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Plasma dynamics in cylindrical geometry, with many well diagnosed experiments in operation
worldwide, is of fundamental interest. These linear machines can provide an unique testing ground
for direct and detailed comparisons of numerical simulations of nonlinear plasma dynamics with
experiments. Thus, it is possible to assess the reproductive and predictive capabilities of plasma
simulations in unprecedented detail. Here, three-dimensional global fluid simulations of a
cylindrical magnetized plasma are presented. This plasma is characterized by the existence of
spatially localized sources and sinks. The traditional scale separation paradigm is not applied in the
simulation model to account for the important evolution of the background profiles due to the
dynamics of turbulent fluctuations. Furthermore, the fluid modeling of sheath boundary conditions,
which determine the plasma conditions, are an important ingredient to the code presented here. The
linear properties of the model equations are studied and are shown to agree well with experimental
observations of linear drift modes. The fully nonlinear simulations are characterized by turbulent
fluctuations, which are dominated by low mode numbers in the large radial pressure gradient region.
In the far plasma edge, the fluctuations display an intermittent character due to convection within
radially extended spatiotemporal potential fluctuations. This paper reports on the model and general
code results, while the detailed comparison to a specific experiment is left to a follow-up paper.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2829603�

I. INTRODUCTION

Magnetized plasma in a cylindrical geometry is probably
the most basic configuration for magnetized laboratory
plasma devices. Typical examples are KIWI,1

MIRABELLE,2 LAPD �Large Plasma Device�,3 the Auburn
ALEXIS device �Auburn Linear Experiment for Instability
Studies�,4 SLPM �Santander Linear Plasma Machine�,5

CSDX �Controlled Shear Decorrelation Experiment�,6,7 and
VINETA,8 to name only a few. The dynamics in these kind
of plasma experiments is dominated by the presence of
plasma sources and sinks. The sinks are usually localized at
one axial end of the machine, where the magnetic field lines
of the external magnetic field are in contact with material
interfaces. The dynamical equilibrium between source and
sink regions includes parallel plasma flow from the sources
to the sinks. These flows are comparable in nature to similar
parallel flows existing in the so-called scrape-off layer �SOL�
of fusion devices, which is fueled by the transport crossing
the last closed flux surface. In many respects the SOL deter-
mines the performance of a fusion plant and sets limits to its
operation. While the basic processes of turbulence in the
SOL have been identified within the last years,9 the detailed
understanding of the interaction of the turbulence with the
dynamical equilibrium is still incomplete. Characterization
of the SOL, with the intent to later being able to influence its
dynamics, is a prerequisite for controlled operation of an
energy producing fusion power plant. However, detailed spa-
tiotemporal data for the edge and SOL of fusion devices are
difficult to obtain. Here, the smaller scale and—more
importantly—lower temperature cylindrical experiments are

in comparison generally extremely well diagnosed. Thus, the
excellent quality of the detailed data available for profiles
and fluctuations plus the relative simplicity of the cylindrical
devices with respect to geometry makes them a natural test-
ing ground for numerical simulations of global three-
dimensional �3D� plasma dynamics. Small scale linear de-
vices, together with numerical simulations, can play an
important role not only for the understanding and elucidation
of basic plasma physics processes, but also for code valida-
tion efforts, thereby also contributing to a better understand-
ing of SOL turbulence.

In this paper we present global fluid simulations of a
cylindrical magnetized plasma with cold ions. We derive the
governing equations for low frequency dynamics within the
two-fluid equations without the usual Reynolds decomposi-
tion, separating background and fluctuations. The model re-
duces to the well known Hasegawa–Wakatani equations10 in
the limit of small fluctuation amplitude and scale separation
between background and fluctuations. It is, in the linear
limit, equivalent to the models derived for linear analysis by
Ellis et al.11 and more recently by Sosenko and co-workers,12

in which a background axial current is assumed.
The paper is organized as follows: In Sec. II we derive

the basic equations in the framework of the drift approxima-
tion for the perpendicular velocities. We briefly discuss the
linear dispersion relation in slab and cylindrical geometry in
Sec. III, knowing that for cylindrical plasma devices there
exists no static equilibrium. A specific point addressed, how-
ever, will be the radial variability of parameters in the cylin-
drical case. In Sec. IV we discuss parallel and perpendicular
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boundary conditions, which are a most important ingredient
to the model. Section V is devoted to the numerical imple-
mentation and methods. We will especially discuss the im-
portance of the nonlocal terms for the evolution of the sys-
tem. In Sec. VI we present some results of our simulations
and compare with experimental findings, before summariz-
ing and discussing the results in Sec. VII.

