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While ideal photonic crystals would support modes with a vanishing group velocity, state-of-the-art struc-
tures have still only provided a slow down by roughly two orders of magnitude. We find that the induced
density of states caused by lifetime broadening of the electromagnetic modes results in the group velocity
acquiring a finite value above zero at the band-gap edges while attaining superluminal values within the band
gap. Simple scalings of the minimum and maximum group velocities with the imaginary part of the dielectric
function or, equivalently, the linewidth of the broadened states are presented. The results obtained are entirely
general and may be applied to any effect which results in a broadening of the electromagnetic states, such as
loss, disorder, and finite-size effects. This significantly limits the reduction in group velocity attainable via

photonic crystals.
DOI: 10.1103/PhysRevB.78.153101

The interest in slow-light phenomena has increased sig-
nificantly in recent years due to the potential applications in
areas such as optical processing,'™* quantum information
processing,>® enhanced spontaneous emission,” and
sensing.®” Strongly dispersive periodic structures with di-
electric functions that vary on the length scale of the wave-
length of light can now be fabricated with impressive preci-
sion and resolution.'®!" By exploiting the close analogies
with condensed-matter theory, these so-called photonic crys-
tals can give rise to such optical phenomena as, e.g., en-
hanced Raman scattering,'? increased stimulated emission,’
superprism behavior,!* and negative refraction.'* Due to
their highly dispersive nature, photonic crystals have
emerged as excellent candidates for sources of slow-light
phenomena.!>'® However, even though ideal structures
would in principle support modes of vanishing group veloc-
ity, state-of-the-art structures have still only provided a slow
down by roughly two orders of magnitude.'>!® The limits
imposed on the minimum attainable group velocity in pho-
tonic crystals have been studied in various contexts, such as,
e.g., fabrication disorder,'®? lossy dielectrics,?! and finite-
size effects.?? It is the aim of this Brief Report to generalize
these findings and to show that they may all be presented in
the context of broadening of electromagnetic modes and the
resulting induced density of states (DOS).

The existence of photonic band gaps (PBGs) in photonic
crystals is accompanied by van Hove singularities in the
DOS near the band-gap edge, which results in a vanishing
group velocity. In one-dimension (1D) the group velocity is
inversely proportional to the density of states, while in
higher-dimensional structures it is inversely proportional to
the projected one-dimensional density of states along the
propagation direction, as in mesoscopic electron transport. A
formal proof can be given in terms of Wigner-Smith group
delay formalism, thus also applying to inhomogeneous struc-
tures of finite extension (see, e.g., Ref. 23 and references
therein). Letting g, denote the one-dimensional projected
density of states along the propagation direction of a homo-
geneous material with a dielectric function given as the av-
erage value of the dielectric function of the photonic crystal,
we identify three different regimes of interest: (i) a long-
wavelength regime, where the properties of the photonic
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crystal are independent of the detailed geometrical composi-
tion, and thus g(w)=g,, (ii) a slow-light regime, where
g(w)>g(, and (iii) a “superluminal” regime, where g(w)
<go. We stress that g(w) in all cases refers to the one-
dimensional projected density of states along the propagation
direction and that indeed this is the case whenever we speak
of the density of states. Experiments have confirmed the ex-
istence of both slow!'>~!7->* and superluminal® regimes.

Consider the dispersion relation near the edge of a photo-
nic band gap. The exact shape of the dispersion relation natu-
rally depends on the geometry and dimensionality of the
photonic crystal. However, common to all band structures is
a vanishing slope at the band-gap edge. If we expand the
band structure near the band-gap edge w(K)=w,, we thus
obtain

w(k) = wy+ alk - K)?, (1)

where « is the group velocity dispersion (GVD). Here we
have ignored any higher-order contributions to the expan-
sion. Higher-order dispersion is of vital importance for the
propagation of pulses in the slow-light regime,?® but we ig-
nore it for now as we are only interested in studying the
actual value of the group velocity. The group velocity be-
comes

