the
points of the stable period-20 node cycle.

FIG. 23. �Color online� Torus destruction through a homoclnic bifurcation.
�a� Phase portrait of the map before the homoclinic tangency. a=16.55, p
=0.4995, and �=−0.8. �b� Phase portrait of the map near the homoclinic
tangency. a=16.54, p=0.4995, and �=−0.8. �c� Phase portrait of the map
after the external layers have been destroyed through a homoclinic bifurca-
tion. The middle layer continues to exist. a=16.53, p=0.4995 and �=−0.8.

037124-11 Formation of multilayered tori Chaos 18, 037124 �2008�

Downloaded 10 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



node connection. First, two external layers are destroyed in a
homoclinic bifurcation �Figs. 23�b� and 23�c��, and as the
parameter a decreases the middle layer is destroyed in a
similar manner.

VI. CONCLUSION

The problem of torus destruction was first discussed in
the classic paper by Afraimovich and Shilnikov.5 They out-
lined three possible routes for the breakdown of a two-
dimensional torus. For all scenarios the starting point was a
smooth torus in a resonance region where a stable periodic
orbit �a node� coexists with an unstable orbit �a saddle cycle�
of the same periodicity.

In one scenario, the unstable manifold from the saddle
cycle begins to develop wrinkles as it approaches the points
of the node. Hence, the torus becomes nonsmooth in these
points. Under variation of a parameter, as the point of opera-
tion leaves the resonance zone, nonsmoothness spreads along
the invariant manifold, and the torus breaks up into a fractal
set. In the second scenario, the unstable manifold from the
saddle cycle starts to intersect the nonleading manifold of the
node. This again produces an infinitely folded structure, and
the torus breaks down when this structure makes contact to
the stable manifold of the same saddle cycle. Finally, the
stable node may transform into a stable focus to subse-
quently undergo a sequence of period-doubling bifurcations.
This again leads to breakdown of the torus. The above sce-
narios apply to systems that can be described by two-
dimensional invertible maps.

Some of the modifications that arise for noninvertible
maps were discussed in previous publications.6–9 The ab-
sence of invertibility allows the manifolds to intersect them-
selves, and for all of the above scenarios the characteristic
feature of noninvertible systems is that the wrinkling of the
manifold from the saddle cycle proceeds through the appear-
ance of an infinite series of cusp points and thereafter a series
of self-intersecting loops.10

In the present paper we considered a further extension to
the existing picture for noninvertible maps. We showed that a
two-dimensional map, representing either two coupled inter-
mittency I maps or the two-cluster dynamics of an ensemble
of a large number of globally coupled intermittency I maps
can lead to the formation of multilayered tori.

We first demonstrated how multilayered tori in the sym-
metric case arise in ordinary pitchfork or period-doubling
bifurcations transverse to the torus surface, and that they can
be observed for both linear and so-called nonlinear coupling.
In the asymmetric case, that is of relevance particularly to
the cluster formation in ensembles of many oscillators, the
pitchfork bifurcation is replaced by a saddle-node bifurca-
tion.

Next, we described three different scenarios for the
breakdown of the multilayered tori in a system of two sym-
metrically coupled intermittency maps. Although all of these
scenarios have aspects in common with the classic
Afraimovich–Shilnikov scenarios, they are clearly different
in their details. It is possible, for instance, that the inner layer

in a multilayered torus can disappear in a saddle-node bifur-
cation while the external layers form closed-loop structures
of stable and unstable cycles. It is also possible that ho-
moclinic bifurcations that destroy the torus can occur sepa-
rately for the inner and outer layers.

We have previously discussed the formation and destruc-
tion of a bilayered torus in connection with the analysis of a
piecewise-smooth model of a power electronic dc/dc
converter.12 The bilayered torus observed in that case con-
sisted of the closure of a stable focus cycle with two saddle
cycles and their connecting manifolds, and the saddle cycles,
of which one had a single and the other two unstable direc-
tions, arose through a pair of coinciding saddle-node and
border-collision bifurcations. We conclude that multilayered
tori may also be observed in time-continuous systems.

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for
Basic Research Grant No. 06-01-00811, and by the EU Net-
work of Excellence BioSim Contract No. LSHB-CT-2004-
005137.

1R. V. Buskirk and C. Jeffries, Phys. Lett. 31A, 3332 �1985�.
2J. Frøyland, Physica D 8, 423 �1983�.
3V. S. Anishchenko, Dynamical Chaos in Physical Systems �Teubner-Texte
zur Physik, Leipzig, 1999�.

4C. Reick and E. Mosekilde, Phys. Rev. E 52, 1418 �1995�.
5V. S. Afraimovich and L. P. Shilnikov, Am. Math. Soc. Transl. 149, 201
�1991�.