II. MODEL EQUATIONS

While good progress has been made over the years ex-
plaining the observations in cylindrical plasma experiments
by using two-dimensional �2D� simulations, most often de-
tailed successes were limited to investigations of linear wave
motion13 or to explaining specific basic physics mechanisms,
as for example influencing and taming the weak turbulence
observed in such devices.14 Reproducing steady state high
poloidal wavenumbers or the full nonlinear behavior proves,
however, extremely difficult and finally unsatisfactory, as re-
ported recently in Ref. 6. This is thought to be due to the
missing interaction between fluctuations and profiles in the
2D modeling, which leads to changes in the dynamics and
statistics of fluctuations.15,16 Thus, our intent is to derive a
minimal model for the global development of relatively cold,
isothermal plasma in a cylindrical geometry, suited for nu-
merical solution. We therefore use a fluid description of the
plasma, starting with the continuity equations for electrons
�e� and ions �i�,

�ne,i

�t
+ � · �ne,iV� e,i� = 0, �1�

ne,i being the electron and ion densities and V� e,i being the
corresponding fluid velocities. Further, we use the ion mass
mi=M and electron mass me=m, the pressure tensor Pe,i with
Ze , i the charge number, which we will only have to use for
the ions Z=Zi. The force balance closes the isothermal sys-
tem, where we note that neglecting electron temperature
fluctuations leaves out one important mechanism to excite
drift waves,17

me,ine,i
dV� e,i

dt
+ � · Pe,i − Ze,iene,i�E� +

1

c
V� e,i � B�� = F� e,i.

�2�

Besides the electric fields and the Lorentz force, we account

for friction forces through F� e,i. From Eq. �2�, the drift veloci-

ties perpendicular to the ambient static magnetic field B�

=Bẑ are determined, as the characteristic frequencies consid-
ered are much smaller than the cyclotron frequencies
���i,e. We neglect electron inertia effects in the perpen-
dicular motion so that the perpendicular drift velocity of the
electrons is given by the E�B and diamagnetic drifts,

V� �,e =
E� � ẑ

B
+

1

�emne
ẑ � �Pe.

For the cold ions �Ti�0�, we keep the effects of ion inertia

through the ion-polarization drift V� pi,

V� pi = −
M

eZB2 ��t + �V� E�B� · �� − �i��
2 ���� .

The ion polarization drift is relevant due to its nonvanishing
divergence, i.e., the associated divergence of its current
building up polarization charge, through which it enters the
final equations, even though it is—in the usual drift
scaling—one order of magnitude smaller when compared to
the other drift velocities. The ion polarization drift also con-
tains the effects of a centrifugal force on the ions, due to
eventual rotation of the plasma. For low temperature, par-
tially ionized plasmas collisions of the ions with the abun-
dant neutral gas are relevant and lead to a polarizing ion
current. Assuming the neutrals to be at rest we write for the

friction force F� i,n=−Mni�i,nV� i. With the electric drift V� E�B as
the dominating velocity, we obtain perpendicular to the mag-
netic field

V� Ped =
M

eZB2�i,nE� �.

Quasineutrality ��pi��i� demands zero divergence of the

total current J� =ene�V� e−V� i�, which we write, separating as
usual between parallel and perpendicular dynamics, as

�� · J�� = − �� · J�� . �3�

Note that �s
2��De

2 is an equivalent formulation for �pi��i;
thus, quasineutrality is necessary for being able to use the
drift approximation for the perpendicular particle motions.
Quasineutrality does not imply that there are no large scale
fields in the plasma—it is merely a statement about the spa-
tial and temporal scales under consideration. The importance
of the nonlinear ion polarization drift becomes obvious as it
gives the time dependence of the vorticity, where we use
n=ne,

�� · � nM

ZB2

d

dt
���� = �i�� ·

nM

ZB2��
2 ���

− �� ·
nM

ZB2�i��� + ��en�U − V� .

�4�

Here we introduced d /dt=� /�t+V� E�B ·� for advection with
the E�B velocity, and U=V�,i and V=V�,e, respectively, for
the parallel ion and electron velocities. For the parallel mo-
tion we note that the friction term in Eq. �2� can be split into
two parts—one from collisions and one from thermal forces

�F� e=F� C+F� T�—with the collisional part originating mainly
from electron-ion and electron-neutral collisions,

F� C = ne	 J��

	�

+
J��

	�

+
m

e
�enVẑ
 , �5�

	 being the conductivity 	� �2	�=2ne2 /m
e. The thermal
forces are neglected here, as we not only consider an isother-
mal plasma, but in addition parallel thermalization is a fast
process, so that parallel temperature gradients can be ne-

glected. In the electrostatic approximation E� � =−���, we
write
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d

dt
V =

e

m
��� −

T

m
�� ln n − �ei�V − U� − �enV �6�

and for the cold ions

d

dt
U = −

eZ

M
��� −

m

M
�ei�U − V� − �inU . �7�

The parallel velocities are here not replaced by the parallel
current, as is usually done when considering fluctuations
only. Dimensionless variables are introduced by measuring
length and time with values typical for electron drift dynam-
ics, namely, the ion gyrofrequency �i=eZB /M, the sound
speed cs

2=Te /M, and the ion Larmor radius at electron tem-
perature �s=cs /�i,

l̆ =
l

�s
, t̆ = t�i, V̆ =

V

cs
,

and choose arbitrary reference levels for electron tempera-
ture, density, and magnetic field,

�̆ =
e�

Te,0
, n̆ =

n

n0
, B̆ =

B

B0
.