vg=Re<[2—(:) =Re(2Va(w - w))), (2

illustrating the square-root divergence of the density of states
at the band-gap edge. Let us consider the effect of a finite
imaginary part of the dielectric function e=¢€"+i€" of either
of the constituents of the photonic crystal. To capture the
effect of a small imaginary part we apply standard electro-
magnetic perturbation theory as described in detail in Ref.
27. The first-order term in a perturbative expansion in the
imaginary part of the dielectric function is

o (Eli¢[E),

"2 (E|¢|E) ®)

w=

where the integral in the denominator is restricted to the
region V), of the constituent containing the imaginary dielec-
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tric part. The effect is then an imaginary shift of the fre-
quency,

1
Aw=-— Eifwé’/e’, 4)
where
(E|€'|E)y,
= (5)
(E|€'|E)

is the fraction of dielectric energy localized in the corre-
sponding dielectric.’® Making the substitution wy— w,
+Aw, in Eq. (2) means that at the band edge the group ve-

locity becomes
6"
Vo= 1/ afa)oz. (6)

Despite its simplicity, this result is very general and indepen-
dent of the particular photonic crystal geometry, be it of one-,
two-, or three-dimensional nature. The result indicates that
the vanishing group velocity and the corresponding diver-
gence of the density of states is resolved in the case of a
finite imaginary part of the dielectric function. Furthermore,
the group velocity has a sublinear dependence on €” so the
reduction in the group index is significant even for small
imaginary parts of the dielectric function. In deriving this
result we have of course assumed that the slow down is
achieved at the band edge, where ideally vg=0. Other
schemes exist for achieving slow-light within a flattened
band, wherein the group velocity is nonzero.?’ However, in-
cluding such a term in the previous derivation merely adds
an additional term to Eq. (6) inside the square root and as
such simply serves to increase the lower limit of the attain-
able group velocity. Due to the effects on pulse broadening,
much attention has been devoted to finding structures with
low group velocity dispersion in the slow-light regime.0-3!
Interestingly, our analysis reveals that such structures have
the additional benefit of reducing the minimum attainable
group velocity. Indeed, in the limit of vanishing GVD our
analysis shows that the group velocity attains the ideal value
of zero provided that any higher-order dispersion is negli-
gible. Alternatively, we may consider the effect of €’ as a
finite broadening of the order €'w of the electromagnetic
modes.”” Thus, any effect causing such lifetime broadening
of the modes is subject to a similar analysis as just described
and will thus increase the minimum group velocity as the
square root of the finite linewidth of the broadened modes.
This very general analysis applies to any photonic crystal
geometry, and any effect of lifetime broadening, such as,
e.g., loss, disorder, or finite-size effects. Of course, the analy-
sis is based on a perturbative approach and as such is only
applicable in the case of small perturbations of a perfect
photonic crystal. In the limit of strong disorder, for example,
Anderson location will significantly alter the delay-time
statistics of the photonic crystal.3>33 In this analysis we limit
ourselves to the case where the mean-free path is sufficiently
long so that the concept of group velocity is meaningful.
In passing, we note that another effect of the broadening
of the modes is that a density of states is induced within
the band gap. The induced density of states midgap is gpgg
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FIG. 1. (Color online) (a) Photonic band structure of the Bragg
stack. The real parts of the k vectors are shown in blue, while the
imaginary parts are shown in red, with maxima inside the PBGs.
The dashed lines indicate the case where the conductivity of the
dielectric solid is nonzero. The photonic band gaps are indicated by
yellow shading. (b) The corresponding density of states with the
case of nonzero conductivity shown in red. The dashed horizontal
line indicates the density of states of a homogeneous material with
e=(a € +asrey)/ A.

« €'/ (Aw)?, where Aw is the width of the gap.?” The result of
this is that superluminal group velocities are attained within
the band gap, wherein the perturbative analysis reveals that
v, 1/€".

