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Theoretical study of in-plane response of magnetic field sensor
to magnetic beads in an in-plane homogeneous field

Christian Danvad Damsgaard and Mikkel Fougt Hansen?®
Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech,
Building 345 East, DK-2800 Kongens Lyngby, Denmark

(Received 24 August 2007; accepted 3 January 2008; published online 25 March 2008)

We present a systematic theoretical study of the average in-plane magnetic field on square and
rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads
magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical
expressions are derived such that the sensor response and its dependence on the sensor size, spacer
layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average
magnetic field from a single bead close to the sensor shows a strong dependence on the position of
the bead and a change of sign when the bead passes the edge of the sensor in the direction of the
applied field. Analytical approximations are derived for the average field from a homogeneous
monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen
to minimize the position sensitivity of the sensor response. We discuss implications for the sensor
design and give general guidelines for optimum choices of sensor dimension, spacer layer thickness,
and bead diameter, as well as simple expressions for the average magnetic field from the beads. The
usage of the general guidelines is exemplified in the design considerations for a sensor, which is
fully covered by 100 beads and has a spacer layer thickness of 100 nm. © 2008 American Institute

of Physics. [DOI: 10.1063/1.2890754]

I. INTRODUCTION

Magnetic biosensors combine a sensitive magnetic field
sensor with a bioassay that ensures specific binding of
micrometer-sized or submicrometer-sized magnetic beads to
the sensor surface when the target biological substance, for
example virus, proteins, or DNA, is present in the sample.
Due to the direct electrical readout, the potential portability,
and potentially very high sensitivity, magnetic biosensors
have received considerable attention in the literature (for re-
views, see Refs. 1-4). A wide spectrum of sensor principles
has been suggested ranging from giant magnetoresistance
multilayer stacks,”” spin valves,' %12 magnetic tunnel
junctions,13 ordinary Hall sensors,'* and planar Hall effect
sensors.'>'® Most of these, and in particular the spin valves,
magnetic tunnel junctions, and planar Hall effect sensors,
rely on detection of the component of the magnetic field
from the beads in the plane of the sensor.

The beads generally show superparamagnetic properties
and only have a nonzero magnetic moment when they are
magnetized by either an external magnetic field or by the
magnetic field from the sensing current passed through the
sensor. Their presence is detected as a change of the field
experienced by the sensor. An ideal magnetic biosensor has
an output electrical signal, which is proportional to the
amount or concentration of the biological target. Hence, the
reliability of the magnetic biosensor depends both on the
specificity of the biological assay and the relation between
the electrical response and the bead coverage of the sensor.
Moreover, one must ensure that the result is statistically sig-
nificant either by having many parallel sensors or by increas-
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ing the sensor area. Only a few examples of calculations of
the sensor response to a specific bead coverage exist.>? !
These are mostly based on particular arrangements of either
a single bead or an array of beads, and do generally not
systematically investigate the variation in the average mag-
netic field with the bead position, the effect of beads placed
outside the sensor area, and the influence of sensor and bead
parameters.

Here, we present a systematic general study of the re-
sponse of a linear sensor with a square or a rectangular ge-
ometry to a single magnetic bead and a monolayer of mag-
netic beads in an in-plane externally applied homogeneous
magnetic field as a function of the sensor dimension, the
spacer layer thickness, the bead diameter, the bead suscepti-
bility, and the position of the beads. The square geometry is
relevant for our own work on planar Hall effect biosensors,
and the rectangular geometry is relevant for most spin-valve
sensors. We show and quantify that, for most geometries
employed in magnetic biosensors, the sensor response de-
pends strongly on the position of the magnetic bead and that
it changes sign for beads just outside the sensor area. Guide-
lines are extracted from the general analysis that should be
considered in the work on magnetic biosensors.

Il. THEORY
A. General assumptions and considerations

We assume that the response of the sensor is linear, and
that the sensor responds to the local magnetic field acting on
the sensor, i.e., that different regions of the sensor act inde-
pendently of each other. These assumptions ensure that the

© 2008 American Institute of Physics
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sensor response is given by the sensitivity times the average
magnetic field acting on the sensor. The sensor will therefore
respond to

<H> = Hext + <Hb>’ (1)

where H,, is the field acting on the sensor in the absence of
beads, and (H,) is the average magnetic field due to the
presence of magnetic beads. This field is in general for a
bead number density n(ry) given as

1
(H,) = KJ n(ro)f H,(r,ro)drdr,, (2)
% A

where A is the sensor area and H,(r,r;) is the magnetic field
strength observed in position r=(x,y,z) from a single mag-
netic bead at the position ry=(xg,y,2o)-

We assume that the magnetic beads are magnetized by a
homogeneous external magnetic field H,,,. Moreover, we as-
sume that the beads are spherical and uniformly magnetized
with a superparamagnetic response such that the field from a
bead can be represented by the dipole field,

XR3 3I:Hext i (I' - I'O)](l' - 1'0) Hext
Hb(r’ro) = 5
3 r—r|

- Ir— 1'o|3 ’
(3)

where R is the radius and y is the constant effective magnetic
susceptibility of a bead. This expression is valid when the
magnetic interactions between the magnetic beads are negli-
gible, that is, when the dipole field from neighboring beads is
much smaller than H,,. Using the dipole field from Eq. (3),
this results in the criterion

R3
X—g <1, (4)
3ry,

where r,,;, is the center-to-center distance of two beads. Due
to demagnetization effects, the effective magnetic suscepti-
bility of the beads fulfills y=3 and for many commercial
beads y=1. Hence, the criterion reduces to ”1371;>>R3- As
755 =2R, we have r;, =8R? and the criterion will be fulfilled
in most cases. Therefore, bead-bead interactions may play a
non-negligible role for close-packed beads, but for less
densely packed bead configurations they are unimportant.
Below, we will consider the beads as noninteracting.