We introduce

�e =
�en

�i
, �i =

�in

�i
, and �� =

�ei

�i
.

Finally, we write �=��, measure masses relative to the

electron mass ��=M /m� and drop the ·̆ for the dimensionless
quantities,

Z � N ·
d

dt
� � + Z

d

dt
� = �N · ��� � � − Z�i � ��

− Z�i� + ���U − V�

+ �U − V���N + ���2� , �8�

dtN = − �V��N + ��V� + �n��2N + ��N�2� , �9�

dtU = − Z��� − �iU −
��

�
�U − V� , �10�

dtV = ����� − N� − �eV − ���V − U� . �11�

We further used N=ln n, introduced the vorticity w=�2�,
and added viscous and diffusive terms ��� and �n to the
vorticity and density equations, respectively. This set of
equations has been used in Ref. 16 to investigate the statis-
tics of fluctuations in a tokamak at the transition from closed
to open magnetic field lines and lately with constant coeffi-
cients and for immobile ions �U=0� in Ref. 18. Note that
these equations reduce to the ones used by Wakatani et al.19

in the case of vanishing parallel ion-velocity and when only
fluctuations are considered. It is further an interesting fact
that the final equations can be completely written in terms of
the logarithm of the density, signifying the fact that the den-
sity cannot take negative values.

III. LINEAR PROPERTIES

Here we discuss briefly the linear properties of the de-
rived system. For simplicity we exclude the parallel ion-
velocity from our considerations and consider the ions as
providing a fixed background.

A. Slab geometry

In slab geometry, we linearize around a constant back-
ground density with a fixed and constant density gradient as
this is the usual starting point for the analysis of the experi-
mental situation. This background is by no means special, its
only “equilibrium” properties are that in the absence of dif-
fusion any radial density profile would indeed be a solution
to the system proposed above. To further reflect the situation
commonly present in experiments we additionally consider a
constant background electron drift V0, which corresponds to
an electron current through the discharge as appropriate for
many devices. It is assumed that electron inertia can be ne-
glected, ions are at rest �U=0�, and that the system can be
reduced to effectively two dimensions by introducing one
principal wavelength k�, which dominates the axial structure.
The fields are decomposed in the perpendicular direction into
Fourier components in the standard way; i.e., Ak�

=�k�Ak�,k�
exp− i�t+ ik� ·x� with k� = �kx ,ky� being the perpen-

dicular wave vector. With 
̃=� /�� we obtain using the dia-
magnetic frequency �*=ky /Ln

iZ�k2� = �k4� + 
̃k�
2�� − n� − iV0k�n + �iZk2� , �12�

− i�n = − i�*� + 
̃k�
2�� − n� − iV0k�n . �13�

Introducing 
= �1 /����M /m�k�
2= 
̃k�

2, �1=V0k�, and b=k2, the
quadratic expression for the dispersion relation follows:

Zb�2 + ��i
�1 + Zb� + ib�Z�i + �b� − Z�1b�

− 
 �i�* + b�Z�i + �b�� + �1��* − ib�Z�i + �b�� = 0.

�14�
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Evaluating Eq. �14� close to adiabaticity, i.e., 
→�, we find
the usual drift-wave branch of the dispersion relation, with
the real frequency

�r =
�*

1 + Zk2 �15�

and the growth rate

�i =
��


�1 + Zk2�	 Zk2��

�1 + Zk2�2 + Z�1

−

k2

1 + Zk2 �Z�i + �k2� . �16�

This recovers the drift dissipative instability, which vanishes
as 
 goes to infinity, as with that the electrons are able to
instantaneously account for pressure and potential fluctua-
tions by rapid motion along the field lines. For an instability
to occur, there must also be a background density gradient
���� to provide the free energy for the growth of the fluctua-
tions. A second mechanism for instability lies in the drifting
electrons ��1�, as the drift affects the phase relation between
density and potential fluctuations. Note that the sign of the
phase shift, and by this the instability, is dependent on the
sign of V0 in relation to ��. The same dispersion relation was
derived by Ellis and co-workers11 �note that in their formula
�10b� a factor b is missing from the collisional instability
rate�.

B. Cylindrical geometry

While the linear dispersion in a doubly periodic setup is
an easy exercise, it is more difficult to solve the dispersion
relation in a cylindrical setup, where we have to find the
mode structure fitting the exact profiles and obeying bound-
ary conditions. The radial boundary conditions are generally
not well known, as they depend partly on properties of the
vessel wall. Therefore, we here use simplified boundary con-
ditions. For the density, as well as for the potential, we in-
troduce background profiles

n = n0�r��1 + ñ�

and

� = �0�r� + �̃ ,

and consequently,

� = �0�r� + �̃ .