In the following we support these general findings by two
illustrative examples, where the source of the broadening is a
finite conductivity of the dielectric solid of an air-dielectric
structure. We first consider the simple case of a Bragg stack
with layers of width a;=0.8A and a,=0.2A for air and di-
electric, respectively, where A is the lattice constant. We take
€,=1 for air and assume that the dielectric solid can be de-
scribed by a frequency independent real part €,=9 of the
relative dielectric function. The imaginary part is modeled as
&,=0/(€w), where o is the conductivity of the dielectric
and €, is the vacuum permittivity. This is similar to the
Drude model for the optical response of metals and is chosen
so that the Kramers-Kronig relations are fulfilled.

In Fig. 1 we show the band structure and corresponding
density of states of the Bragg stack for the two cases of zero
and nonzero conductivity of the dielectric solid, calculated
using exact analytical expressions.>* At zero conductivity we
note that two photonic band gaps exist, where there are no
states with finite real k values. These PBGs are caused by the
complete destructive interference of transmitted and reflected
waves at each layer of the Bragg stack. The loss caused by
the nonzero conductivity makes the destructive interference
incomplete, and the PBGs are no longer fully developed.
Consequently, a density of states is induced in the band gap,
and the divergence of the density of states at the band-gap
edge is resolved. The effect of this is twofold. First, the
group velocity at the band edge acquires a finite value larger
than zero because now g # %, and second, the group velocity
inside the PBG attains superluminal values larger than ¢ be-
cause in this region g<<g,. We stress that while the group
velocity in the superluminal regime may exceed the speed of
light in vacuum, this implies no loss of causality but is rather
due to strong reshaping of the optical pulse, as discussed, for
example, by Biittiker and Washburn.?>
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FIG. 2. (Color online) (a) Group velocity as a function of fre-
quency for three different values of the dimensionless parameter s
=0/ (2mcey) characterizing the conductivity of the dielectric solid.
The solid black line corresponds to the case of zero conductivity.
The dashed horizontal line indicates the group velocity of a homo-
geneous material with e=(a;€,+a,€5)/A. (b) The minimum group
velocities of the dielectric and air bands of the first PBG, and the
maximum group velocities of the first and second PBG. All are
shown as a function of the dimensionless conductivity. The dashed
black lines indicate fits to the numerical data of the form Avs for
the minimum group velocities and of the form A/s for the maxi-
mum group velocities. The inset shows the geometry of the Bragg
stack.

In Fig. 2(a) we show the group velocity as a function of
the normalized frequency, for three different values of the
dimensionless parameter oA/(27cey), characterizing the
loss of the dielectric solid. To calculate the group velocities
we use the definition v,=dw/d(Re[k]), which yields the
same results as the formal definition v,=Re(dw/dk).*® Even
for a low value of s=0.01, we find that the group velocity no
longer drops below approximately 1/80th of the speed of
light in vacuum, and for s=0.1 the minimum group velocity
is one-tenth of the speed of light in vacuum. Because of the
lower overlap of the electromagnetic field with the dielectric
solid in the air bands, the effect of loss on the group velocity
is less pronounced for these bands. While the value of the
minimum group velocity is clearly highly dependent on the
conductivity, the frequency w, at which the group velocity is
at its minimum remains nearly constant except for a very
slight redshift at high values of the conductivity. In Fig. 2(b)
we show the maximum and minimum values of the group
velocity as a function of the dimensionless conductivity. The
maximum values of the group velocity follow very precisely
the 1/¢€, dependence expected from our initial analysis. As-
suming a similar distribution of the induced DOS in both
band gaps, this analysis also indicates why the maximum
group velocity falls off more rapidly in the case of the sec-
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FIG. 3. (Color online) (a) Group velocity as a function of fre-
quency for three different values of the dimensionless parameter s
=0A/(2mce€y) characterizing the conductivity of the dielectric solid.
The solid black line corresponds to the case of zero conductivity.
The dashed horizontal line indicates the group velocity of a homo-
geneous material with e=€;+(e;—¢€)m?/ A% (b) The minimum
and maximum group velocities as a function of the dimensionless
conductivity. The dashed black lines indicate fits to the numerical
data of the form Avs for the minimum group velocities and of the
form A/s for the maximum group velocities. The inset shows the
geometry of the photonic crystal.