In addition to the externally applied homogeneous mag-
netic field, the sensor itself may give rise to a magnetostatic
field from the magnetic layers in the structure, and the sens-
ing current passed through the sensor gives rise to a
self-field."” To simplify the treatment below, we will assume
that the magnetostatic field is negligible compared to Hy;.
The self-field may be significant but can be reduced by using
a lower bias current. Note that the self-field does not affect
ordinary lock-in measurements carried out by modulating ei-
ther the sensor current or the applied magnetic field if a
sufficiently high time constant is used. Thus, the results be-
low are valid for lock-in measurements or for a negligible
self-field.

J. Appl. Phys. 103, 064512 (2008)
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FIG. 1. Sketch of the system of interest: The external magnetic field is
chosen to be fixed in the y-direction. The sensor is in the xy plane and has
side lengths €w and w in the x- and y-directions, respectively. The origin (O)
of the coordinate system is in the center of the sensor.

B. Geometry and normalized variables

We consider a sensor with side lengths €¢w and w in the
x- and y-directions, respectively, and define a coordinate sys-
tem with its origin in the center of the sensor as sketched in
Fig. 1. The external magnetic field is applied along the
y-direction, H=H, y. We will restrict ourselves to only
consider the effect of the field from the beads in the
y-direction as the components of the bead field in the x- and
z-directions will typically have a negligible influence on the
sensor response for the considered sensor types.

It is convenient to introduce the dimensionless geometric

variables r=2r/w, Fy=2ry,/w, and R=2R/w. Moreover, we
also introduce the normalized magnetic field,
~ H
H=1T—"—. (5)
3XHey R
For a single bead with its center at F=(%Xy,yy,Zo), the normal-
ized y-component of the dipole field at the sensor, I
=(X,y,0), is

. 27~ 50 - (F- %)~ %

Hp\(X.5.Fo) = ——— v (6)

' [(F= %)+ (T =50 + 5]

The average field from a single bead is then
- - L -
<Hby(r())> = _f f Hby(jaj}: r())dfdj;s (7)
4€) 1)
and Eq. (2) assumes the form

<I_~Iby> = f~ ﬁ(;oxﬁby(;o))d;o, (8)
v

where we have defined ﬁ(fo)z (w/2)3n(r,). Below, we use
the notation that an averaging has been carried out over
space variables (e.g., F) when these are not explicitly men-
tioned.

C. Calculation scheme for bead monolayers

The average field acting on the sensor from one or sev-
eral beads placed at positions T; is described using Eq. (8)
with 71(F)=2,;8(F-F;). The evaluation of this sum becomes
unfeasible when many beads are involved, and in this case it
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is relevant to use a continuous representation of the bead
distribution. A continuous representation is valid when a sub-
stantial number of beads are present and when they are small

compared to the sensor dimension, i.e., when R< 1. If the
beads are large or only a few beads are present, such a rep-
resentation will only be valid for the statistical average over
many sensors. A special case occurs when the bead distribu-
tion is homogeneous, i.e., when any structure in the distribu-
tion has a length scale much smaller than the sensor dimen-
sion. In this case the average field from the beads can be
calculated from a constant distribution 7(F), which is non-
zero where the beads are placed. For a single layer of beads,
we write

w50 = 2, 9)

aR?

where aR? is the area taken up by a bead in the packed
structure. For example, for a hexagonal close-packed (hcp)
arrangement of beads, ay,,=213. Equation (8) can conve-
niently be evaluated numerically. A packing density repre-
senting another homogeneous distribution of magnetic beads
can be introduced by scaling the calculated average magnetic
field with the ratio of the packing densities. This and the
normalization of the variables makes the results of the cal-
culations generally applicable.

Finally, it is useful to discuss consequences of a homo-
geneous bead layer, which is infinite in the sensor plane and

for which R< 1. This layer can be approximated by a con-
tinuous plate of a magnetizable material. From Ampere’s
law, it is easily shown that the H-field is identical to the
external magnetic field, and hence that H,=0. Thus, an infi-
nite bead monolayer in a homogeneous external magnetic
field does not give rise to any sensor response. Dividing an
infinite plane into an area inside the sensitive area on top of
the sensor and outside this area, we obtain

(Hibnside> - _ <qutside>’ (10)

where (H™%) is the average magnetic field on the sensor
region from a homogeneous layer of beads positioned inside
the sensor region, and (H}"*'%°) is the average magnetic field
on the sensor region from a homogeneous layer of beads
positioned outside the sensor region. This relation will be
useful later for estimating the response of a sensor with
shielding layers to a monolayer of beads, as one only needs
to integrate over beads on the sensitive area of the sensor.

lll. RESULTS

Below, we present calculations of the normalized aver-
age magnetic field (H by)» first as a function of the normalized
position (X,,yy,Zo) of a single magnetic bead, and then for
monolayers of magnetic beads.