We further introduce the following abbreviations:

� ª �r ln n0,

Vp ª �r�0,

Sp ª �r�0 = �r�1

r
�r + �rr��0.

We have, then, dropping the tilde and considering singly
charged ions Z=1,

�t� − Vp
1

r
�� = − �i� − ��V − V0��n − �� �

�t
+ �i��r�

+ �Vp
1

r
��r� − �iVp�rn − Sp

1

r
�� , �17�

�tn − Vp
1

r
�n = − �

1

r
�� − �V0��n + ��V� , �18�

�tV − Vp
1

r
�V = ����� − N� − ��e + ����V + V0� . �19�

If we neglect electron inertia, and use poloidal periodicity
�exp�im̃�, with m̃ being the poloidal mode number �to be
distinguished from electron mass m�, we can solve for a
static relationship determining the parallel electron velocity
from density and potential using Eq. �19�,

V −

Vp
1

r
�V

�e + ��

=
����� − n�

�e + ��

− V0.

Now we make the following ansatz for the fluctuating quan-
tities V, �, n, ��exp�−i�t+ ik�z+ im̃�, and find for m̃�0,
as V0 is a function of radius only:

�1 −
im̃Vp

r��e + ���
�V =

����� − n�
�e + ��

.

Defining the operators

P ª

�k�
2

��e + ��� −
im̃Vp

r

and �1ªV0k� results in

− i�̃n + i
m̃

r
��r�� − P�� − n� + i�1n = 0, �20�

from which the phase relation between density and potential
fluctuations follows:

n =
�* + iP

�̃ − �1 + iP
� �21�

with the diamagnetic frequency �*=−�m̃ /r���r� and the
Doppler shifted frequency �̃=�+ m̃Vp /r. Finally, we obtain
the following eigenproblem:

�rr� + �1

r
+ � − i�iRD��r� + 	Q�r� −

m̃2

r2 
� = 0 �22�

with

Q�r� ª
1

�̃ + i�i
	�* −

�̃��* + iP�
�̃ − �1 + iP

−
m̃

r
Sp
 , �23�

plus the rotational drag term

012307-4 Naulin, Windisch, and Grulke Phys. Plasmas 15, 012307 �2008�

Downloaded 21 Jun 2010 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



RD =
1

�̃ + i�i

Vp.

The resulting system is solved numerically using a shooting
algorithm and scanning the ��r ,�i� space looking for solu-
tions without a node in the radial domain. It should be no-
ticed that details of the dispersion depend on the extent of the
numerical domain, as it is difficult for the shooting algorithm
to converge to the same solution if the radial boundary point
is moved outwards. However, the principal results can be
summarized as follows. If the circumference at the maximum
gradient radius is large, measured in �s, the most unstable
mode can be well estimated from the linear slab dispersion
relation. For smaller circumference, up to around a mode
number of m̃�4, boundary effects are important. The depen-
dence of the drift wave frequency and growth rate on the
parallel electron-ion collision frequency has been studied in-
tensely for low mode numbers m̃�5 and Z=1,20 and is ex-
plicitly depicted in Fig. 1. Shown are the evolution of �r /�i

and �i /�i with collision frequency �ei /�i for the m̃=1 and
m̃=5 drift wave modes. The drift mode frequency �r de-
creases with increasing collision frequency. This behavior is
most pronounced for the low mode numbers with a drop in
frequency of one order of magnitude for the m̃=1 mode. In
the collisionless limit the frequency approaches the
Hasegawa–Mima limit frequency. The linear growth rate for
the m̃=5 mode increases with collision frequency. The same
finding holds true for all modes with mode numbers m̃�1.
The monotonic behavior only breaks for the m̃=1 mode, for
which the growth rate peaks at a collision frequency of
��75.

In high-density, low-temperature laboratory experiments,
the plasma has usually strong radial gradients, which alter

radially the Coulomb collision frequency. The spatial mode
structure in the azimuthal plane for an assumed radial Gauss-
ian collision profile is shown in Fig. 2. Two cases are distin-
guished: Small peak collision frequency in the plasma center
��ei /�i=20� and large peak collision frequency ��ei /�i

=600�. In the low collisionality case the drift wave eigen-
modes have a purely radial dependence, whereas in the high
collisionality case the mode develops an azimuthally bent
eigenmode structure in response to the radial variation of the
mode frequency. It was shown that the bending of the mode
structure is in excellent agreement with experimental
results.13 This finding demonstrates the strong coupling be-
tween the parallel electron dynamics and the perpendicular
drift mode frequency and is not directly indicative of a shear
flow winding up an otherwise straight radial mode structure.