ond narrower band gap. The minimum group velocity is
found to follow almost exactly the expected y'€5 dependence.
We note again that the dependence of the minimum group
velocity on loss is less pronounced for the air band due to the
smaller overlap of the electromagnetic mode with the lossy
dielectric. We have verified that these simple scaling laws of
the minimum and maximum group velocities hold for any
parameters of the Bragg stack and also in the case of oblique
incidence.

We next consider a two-dimensional photonic crystal con-
sisting of dielectric cylinders of diameter d/A=0.55 sur-
rounded by air and arranged in a square lattice with lattice
constant A. We take €,=(3.88)” for the dielectric cylinders,
corresponding to silicon, and model the loss via the Drude
model, as for the Bragg stack. We consider normal incidence
of TM modes. As for the Bragg stack, the effect of loss is to
induce a density of states in the PBGs of the structure. The
dispersion relations are calculated using the transfer-matrix
method.?” In Fig. 3(a) we show the group velocity as a func-
tion of normalized frequency for increasing values of the
dimensionless conductivity. The results shown are for fre-
quencies near the first TM photonic band gap. Similar trends
are seen for the 2D photonic crystal as for the Bragg stack,
namely, that the density of states induced by the finite con-
ductivity of the dielectric resolves the divergence of the den-
sity of states at the band-gap edge, thus causing v, >0 at this
point. Also, superluminal group velocities are attained inside
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the photonic band gap. In Fig. 3(b) the minimum and maxi-
mum group velocities are shown as functions of the dimen-
sionless conductivity. As for the Bragg stack, the maximum
and minimum group velocities are approximated very pre-
cisely by 1/¢€, and \/?2’ dependencies, respectively, support-
ing our conclusion that these scalings are indeed universal
for any geometry, and even dimensionality, of the photonic
crystal.

In this Brief Report, we have for simplicity focused on
conductivity as the cause of the smearing of the density of
states. However, it is clear that any effect leading to a finite
broadening of the electromagnetic states will result in a simi-
lar scaling of the minimum attainable group velocity with the
order of the broadening. This includes loss, disorder, finite-
size effects, etc. and consequently imposes significant limits
on the minimum group velocities attainable via photonic
crystals. Even in the absence of other broadening mecha-
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nisms, absorption will inevitably be present and thus repre-
sents the ultimate limiting factor on the attainable reduction
in group velocity. In closing, we note that while we have
focused our attention to photonic crystals, the analysis pre-
sented in this Brief Report applies equally well to any slow-
light scheme based on band-structure effects, such as, for
example, coupled resonator waveguides, where it has been
shown that lattice disorder may severely limit the attainable
reduction in group velocity.?®

This work was financially supported by the Danish Coun-
cil for Strategic Research through the Strategic Program for
Young Researchers (Grant No. 2117-05-0037) as well as the
Danish Research Council for Technology and Production
Sciences (Grants No. 274-07-0080 and No. 274-07-0379).
The work has been performed in the frame of the Villum
Kann Rasmussen Centre of Excellence NATEC (Nanophoto-
nics for Terabit Communications).

*asger@mailaps.org
V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson,
Nature (London) 431, 1081 (2004).

2K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E.
Northup, and H. J. Kimble, Nature (London) 436, 87 (2005).

3R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L.
H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G.
Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, Nature
(London) 441, 199 (2006).

4T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H.
Taniyama, Nat. Photonics 1, 49 (2007).