A. Single bead results

An analytical expression for the average magnetic field
from beads positioned at (¥,,0,Z,) is accessible but rather
unhandy. For a bead positioned over the sensor center, I
=(0,0,Z,), the analytical expression is

J. Appl. Phys. 103, 064512 (2008)

w
<—>

FIG. 2. Normalized average magnetic field in the y-direction from a single
bead at the position (X;,0,Z,) of a square sensor (€=1) as a function of X;
for Z,=0.1, 0.2, 0.3, 0.4, 0.5, 1 (increasing values indicated by arrow). The
sensor edge is at X,=1. The inset shows the sensor geometry; the investi-
gated values of X, are indicated by the dashed line.

1
A+2)A+ 2+

(H,(0,0,%)) = (11)
Below, we present results for square sensors (€=1). For rect-
angular sensors with €>1, the general results and conclu-
sions will be the same, but some of the exact numbers will be
slightly larger due to the reduced effect of the edges at
5[=¢.

Figure 2 shows the normalized average magnetic field
from a magnetic bead positioned in the X7 plane of a square
sensor calculated using Eq. (7). The function is symmetric
around Xx,=0. The field is negative as expected for a dipole,
and attains its minimum in the center of the sensor. The
minimum value is given by Eq. (11), which for small values
of 7y and €=1 yields (H,,(0,0,7)))=~(1/v2)(1-223). Thus,
when the beads are small compared to the sensor dimension
and placed in the XZ plane, the average magnetic field de-
pends only weakly on the separation from the sensor. For
increasing X the magnitude of the magnetic field gradually
drops towards zero.

Figure 3 shows the normalized average magnetic field
from a magnetic bead positioned in the yZ plane calculated
using Eq. (7). The function is symmetric around 5,=0. In
this case, the dependency on the position is much stronger,
and for low Z; values the average magnetic field from the
bead drops to large negative values when the bead ap-
proaches the sensor edge (y,<1) and attains correspond-
ingly large positive values when the bead is just outside the
sensor edge (¥,>1). This can be explained as follows: The
dipole field from the bead close to the sensor surface has
large positive contributions at the sensor near its magnetic
north and south poles and a large negative contribution just
below the bead (see the lower inset of Fig. 3). When the bead
is near the center of the sensor these two contributions al-
most cancel and result in a small negative average magnetic
field. When the bead approaches the sensor edge along the
external magnetic field (positive y-direction), the positive
contribution near the magnetic north pole of the bead is now
outside the sensor and the strong negative contribution just
below the bead dominates, giving rise to a negative peak in
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Jo

FIG. 3. Normalized average magnetic field in the y-direction from a single
bead at the position (0,%,,Z,) on a square sensor (¢=1) as a function of ¥,
for 7,=0.05, 0.1, 0.2, 0.3, 0.4 (dashed), 0.5, 1 (increasing values indicated
by arrow). The sensor edge is at y,=1. The circles on the curves indicate

()7mim<171by(0, Ymin»20)))- The top inset shows the sensor geometry; the inves-
tigated values of ¥, are indicated by the dashed line. The bottom inset shows
a gray-scale plot of the y-component of the dipole field just below a bead
placed in the center magnetized as indicated by the arrow. In the inset, the
dashed lines indicates the positions where the dipole field changes sign. The
y-component of the dipole field is positive in the white regions and negative
in the black regions.

the average magnetic field. When the bead is outside the
sensor, the negative contribution is reduced and the positive
contribution near the magnetic south pole of the bead domi-
nates, giving rise to a positive peak of similar magnitude in
the average magnetic field.

These peaks of opposite sign in the average magnetic
field have a crucial influence on the average magnetic field
affecting the sensor, and will therefore be investigated fur-
ther below. Let the y value corresponding to the position of
the negative peak of (ﬁby(O, ¥.,Zp)) in the ¥7Z plane be de-
noted ¥,,;,. Figure 4 shows —(ﬁby(O, Vmins20)) and V.. as a
function of Zz,.

When 7,=0.4, it is seen from Fig. 4 that the negative
peak diminishes, the value of y,;, approaches zero, and the
minimum value of the average magnetic field approaches

2

10

%))

y Ymin,

_<}~Iby(0

FIG. 4. Minimum average magnetic field as a function of Z; for a square
sensor. The dashed line corresponds to the average magnetic field from a
bead position above the center of the sensor [Eq. (11)]. The inset shows the
position of the minimum as a function of Z;,.

J. Appl. Phys. 103, 064512 (2008)

that from a bead placed at the center of the sensor [Eq. (11)].
Upon further increase of Z; beyond 0.5, Fig. 3 clearly shows
a reduction of the sensitivity of the average magnetic field to
beads placed close to the edge at y,=1.