IV. BOUNDARY CONDITIONS

Boundary conditions for turbulence simulations on
bounded domains are not trivial. For plasmas, no equivalent
to the no-slip boundary condition of fluid dynamics exists
and moreover, for the situation of magnetic field lines paral-
lel to the walls, considering complicated atomic physics
would be appropriate for detailed modeling. To achieve real-
istic boundary values for the electromagnetic fields, one
would have to model currents in the metal casing that sur-
rounds the plasmas as well as the outer circuitry. As we are
interested in reproducing the most robust dynamics of the
plasma system with the least complicated boundary condi-
tions we try to fix as simple as possible boundary conditions.

At one axial end �z=0� of the cylinder under consider-
ation we prescribe a plasma density source and do not con-
sider sheath boundaries there. Thus, at z=0, all dynamical
quantities are assumed to have zero parallel derivative. The
source density is prescribed to be of Gaussian shape with a
fixed parallel decay length,

S = exp�− r2�n
2�exp�− z2� , �24�

and S /n is added to the right-hand side of Eq. �9�. At the
opposite end of the cylinder �z=Lz�, the anomalous density
flux nv� is assumed to have zero axial derivative, allowing
plasma to leave the device along magnetic field lines, while

FIG. 1. Results of the linear drift wave dispersion calculations in terms of
the frequency �r and growth rate �i for variations of the electron-ion colli-
sion frequency. All frequencies are normalized to the ion gyrofrequency �i.
Shown are the results for the m̃=1 �dashed line� and the m̃=5 drift mode
�solid line�.

FIG. 2. �Color online� Spatial mode pattern for an m̃=5 mode in the azi-
muthal plane for small peak collision frequency �left� and high peak colli-
sion frequency �right�. The plasma density of the mode is shown color
coded.
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potential and velocity boundary conditions are determined by
simple Bohm sheath boundary conditions. A rather complete
discussion of sheath boundary conditions can be found in the
book by Stangeby,21 and more condensed in the article by
Post et al.22 Usually, the Bohm condition determines the cur-
rent into the sheath being regulated by the sheath entry po-
tential,

j = en	cs −
1

2�
Te

m
exp�−

e�sheath

Te
�
 , �25�

or in dimensionless quantities for the parallel electron veloc-
ity at the sheath entry

V��� = −
1

2�
� exp�− ����� . �26�

Thus, the potential regulates the outflow of the electrons,
while for the parallel ion-velocity, we assume that at the
sheath the ions reach the sound velocity; that is,

U��� = 1.

Clearly, in steady state, on average, �V���=1 is reached and
the current decays to be zero on average �unless a current is
specified via a background electron drift�, with �·� indicating
a temporal average over a long enough time. We further as-
sume that the plasma density decreases radially to a finite
level Nbd at r=a, which is determined by the source shape.
The surrounding plasma casing is taken to be an ideal con-
ductor which fixes the potential to be zero at the walls, de-
fining the reference potential to be the one that results in zero
current into the sheath, which is necessary to keep the radial
and axial boundary conditions consistent. The boundary con-
dition for the vorticity is consequentially zero as well. Paral-
lel ion and electron velocities are assumed to have zero radial
gradient at r=a. One should note that in this setup the po-
tential is determined on each plane perpendicular to the mag-
netic field independently. This a pronounced consequence;
namely, that using periodic boundary conditions in the radial
direction, would demand solving Poisson equation in three
dimensions, as a finite average polarization charge �vorticity�
is in the kernel of the Laplace operator for these boundary
conditions. The parallel variation of the potential would thus
get lost using the 2D Poisson equation to determine the po-
tential. Fixing a reference potential on the wall removes that

TABLE I. Typical parameters for three selected experiments.

Name KIWI �Ref. 26� MIRABELLE �Ref. 12� VINETA

n0 �1−7��1010 cm−3 �1−7��1010 cm−3 1�1011 cm−3

Te , eV 2 2.5 3

Ti , eV 0.03 eV 0.05 0.1

B , T 0.07 0.04 0.06

rplasma, cm 4−7 14 10

rprofile, cm 2.5 7−11 7

l� , cm 150 140 450

v� �0.1−0.2�vth,e ? 0

rvessel, cm 30 30 40

TABLE II. Input parameters for the simulations presented.

Name Value

zmax 150

xmax 30

�� =�ei /�i 4.81

�i=�in /�i 0.0553

�e=�en /�i 10.8

�=0.3�Ti /Te���i /�i� 0.0005

�n 1.3

Length unit �s 1.86 cm

Time unit 1 /�i 5 �s

FIG. 3. Snapshot of dimensionless plasma potential �top� and density �bot-
tom� at zero poloidal angle in the steady state with low amplitude fluctua-
tions. The plasma is charged up positively, as electrons get lost to the sheath
initially. In this state parallel pressure gradient and electric field balance. In
situations with turbulence, the plasma density profile is strongly disturbed
by radial anomalous transport.
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problem, and the numerical effort for the system can be kept
down to solving 2D Poisson problems only, with beneficial
consequences for the numerical complexity of the code and
its implementation in parallel.