6C. E. Frouzakis, L. Gardini, I. G. Kevrekidis, G. Millerioux, and C. Mira,
Int. J. Bifurcation Chaos Appl. Sci. Eng. 7, 2101 �1997�.

7C. E. Frouzakis, I. G. Kevrekidis, and B. B. Peckhman, Physica D 177,
101 �2003�.

8E. Sander, Nonlinear Anal. Theory, Methods Appl. 41, 259 �2000�.
9R. Rico-Martinez, R. A. Adomaitis, and I. G. Kevrekidis, Comput. Chem.
Eng. 24, 2417 �2000�.

10V. Maistrenko, Y. Maistrenko, and E. Mosekilde, Phys. Rev. E 67, 046215
�2003�.

11Zh. T. Zhusubaliyev and E. Mosekilde, Bifurcations and Chaos in
Piecewise-Smooth Dynamical Systems �World Scientific, Singapore,
2003�.

12Zh. T. Zhusubaliyev and E. Mosekilde, Phys. Lett. A 351, 167 �2006�.
13P. Manneville and Y. Pomeau, Physica D 1, 219 �1980�.
14Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189 �1980�.
15L. Glass, M. R. Shrier, and R. Perez, Physica D 7D, 89 �1983�.
16D. Parthimos, D. H. Edwards, and T. M. Griffith, Phys. Rev. E 64, 061906

�2001�.
17M. Manscher, M. Nordahn, E. Mosekilde, and Yu. L. Maistrenko, Phys.

Lett. A 238, 358 �1998�.
18E. Ott and J. C. Sommerer, Phys. Lett. A 188, 39 �1994�.
19P. Aswin, J. Buescu, and I. Stewart, Nonlinearity 9, 703 �1996�.
20Yu. L. Maistrenko, V. L. Maistrenko, O. Popovich, and E. Mosekilde,

Phys. Rev. E 60, 2817 �1999�.
21A. Agliari, G. I. Bischi, R. Dieci, and L. Gardini, Int. J. Bifurcation Chaos

Appl. Sci. Eng. 15, 1285 �2005�.
22K. Kaneko, Phys. Rev. Lett. 17, 219 �1989�.
23K. Kaneko, Physica D 41, 137 �1990�.
24E. Mosekilde, Yu. Maistrenko, and D. Postnov, Chaotic Synchronization:

Applications to Living Systems �World Scientific, Singapore, 2002�.
25K. Kaneko, Physica D 23, 436 �1986�.
26D. Noble, A. Varghese, P. Kohl, and P. J. Noble, Can. J. Cardiol. 14, 123

�1998�.
27R. M. Santos, L. M. Rosario, A. Nadal, J. Garcia-Sancho, B. Soria, and M.

Valdeolmillos, Pfluegers Arch. 418, 417 �1991�.
28P. Tass, Phys. Rev. E 56, 2043 �1997�.

037124-12 Z. T. Zhusubaliyev and E. Mosekilde Chaos 18, 037124 �2008�

Downloaded 10 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1016/0167-2789(83)90234-8
http://dx.doi.org/10.1103/PhysRevE.52.1418
http://dx.doi.org/10.1142/S0218127497000972
http://dx.doi.org/10.1016/S0167-2789(02)00751-0
http://dx.doi.org/10.1016/S0362-546X(98)00277-6
http://dx.doi.org/10.1016/S0098-1354(00)00599-8
http://dx.doi.org/10.1016/S0098-1354(00)00599-8
http://dx.doi.org/10.1103/PhysRevE.67.046215
http://dx.doi.org/10.1016/j.physleta.2005.10.080
http://dx.doi.org/10.1016/0167-2789(80)90013-5
http://dx.doi.org/10.1007/BF01197757
http://dx.doi.org/10.1016/0167-2789(83)90119-7
http://dx.doi.org/10.1103/PhysRevE.64.061906
http://dx.doi.org/10.1016/S0375-9601(97)00934-1
http://dx.doi.org/10.1016/S0375-9601(97)00934-1
http://dx.doi.org/10.1016/0375-9601(94)90114-7
http://dx.doi.org/10.1088/0951-7715/9/3/006
http://dx.doi.org/10.1103/PhysRevE.60.2817
http://dx.doi.org/10.1142/S0218127405012685
http://dx.doi.org/10.1142/S0218127405012685
http://dx.doi.org/10.1103/PhysRevLett.63.219
http://dx.doi.org/10.1016/0167-2789(90)90119-A
http://dx.doi.org/10.1016/0167-2789(86)90149-1
http://dx.doi.org/10.1007/BF00550880
http://dx.doi.org/10.1103/PhysRevE.56.2043