For 7;=0.4 the peak becomes clearly distinguishable,
and it becomes meaningful to divide the sensor into an edge
region of width =2(1-7,,,) with an enhanced average sen-
sitivity and a central region with a sensitivity corresponding
to a bead placed in the center. An analysis of the data in Fig.
4 (not shown) reveals that the normalized average magnetic
field for beads at (0, Fiin>20) in this region is proportional to
)"

B. Bead monolayer results

In this section, we calculate the average magnetic field
from a monolayer with a packing constant « of beads on top
of the sensitive region of the sensor only. The average mag-
netic field can be rewritten using Eq. (8) and the variable
definitions as

_ XHoR
(Hyy (%)) == 25 1(%), (12)
3a
with

1Y rf ot

16(20)5__f f J j Hby[fafa(fo,fo’zo)]
40) 1 J_eJ )

X dFdTdz,dy,. (13)

This integral represents an averaging of the signal from a
bead as a function of its position over the sensor times the
normalized area, 4€, of the sensor.

First, we notice that when the beads are far from the
sensor compared to the sensor dimensions, the magnetic field
from a bead placed anywhere on the sensor area can be ap-
proximated by I?Ibyz—(fo)‘3 [cf. Eq. (6)]. In this limit, the
integrals in Eq. (13) can easily be evaluated and yield
1,(Z,) =4€ X (Z,)73. Thus, I,(Z,) shows the expected dipole-
like decay with a proportionality factor given by the normal-
ized area 4¢ of the bead layer.

We first present the results for a square sensor (£=1),
where edge effects are important in both the x- and
y-directions. Subsequently, we present results for rectangular
sensors with aspect ratios ¢ so large that the effects of the
edges at |¥]=¢ do not significantly overlap.

1. Approximate expressions for square sensors ((=1)

Figure 5 shows values of ,(Z;) as a function of Z;. Two
distinct regimes are found in the graph at low and high val-
ues of Zj, respectively, and fits to simple approximations are
indicated. For 7,>8.9 and 7;,>6.3 it is observed that the
response is described by 7,(Z,) =4 X (Z;)~> within 5 and 10%,
respectively. For 7,=0.25 and Z,=0.35 the response is de-
scribed by

1,(Z) = — 4.525 X log(3,), (14)

within 5 and 10%, respectively. In this regime the observed
logarithmic divergence is a result of a balance between the
contributions from beads near the edge at |jp|=1 and those
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12 T T T T

I1(50) = —4.525 x log(Z0) ™.

0.01 0.1 201 10 100

FIG. 5. Values of 11(ZO)=—(Hby(z~0))/()(Hexﬁ/3a) calculated for a square
sensor (£=1) as a function of Z;. The inset shows (Z)’I;(Z,) for large values
of 7. The dashed lines are the indicated simple analytical approximations.

near the center of the sensor. The maximum contribution
from the former scales as Z, l, whereas the contribution from
the latter is essentially constant [cf. Fig. 4 and Eq. (11)].

2. Approximate expressions for rectangular sensors
“>1)

For rectangular sensors the general behavior is the same
as for the square sensors. In this section, we will therefore
focus on estimating 1,(Z;) at values of Z,<<1, which are the
relevant ones for most experimental work.

When the sensor aspect ratio € is sufficiently large and 2
is sufficiently small, the influence of the edges at |¥]=¢ is
reduced and the sensor response becomes independent of X,
in the central region of the sensor.

We choose to write

[€ (ZO) = Icenter(z()) - €_1[edge(z()) ’ ( 1 5)

where I .ner(Zo) is the response when the effect of the edges
at |¥]=¢ is neglected and I yq(Z) represents the reduction of
the response near the edges at |¥]=¢. The factor of €' ac-
counts for the relative influence of the edges at |x]=¢. Figure
6(a) shows a log-lin plot of I .,.(Zp) calculated by using Eq.
(13) for a sensor long enough to make edge effects unimpor-

1, center (50 )
oA ®KO0

Tcenter (%0) = 1.410 — 4.589 x log(%0)

0.01 0.1 1
Z
2¢ : 0 .
LS B 7% (b) -
/8 XXXX
ol 1 X><><_><
[5) XX 5
'%0 XX‘XXXXX
=0 5 = —0.23270 XX
edge(zo) =1.829 .10 "=>4* 0]
0 1 20 2 3

FIG. 6. Values of (a) Ieyer(Zp) and (b) oq,(Zo) calculated as a function of Z,
as described in the text. The dotted lines and the written equations are
analytical approximations valid for low values of Z.

J. Appl. Phys. 103, 064512 (2008)

tant as a function of Z;,. The dependence on Z is clearly
logarithmic and is found to be described by

Lenier(Zo) = 1.410 — 4.589 X log(Z), (16)

within 5% for z;,<<0.73 and within 10% for 7;,<<0.92. Figure
6(b) shows a lin-log plot of values of I.4.(Z) calculated by
solving Eq. (15) for I.4.(Zp) for a sensor with €=3 as a
function of 7. The dependence on Z; is clearly exponential
and is found to be described by

Leage(Zo) = 1.829 X 107052%%, (17)

within 0.4% for Z;<1. These expressions make it possible to
find 1,(Z,) for any € >1 as a function of small values of Z;,. It
is stressed that this description is only accurate when the
effects of the edges at |¥|=¢ do not overlap significantly, and
that the extension of the edge effects increases with increas-
ing 7. For example, for €=1, the error made by using Eq.
(15) is about 33% for Zo=1 but less than 5% for 7,<<0.05.
For €=2, the corresponding error at Z,=1 is about 3%. A
general investigation for values of € ranging between 2 and
50 and various values of Z=1 shows that Eq. (15) with the
above expressions approximates the quadruple integral in
Eq. (13) within 3% for €£>2, and that the approximation is
better for smaller values of Z, and larger values of €.