V. NUMERICAL IMPLEMENTATION

The model equations are solved using finite difference
discretizations. The density as a strictly positive definite
quantity is implemented in terms of its logarithm, thus avoid-
ing numerical problems of the density falling below zero in
cases of steep gradients forming in the simulations, which
lead to numerical oscillations �also known as ringing or over-
shooting�. The parallel derivatives are implemented as
fourth-order centered finite differences. All nonlinear terms
are formulated in terms of Poisson brackets

�a,b� =
1

r
�ra��b − �rb��a

and the Arakawa discretization23 is used, which reflects the
conservation properties of the Poisson bracket structure.

The coordinate singularity of the cylindrical grid with
spacing ��r ,�� ,�z� at r=0 is avoided by using a staggered

grid with allocation points at xi= i�r+0.5�r. Boundary con-
ditions are implemented by using ghost-points: One ghost-
point radially and two ghost-points in the z direction. The
numerical resolution is �nx ,ny ,nz� points in the correspond-
ing directions. To further avoid unreasonably short time-
steps as a consequence of satisfying the Courant–Friedrichs–
Levy condition for r��→0 as r→0, we keep only modes
with m�0.25nyr /r0. Modes with larger mode numbers are
removed in the implicit part of the time-step. The time-
stepping scheme is a third-order embedded gear method, also
know as a stiffly stable scheme, following the layout by
Karniadakis.24 The scheme uses operator splitting, treating
all terms on a explicit basis besides the dissipative ones,
which are stepped forward in time using an implicit scheme.
The implicit scheme demands solving a Helmholtz equation,
which is done using fast Fourier transform in the periodic
poloidal direction and solving the remaining tridiagonal ma-
trix by a direct method. The same solver is used to determine
the potential from the vorticity, where it is appropriate to
note that the first term of the left-hand side of the vorticity
equation �8� is evaluated in an iterative manner. This combi-
nation of spatial and temporal discretization has been tested
in Naulin and Nielsen25 and compared favorably with spec-
tral as well as with essentially nonoscillatory schemes.

All simulations are initialized by using a constant back-
ground density and zero parallel velocities. The initial time-
step then needs to be about a factor of 10 shorter compared
to the time-step during the developed simulations due to
large gradients developing in the initial conditions at the
sheath entry. Therefore, the simulations are usually started up
with a short time-step running to one or two sound transit
times ttrans=L� /cs. The simulation is then stopped and subse-
quently restarted from that output file for different param-
eters and importantly with a larger time-step.

VI. SIMULATION RESULTS

The 3D simulations are run for a variety of parameters in
the range indicated by three typical cylindrical experiments,
whose relevant parameters can be found in Table I. Detailed
parametric scans as well as comparison to a specific experi-
ment will be reported in a follow-up paper.

We report here on simulations performed for VINETA
parameters using for the numerical simulations a grid of 32
�64�16 points in radial, azimuthal, and parallel directions,
respectively. In the following, the most important properties

FIG. 4. Snapshots of ion �top� and electron �bottom� velocities normalized
to the ion sound speed at zero poloidal angle in the steady state with low
amplitude fluctuations. Both ions and electrons accelerate towards the
sheath entry. Both velocities develop self-consistently and balance on aver-
age in steady state as the net current falls to zero average.

FIG. 5. �Color online� Temporal evolution of the total energy as semiloga-
rithmic representation. The vertical bars indicate the time instants for the
spatiotemporal plots of plasma density fluctuations, Fig. 8.
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of a simulation run are reported. Input parameters correspond
to a linearly magnetized high-density, low-temperature labo-
ratory experiment, in which the peak plasma collisionality is
high compared to the ion gyrofrequency. The list of relevant
input parameters is compiled in Table II.

Initially, the density in the numerical simulation volume
is constant and parallel velocities increase axially from 0 to 1
at the sheath entry. The plasma density increases in the
source region close to the axially first grid-point. While the
parallel pressure gradient pushes the electrons out and to-
ward the end plate, the plasma charges up positively in the
plasma source region. This in turn slows down the parallel
electron motion until a steady state is reached by which the
plasma is expanding roughly with ion sound speed toward
the target plate. In this phase, steep gradients appear tran-
siently at the sheath and fast oscillations occur in the simu-
lation, which are due to the fact that the parallel force acting
on the electrons is not yet balanced. In this case, the sub-
system

�t� = − ��V and �tV = ���� �27�

dominates the dynamics, with high frequencies present due
to the large ratio of ion over electron inertia. Consequently,

the time-step has to be very small until a state is reached
where the parallel force on the electrons is small.