B. Julsgaard, J. Sherson, J.-I. Chirac, J. FiuraSek, and E. S.
Polzik, Nature (London) 432, 482 (2004).

6J. L. O’Brien, Science 318, 1567 (2007).

7P. Lodahl, A. F. van Driel, 1. S. Nikolaev, A. Irman, K. Over-
gaag, D. L. Vanmaekelbergh, and W. L. Vos, Nature (London)
430, 654 (2004).

8N. A. Mortensen and S. Xiao, Appl. Phys. Lett. 90, 141108
(2007).

°J. Pedersen and N. A. Mortensen, Appl. Phys. Lett. 91, 213501
(2007).

19M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch,
and C. M. Soukoulis, Nature Mater. 3, 444 (2004).

1S, A. Rinne, F. Garcia-Santamaria, and P. V. Braun, Nat. Photo-
nics 2, 52 (2008).

12J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W.
Wong, Opt. Lett. 31, 1235 (2006).

I3H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura,
T. Sato, and S. Kawakami, Phys. Rev. B 58, R10096 (1998).

4M. Notomi, Phys. Rev. B 62, 10696 (2000).

ISM. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi,
and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).

16y A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab,
Nature (London) 438, 65 (2005).

TH. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Kor-
terik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev.
Lett. 94, 123901 (2005).

18H. Altug and J. Vu¢kovi¢, Appl. Phys. Lett. 86, 111102 (2005).

195, Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, Phys. Rev.
Lett. 94, 033903 (2005).

201, O’Faolain, T. P. White, D. O’Brien, X. D. Yuan, M. D. Settle,
and T. F. Krauss, Opt. Express 15, 13129 (2007).

21D, Hermann, M. Diem, S. F. Mingaleev, A. Garcia-Martin, P.
Wolfle, and K. Busch, Phys. Rev. B 77, 035112 (2008).

22]. M. Bendickson, J. P. Dowling, and M. Scalora, Phys. Rev. E
53, 4107 (1996).

23P. W. Brouwer, K. M. Frahm, and C. W. J. Beenakker, Phys. Rev.
Lett. 78, 4737 (1997).

24R. S. Jacobsen, A. V. Lavrinenko, L. H. Frandsen, C. Peucheret,
B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. I. Borel, Opt.
Express 13, 7861 (2005).

25C. Spielmann, R. Szipécs, A. Stingl, and F. Krausz, Phys. Rev.
Lett. 73, 2308 (1994).

2R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N.
Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, Opt. Ex-
press 14, 1658 (2006).

2IN. A. Mortensen, S. Ejsing, and S. Xiao, J. Eur. Opt. Soc. Rapid
Publ. 1, 06032 (2006).

287 D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic
Crystals (Princeton University, Princeton, NJ, 1995).

2M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J.
D. Joannopoulos, Phys. Rev. Lett. 92, 063903 (2004).

30D. Mori and T. Baba, Opt. Express 13, 9398 (2005).

311 H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. L.
Borel, Opt. Express 14, 9444 (2006).

32T, Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature (Lon-
don) 52, 7131 (2007).

3 A. A. Asatryan, P. A. Robinson, L. C. Botten, R. C. McPhedran,
N. A. Nicorovici, and C. Martijn de Sterke, Phys. Rev. E 60,
6118 (1999).

3 K. Kim, H. Yoo, D. H. Lee, and H. Lim, Waves Random Com-
plex Media 16, 75 (2006).

35M. Biittiker and S. Washburn, Nature (London) 422, 271 (2003).

36]. D. Jackson, Classical Electrodynamics (Wiley, New York,
1999).

37]. B. Pendry and A. MacKinnon, Phys. Rev. Lett. 69, 2772
(1992).

3S. Mookherjea and A. Oh, Opt. Lett. 32, 289 (2007); S.
Mookherjea, J. S. Park, S.-H. Yang, and P. R. Bandaru, Nat.
Photonics 2, 90 (2008).

153101-4