IV. DISCUSSION

In the discussion below, we consider beads placed on top

of the sensor with 'z'o:ﬁ +1, where 7=2¢/w is the normalized
thickness of the spacer layer between the active sensor layer
and the edge of the bead. This spacer layer consists of the
surface coating and other inactive layers. We first discuss the
response of single beads and then the response of a bead
monolayer.

A. Single bead response

The detection of a single bead is best achieved when the
sensor dimension is made comparable to or smaller than the
bead dimension. For example, for =0 a bead of diameter
2R=w placed on the center of a sensor gives rise to the
average magnetic field (Hby(O,O,Z():1))=(6\f'2+€2)‘1xHext.
For the same bead, Fig. 3 indicates that edge effects in the
y-direction are small when Zy=2R/w=0.3-0.5 and become
relevant when Zz; differs significantly from this range of val-
ues. For a square sensor we have performed a detailed analy-
sis of the dependence of (H,(%,.¥,.%)) on the position
(Xo,¥o) of a bead on the sensor as function of Z, and found
that the ratio of the standard deviation of the obtained values
to their mean value attained a minimum value of 27% for
70=0.36. Thus, for 7;=0.36 the sensor response has the
weakest dependency on the position of a bead on the sensor
area. However, this ratio only varies little and assumes val-
ues below 28% for 0.30<<z;<<0.45. For 7;,=0.45 the aver-
age field becomes significantly less sensitive to beads posi-
tioned just inside the |y]=1 edge of the sensor. For 7,=<0.3
the average field becomes increasingly sensitive to beads po-
sitioned near *y,_ ;.. Moreover, the average magnetic field
changes sign when the bead passes the sensor edge and ex-
hibits a similar positive peak just outside the sensor. Thus,
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the field from a single bead can give rise to positive or nega-
tive average magnetic fields of similar magnitude depending
on its position relative to the sensor. This may be an unde-
sirable property of a sensor, and precautions must be taken to
minimize this contribution.

B. Bead monolayer response

The average magnetic field from a bead monolayer on
top of a sensor can be found by the use of Eq. (12) with
I,(Z,) found from Fig. 5 or the approximation in Eq. (14) for
low Z; values for square sensors (£=1) or from Egs.
(15)—(17) for rectangular sensors (€ > 1). We first discuss the
average field acting on the sensor when the beads are small
compared to w, and then proceed to discuss when the spacer
layer thickness and bead diameter are chosen to minimize the
peaks in the sensitivity to the position of beads near the
sensor edges at [y]=1.

An important parameter is the number of beads N, that
can fit onto a sensor in a given arrangement. This number is

£w?
Nezﬁ (183)

4¢ ([R+1)\?
=\ — (18b)
azyg\ R

(1 A
=—(—zo——) , (18¢)
a\2 w

where we have used 2R=Zyw—2t to get the last expressions.
Note that these expressions are only valid for Zo>2¢/w. For
a hcep arrangement where ahcp=2y"3, we denote the number
as Ny pep- For the arguments in the discussion, it will be con-
venient to write Eq. (12) in the forms

_ M - Ig(fo){gow — Zt}

, = (192)
FaXMext w
R

=70l (Z0) — 19b

Zole(Z) (19b)

=2€1/2a_1/216(20)N21/2. (19C)

From Eq. (19b) it is seen that the sensor response for a fixed
7 value is independent of the bead size when < R. Hence,
t should be kept well below the bead radius to avoid a sig-
nificant reduction of the average field. The maximum of the
magnitude of the normalized average magnetic field coin-
cides with that of Z5/,(Z;). An investigation for square sen-
sors using the results in Fig. 5 yields that zZ,/,(Z,) increases
with increasing Z; up to Zo=0.6, where it attains its maxi-
mum value of 0.870. Thus, for fixed values of all parameters
except 7o and 2R, the average magnetic field grows with
increasing bead diameter for z;<<0.6. For << R, the maxi-
mum corresponds to a bead diameter of 2R=0.6w and a sen-
sor coverage of three beads. A similar result is obtained for
rectangular sensors. For such large bead diameters, the as-
sumption of a homogeneous coverage is no longer fulfilled
and one should sum single bead contributions.
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TABLE 1. Calculated parameters for a square sensor (€=1) and for the
indicated values of Z; and w. For each value of w the values in the three
rows are from top to bottom: Bead diameter 2R=Zyw—2¢ (um) (top), num-
ber of beads in hcp arrangement lehcpzwz/ Z\ER2 (middle), normalized
average magnetic field from monolayer (Hyy)/(xHeq/3@)=(2R/w)I{(Z)
(bottom). The value =100 nm has been used in all calculations.