After some ion sound transit times ttrans=L� /cs, the simu-
lation has reached this quieter phase. The plasma column is
filled with plasma and instead of being dominated by the
parallel processes leading to this state, the plasma dynamics
is then governed by instabilities and turbulence that develop
on the background given by the dynamical equilibrium be-
tween source and sink. The dynamical equilibrium is charac-
terized by a positively charged up plasma column in the
source region, as initially electrons are pushed out from that
region, as seen in Fig. 3, where a snapshot of the potential
and density at zero poloidal angle is shown. On average, the
parallel gradient of the potential will compensate the parallel
gradient of the logarithmic density, leading to a �nearly� van-
ishing parallel force on the electrons. In the same figure, the
density shows a significant decay from the source at z=0 to
the sheath. Ion and electron velocity profiles are increasing
axially from zero toward ion sound speed cs, as can be seen

from Fig. 4. The short time scales involved in the electron
velocity make this quantity prone to numerical distortions.
The electron parallel velocity also shows large scale parallel
structure in the region where the later instability evolves. It
should be noted that while this leads to fluctuations in the
parallel current, the time-averaged current through the cylin-
der has decayed to zero in the steady state �unless a net
voltage and a net electron drift is kept up between source and
sink region�.

The dynamics in the perpendicular direction evolves on
a longer time scale than do the processes in the parallel di-
rection, which leads to the setup of the source sink equilib-
rium. We thus describe this “fluctuation” dynamic separately,
as is also the case traditionally. Starting from noise, the most
unstable mode develops. Depending on parameters the mode
bursts into turbulence, which leads to anomalous radial trans-
port, which in turn leads to a flattening of the density profile.
The parallel velocities show a small and nearly linear in-
crease toward ion sound speed at the sheath entry, while the
plasma potential becomes positive toward the plasma axis, as
is expected from a neutral plasma source and initial electron
losses into the sheath. The temporal development of the total
perpendicular kinetic energy

FIG. 6. �Color online� Mode structure for increasingly wider source profiles,
showing the transition to higher mode numbers.

FIG. 7. �Color online� Time averaged radial profiles of density and potential �left�, with the dashed line indicating the source profile. On the right side, the
diamagnetic and E�B velocities. All data taken at z=Lz /2. The three positions indicated are the maximum gradient region, the foot of the plasma and the far
edge, from inside to outside.
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E�,tot =� �n����2d3r

is shown in Fig. 5. The energy in the linear phase is charac-
terized by an exponential growth until t�2 ms and subse-
quent nonlinear saturation in the developed turbulent state. In
agreement with the linear dispersion properties of the model,
the mode number m̃ of the linear mode destabilized depends
on the circumference measured in �s of the plasma column at
the location of the maximum density gradient. This is de-
picted in Fig. 6 for �i=0.075 and varying values of the
source width Ln, a feature that corresponds roughly to in-
creasing the magnetic field strength in experiments. The typi-
cal structure of the density and potential profiles are shown
in Fig. 7 together with the diamagnetic and E�B velocities,
showing the convex feature of the E�B velocity that devel-
ops in response to the sheath boundary conditions.

The corresponding spatiotemporal structure of the
plasma density in the radial-azimuthal �r ,� plane is depicted
for the linear and nonlinear phases in Fig. 8 �the time instants
are indicated in Fig. 5 by the two vertical lines�. Shown are
both the plasma density and its fluctuation part, which is
obtained by subtracting the azimuthally averaged density.
Note that this is in contrast to experimental procedures,
where the time average is subtracted to obtain the fluctua-
tions. In the linear phase, the radial density profile resembles
very much the initial profile and only a slight broadening of
the profile due to cross-field transport is observed. The den-
sity fluctuations reveal that a coherent drift wave mode with

mode number m̃=3 is present in this linear phase. The mode
propagates purely azimuthally with electron diamagnetic
drift, in agreement with the linear dispersion relation. In con-
trast to the linear phase, in the nonlinear saturated phase the
radial density profile is strongly broadened and perturbed
due to strong radial fluctuation-induced transport. The turbu-
lent fluctuations are so strong that they dominate the spa-
tiotemporal structure of the density profile, showing that the
assumption of small fluctuations on top of a background pro-
file clearly does not apply to this situation. However, in the
maximum radial plasma density gradient region still some
quasicoherent mode structure with small mode numbers of
typically m̃�3 is observed. This general feature of the tur-
bulent state is more pronounced in the time-averaged mode
number spectrum, shown in Fig. 9�a�. The spectrum is domi-
nated by quasicoherent modes with mode numbers m̃=1–3.
Using wavelet analysis, the temporal evolution of the mode
number spectrum is obtained �Fig. 9�b��. The dominance of
the low mode numbers is evident. They are not strictly co-
herent, but exist only transiently. This behavior is in good
agreement with experimental observations, in which it was
found that the energy is transferred between low mode num-
ber drift wave modes in weakly developed turbulence using
bicoherence analysis.27 The increased fluctuation-induced
transport in the turbulent state leads to the formation of den-
sity events, which are not only observed in the gradient re-
gion, but also in the radially far plasma edge, where the
time-averaged background density is small. The time series

FIG. 8. �Color online� Plasma density and its fluctuations in the radial-azimuthal �r ,� plane for the linear �left� and nonlinear phase �right�. The time instants
are indicated in Fig. 5 as the left and right side bars, respectively.