Z= 0.0125 0.025 0.05 0.1 0.2 0.4
0.05 0.3 0.8 1.8
w=5 um 11 547 321 45 9

0.059 0273 0521  0.744

0.05 0.3 0.8 1.8 3.8

w=10 um 46 188 1283 180 36 8
0.036 0.176 0.363  0.586  0.785

0.05 0.3 0.8 1.8 3.8 7.8

w=20 um 184752 5132 722 143 32 8
0.022 0.109 0.235 0.409  0.619  0.806

0.3 0.8 1.8 3.8 7.8 15.8

w=40 um 20528 2887 570 128 30 7

0.065 0.145 0.265 0432  0.635 0.816

Equation (19¢) shows that for a fixed value of Z; and a
given packing of the beads, the average field from a mono-
layer is inversely proportional to the square root of the num-
ber of beads that can fit onto the sensor. This again shows
that the signal is larger from a sensor with space for only a
few beads. It is also seen that for fixed N, «, and Z, a larger
response can be obtained for larger values of €. This reflects
that the bead diameter becomes larger for constant N, and Z;
when ¢ increases.

Even for a square sensor, the average magnetic field
from a bead monolayer has a complicated dependence on the
bead diameter (2R), spacer layer thickness (1), Z,, and the
sensor dimension (w). Only three of these four variables are
independent. Table I shows the calculations of the bead di-
ameter, the number of beads, and the normalized average
magnetic field for a range of typical choices of Z, and w. We
have chosen these parameters as w defines the (relatively
fixed) sensor geometry and Z;, determines whether edge ef-
fects are important. The calculations were carried out for a
spacer layer thickness of =100 nm. Using this table, it is
easy to relate the average magnetic field from the monolayer
to the bead size, the number of beads in a monolayer, and the
sensor dimension.

1. Beads small compared to sensor dimension

Let us first consider the case of beads that are small
compared to the sensor dimension, 7,=0.1 (2R=0.1w-21).
In this case, a close-packed monolayer of magnetic beads on
a square sensor contains more than 100 magnetic beads
(Table I).

For a fixed value of Z,, Eq. (19a) and Table I show that
the average magnetic field is significantly reduced when 2¢
becomes comparable to Zyw. The reason for this is that the
finite value of ¢ reduces the bead size corresponding to the
considered value of Z,.

For a fixed value of w, Table I shows that the average
magnetic field depends strongly on the bead size and is par-
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ticularly sensitive to the bead size for small sensor dimen-
sions. Again, the explanation is that the smaller sensor di-
mension has a lower value of Zyw and thus enhances the
negative effect of the spacer layer. For a square sensor with
w=10 um, for example, the average magnetic field is re-
duced by a factor of 2.1 when going down in bead diameter
from 0.8 um (Z,=0.1) to 0.3 wm (Z,=0.05). For w
=40 pm, the reduction going from Z;=0.1 to 7;=0.05 is
only a factor of 1.6.

For a fixed bead diameter, it is seen from Table I that the
average magnetic field varies significantly with the sensor
dimension. For 2R=0.8 um, for example, the normalized
average magnetic field from a monolayer is reduced by a
factor of 2.5 going from w=10 um to w=40 wm. However,
it should also be noted that the number of beads in a full
monolayer increases by a factor of 16.0 from 180 to 2887.

The effect of a value of €>1 is to reduce the effect of
the edges at |X;|=¢. For example, for Z,=0.1 and €>2 we
have 1,(0.1)=~4.53 and 1,(0.1)=6.00—1.74¢~". This shows
that that for a square sensor and Z,=0.1 the edges at |%y|=1
result in a reduction of the response due to a monolayer of
beads by 26% compared to an infinitely long sensor. For Z;
=0.01 the reduction is 15%. Thus, when the beads are small
compared to w only little can be gained by increasing the
sensor aspect ratio.

2. Bead size chosen to reduce edge effects at |y |=1

Different sensitivities to beads placed near the sensor
edges at [y]=1 and the sensor center may be undesirable as
the proportionality between the average magnetic field and
the number of beads will clearly be affected. However, if a
large number of beads are distributed homogeneously over
the sensor area, the sensor response is still expected to be
proportional to the bead coverage. As discussed in Sec. IV A,
the edge effects are minimized when Z,~0.36. This corre-
sponds to a bead diameter of 2R=0.36w—2¢. Equation (19a)
then yields (Hyy)=~(xHex/3a)[0.36—(2t/w)]1,(0.36). For a
square sensor we have 7;(0.36)=2.24, and for a rectangular
sensor with £=2 we have [,(0.36)=3.45-1.51€¢"". This
shows that that for a square sensor and Z,=0.36 the edges at
|Xo|=1 result in a reduction of the response due to a mono-
layer of beads by 35% compared to an infinitely long sensor.
The corresponding number of beads that can fit onto the
sensor in a close-packed layer is given by Eq. (18¢c) and is
Nenep=€(2\3)71(0.18=1/w) 2. If 1< w, Ny pep =9, which is
consistent with Table 1. Note, however, that if the beads are
large or only a few beads are present, the calculations only
describe the statistical average over an ensemble of sensors
with randomly placed beads, and single experimental obser-
vations will be better described by summing over the ob-
served positions of the individual beads. If 7 is no longer
much smaller than w, the bead size corresponding to Z,
=0.36 is reduced and more beads can fit onto the sensor. This
will be discussed further in Sec. IV C.