FIG. 9. �Color online� Temporal evo-
lution of the mode number spectrum
�a� and its time average �b� over a time
interval of 5 ms. Both spectra are
evaluated in the maximum radial
plasma density region at r=30 mm.
Note that t=0 corresponds to the blue
vertical line in Fig. 5. For the time-
averaged spectrum, results from simu-
lation and experiment are shown.
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of density fluctuations together with the corresponding prob-
ability density functions �PDFs� and frequency spectra are
shown in Fig. 10 for the maximum radial gradient region, a
position at the foot of the density gradient and the far plasma
edge, as indicated in Fig. 7. In the gradient region, the con-
tribution of the quasicoherent fluctuations is observed, which
lead to a peak in the frequency spectrum at a frequency of
f =3 kHz. The PDF is broad and has a slightly enhanced
positive tail with skewness s=0.75 and kurtosis K=0.45 in
this region where the fluctuations originate. The intermit-
tency of the fluctuations becomes much more pronounced
toward the plasma edge. There, the density PDF is strongly
skewed toward large positive plasma density fluctuation
events, which appear in the time series as sporadic distinct
density bursts with large relative fluctuation amplitude up to
8	. Consequently, the skewness and kurtosis increase to s
=0.86 and K=1.17 at the foot of the density gradient �posi-
tion B� to reach s=3.4 and K=21 for the far edge �position
C�. In the gradient region the frequency spectrum shows a
pronounced feature at f =3.2 kHz, which is ascribed to the
quasicoherent mode observed, with a decay for high frequen-
cies following a power law S� f−� with �=4.6. In the far

edge, the frequency spectrum shows no pronounced peak and
rolls off to a similar power law behavior as in the gradient
region. The lack of a pronounced peak, reflecting the time
between bursts of about a millisecond �f =1 kHz�, as is ob-
served at position B at the foot of the gradient, reflects the
weakening contribution of these events to the total spectral
energy with increasing radius. The amplitude of the large
density bursts is comparable to the amplitude of fluctuations
in the gradient region, showing that they directly convect
density from the gradient region into the far plasma edge.
The spatiotemporal dynamics of density fluctuations are plot-
ted time resolved in Fig. 11, which shows the density fluc-
tuations and overlayed the contours of the potential, which
are the streamlines of the E�B velocity. The potential struc-
tures extend radially far, providing a large radial region of
correlated E�B velocity, which is able to convect plasma
density outwards. The overall dynamics of the system re-
veals features similar to the ones found in the tokamak SOL,
where the occurrence of plasma blobs is agreed to be respon-
sible for the observed fluctuation statistics and numerical
simulations have shown the importance of background tur-
bulence interaction as well.28,29 It should, however, be noted

FIG. 10. Time series of density fluc-
tuations ñ normalized to standard de-
viation �left column�, the correspond-
ing PDFs �middle column� and
frequency spectra �right column� for
three different radial positions, as indi-
cated in Fig. 7. The top row corre-
sponds to the maximum radial density
gradient region at r=20 mm; the bot-
tom row to the far plasma edge at r
=75 mm.

FIG. 11. �Color online� Temporally re-
solved color-coded plots of density
fluctuations in the azimuthal-radial
cross section. Fluctuations of the elec-
tric potential are superimposed as con-
tour lines.
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that in the tokamak SOL the magnetic field geometry is made
responsible for the radial acceleration and far propagation of
the structures,30 a mechanism that is clearly absent here. The
presented numerical simulations will allow to investigate the
formation of the intermittent transport observed in good de-
tail. Investigations on this topic are ongoing and results will
be reported in a dedicated paper.

VII. CONCLUSION

We presented the fluid equations determining the full
dynamical evolution of background and fluctuations in a
magnetized cylindrical plasma experiment. The correspond-
ing linear dispersion relation was derived and the full set of
nonlinear equations solved numerically with appropriate
boundary conditions. The 3D simulations show good agree-
ment with the phenomenology of the experimentally ob-
tained data and thus prove useful to augment the diagnostics
of such experiments. Thus, for the first time, turbulence
simulations of a full plasma device have been performed in
which the plasma profile developed self-consistently. This
provides a testing ground for the validity of the plasma fluid
description in a bounded plasma system. More results on
specific issues, such as blob formation and increasing inter-
mittency with radial position, will be published later. The
code for the simulations is available from the authors on
request.
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