C. Implications for sensor design

We first emphasize the importance of reducing the num-
ber of beads placed outside the active sensor area, in particu-
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lar along the direction of the applied field, to an absolute
minimum. These beads contribute to the average field with a
positive sign and thus reduce the response to beads placed on
the sensor. This can be carried out (1) by designing a highly
specific assay that ensures that beads are only coupled to the
active area of the sensor, or (2) by using a physical shielding
of the surroundings of the sensor area that ensures that beads
outside the sensor area are kept at a distance large enough to
make their contributions to the average magnetic field negli-
gible. The required thickness T of such a shielding layer can
be obtained as follows: Eq. (10) yields that the average field
from a monolayer of beads outside the active area equals
minus the average field from a monolayer of beads placed
inside the active area. Note that this estimate is based on
results for an infinite layer of beads and therefore will over-
estimate the influence of the beads outside the sensor com-
pared to a layer of beads with finite dimensions. The shield-
ing layer results in that the beads outside the active area are
being placed at Z,>Z,. The reduction of the average mag-
netic field from beads outside the active area relative to that
from the beads inside the active area can then be estimated as
1,23)/1,(Z) [et. Eq. (190)].

For example, if Z;=0.1 for beads placed on a square
sensor, and the average field from a monolayer of beads out-
side the sensor area should be a factor of 5 lower than that
from beads inside the sensor area, we estimate from Fig. 5
that Z,~0.9 and that the shielding layer should have a total
thickness of T=z(—R=3Zjw—R=0.45w-R.

As we have seen, the choices of sensor and bead dimen-
sions also strongly influence the response of the sensor; we
found that the largest signal is obtained for beads with di-
mensions approaching the sensor size. In the literature, there
has been a drive toward reducing the sensor dimension to be
comparable to the bead dimension with the goal of detecting
single magnetic beads.”®!"!* Such sensors, although highly
sensitive, have a limited applicability as reliable magnetic
biosensors because of their sensitivity to the position of a
single or very few beads. Unless many of those sensors are
used in parallel, it is statistically very difficult to distinguish
a real signal from that due to the inevitable background of
unspecifically bound magnetic beads. The sensor and bead
dimensions should be chosen as a result of a compromise
between maximizing the average magnetic field from a
monolayer of beads and being able to assess the background
contribution from unspecifically bound beads with statistical
significance. The best compromise between sensitivity and
specificity depends on the background level and the sensor
characteristics. The results of the present work can be used to
make sensible choices of parameters based on the assay
specificity and sensor signal-to-noise ratio.

We now consider a sensor with a given spacer layer
thickness #>0 and discuss how to calculate and optimize
values of the sensor dimension (w), the bead diameter (2R),
the normalized distance from the bead center to the sensor
surface (Z;), the maximum number of beads that can fit onto
the sensor area (N;), and the average magnetic field. Below,
we consider four different cases where one or more of these
parameters are given and the rest are to be calculated and, if
possible, optimized:
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(1) Let ¢, w, and 2R be given. Then, N, is given by Eq.
(18a), Zo=(2R+21)/w, and the average magnetic field is
given by Eq. (19a).

(2) Let ¢, Z;, and 2R be given. Then, w=(2R+2t)/Z,, N, is
given by Eq. (18b), and the average magnetic field is
given by Eq. (19b).

(3) Let ¢, Z,, and N€>€a‘1(%z~o)_2 be given. Then, w is
found by solving Eq. (18c) as w:t[%’z‘o
—(at~'N,)""2]™", the bead diameter is 2R=Z,w—2¢, and
the average magnetic field is given by Eq. (19c).

(4) Let € and N, be given. To maximize the average mag-
netic field, 1,(Z;) should be maximized [Eq. (19¢)] and
hence Z;, should be minimized (Figs. 5 and 6). Using Eq.
(18b), we write Z,=2€'*(aN,)""?(R+1)/R. Thus, the
minimum value Z,=2€"?(aN,)~"? is obtained when
R>1t. For any choice of the bead diameter fulfilling
2R>?2t, the corresponding w is found by solving Eq.
(18a) and the average magnetic field is found from Eq.
(19c¢) using the approximations for low-Z, values de-
scribed in Sec. III B.

In case (4), the increase in average magnetic field is due
to the strongly increasing edge sensitivity for decreasing val-
ues of Z; (cf. Figs. 3 and 4). Note that this observation is not
in conflict with the discussion after Eq. (19b), where the
bead number was free and the maximum result for square
sensors was obtained for Z,=~0.6. Also note that a very high
sensitivity to the bead position is not desired as it can make
the average field from similar bead coverages fluctuate.

Let us consider two numerical examples for a square
sensor where we require that 100 beads fit onto the sensor in
a hcp arrangement.

First, we choose 7,=0.36 to ensure that edge effects are
minimized and hence that the average magnetic field is pro-
portional to the number of beads on the sensor. We term this
operation mode “minimum position dependency.” Using case
(3) from above, we find that w=7.92¢t, 2R=0.851¢, and
(Hp,)=—0.0232xH,y,. If ¢ is small, the sensor and bead sizes
may be unfeasible and then 7 should be increased by intro-
ducing an extra spacer layer. For example, if w=5 um, we
find that a spacer layer of thickness =630 nm and a bead
diameter of 2R=~540 nm should be used. For comparison,
t=100 nm and the same values of w and 2R yield Z,
=0.148 and a magnitude of the average field, which is a
factor of 7;(0.148)/1,(0.36)=1.7 times that obtained for Z,
=0.36.

Second, we want to maximize the average magnetic field
for our fixed choice of N;=100 using case (4) from above.
We term this operation mode “maximum response.” For ex-
ample, _if t=100 nm and we choose 2R=2 um, we find
w=(2V3N)"?2R=18.6 um,  7,=0.118, and  (Hp,)=
—0.0437xH.,,,. This value is a factor of 1.9 times that for Z;
=0.36 found above.

To illustrate the influence of the sensor aspect ratio, we
consider a rectangular sensor with €=3. Using 2R=2 um
and =100 nm as above and requiring that N,=100, we now
find w=10.7 um, Z,=0.206 and (H,,,)=—0.0526 xHy,. Thus,
in this case, a further 17% increase of the average magnetic
field can be obtained by using a rectangular sensor. It should
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be noted, however, that if € is increased further, w becomes
comparable to the bead diameter, and the continuous descrip-
tion of the bead distribution will only be valid for a statistical
average of a number of sensors.

If a shielding layer is used to minimize the average mag-
netic field from beads outside the active area, it is likely that
beads may tend to adhere near the edge and then a higher
sensitivity to beads near the edge will be disadvantageous. In
this case it may be better to choose values of R and ¢ that
minimize the edge effects. Thus, to maintain a minimum
number of beads ~100, a spacer layer should be introduced
as discussed above. Although this spacer layer reduces the
sensitivity of the sensor to the field from magnetic beads, it
may in fact improve the sensitivity when used as a biosensor
due to a reduced background from unspecifically bound
beads near the sensor edge.

On the other hand, if the sensor can be functionalized on
only the active area, and the unspecific binding of beads
outside the sensor is minimal, it will be advantageous to use
the thinnest possible spacer layer and choose a bead diameter
and sensor size that maximize the average magnetic field
according to the above guidelines. In our example above for
a square sensor, we found that this resulted in a 90% increase
of the average field relative to the case where Z,=0.36.

V. CONCLUSIONS

We have presented the first systematic study of the av-
erage in-plane magnetic field acting on square and rectangu-
lar sensors from magnetic beads as a function of the sensor
dimension w, the spacer layer thickness ¢, a shielding layer
thickness 7, the bead susceptibility y, and the bead diameter
2R. General expressions for the sensor response were de-
rived in terms of normalized variables such that the results
can easily be adapted to a given application. We have con-
sidered both the response due to a single bead and due to a
homogeneous distribution of magnetic beads in a single
layer.

We have shown that the average magnetic field can be
highly sensitive to the position of the bead on the sensor and
for 2(R+1)/w=0.3 show negative peaks for beads inside the
sensor area and positive peaks for beads outside the sensor
area. We found that in most cases, it is not justified to assume
that the sensor response is directly proportional to the num-
ber of beads. We have shown that the sensitivity to the posi-
tion of beads placed on the sensor is minimal when the bead
diameter is 2R=0.36w—2¢.

The average magnetic field from the beads and the num-
ber of beads that can fit onto a sensor has been systematically
studied and discussed as a function of the sensor dimension
and the thickness of the spacer layer.

We have presented two approaches on how to minimize
the positive contributions, and their consequences for the
sensor and bead parameters have been discussed. The first
approach assumes a highly specific and localized bioassay
that ensures that beads are only bound to the active sensor
area. The second approach does not assume a localized func-
tionalization in the bioassay but uses instead a shielding
layer to minimize the average magnetic field from beads
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placed outside the sensor area. The two different approaches
were illustrated with numerical examples.

For both approaches, the largest sensor signal from a
bead monolayer is obtained when the spacer layer thickness
t is small compared to the sensor size and the bead diameter
is comparable to the sensor size. Nevertheless, we argue that
the sensor and bead dimensions should not only be chosen to
maximize the sensitivity to the presence of magnetic beads
but also to ensure a statistical averaging, which is sufficient
for assessing the inevitable background of unspecifically
bound magnetic beads.

For a sensor required to have space for a given number
of beads, we have presented detailed guidelines for finding
the optimum sensor dimension, bead diameter and spacer
layer thickness, and for calculating the average magnetic
field from a monolayer of beads on the active area. The use
of the guidelines was exemplified for a square sensor with
t=100 nm required to have space for 100 beads with param-
eters chosen to achieve minimum position dependency (%,
~0.36) and maximum response (7, minimized), respectively.
For example, the average magnetic field in the maximum
response case was found to be 90% higher than that in the
minimum position dependency case.
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