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E. coli pan-genome microarray<p>A high-density microarray has been designed that covers the genomes of 24 Escherichia coli and 8 Shigella strains. As a proof-of-prin-ciple the genomes of four probiotic E. coli strains were analyzed and their phylogenetic relationship to other E.coli strains investigated.</p>

Abstract

Background: Microarrays have recently emerged as a novel procedure to evaluate the genetic
content of bacterial species. So far, microarrays have mostly covered single or few strains from the
same species. However, with cheaper high-throughput sequencing techniques emerging, multiple
strains of the same species are rapidly becoming available, allowing for the definition and
characterization of a whole species as a population of genomes - the 'pan-genome'.

Results: Using 32 Escherichia coli and Shigella genome sequences we estimate the pan- and core
genome of the species. We designed a high-density microarray in order to provide a tool for
characterization of the E. coli pan-genome. Technical performance of this pan-genome microarray
based on control strain samples (E. coli K-12 and O157:H7) demonstrated a high sensitivity and
relatively low false positive rate. A single-channel analysis approach is robust while allowing the
possibility for deriving presence/absence predictions for any gene included on our pan-genome
microarray. Moreover, the array was highly sufficient to investigate the gene content of non-
pathogenic isolates, despite the strong bias towards pathogenic E. coli strains that have been
sequenced so far.

Conclusion: This high-density microarray provides an excellent tool for characterizing the genetic
makeup of unknown E. coli strains and can also deliver insights into phylogenetic relationships. Its
design poses a considerably larger challenge and involves different considerations than the design
of single strain microarrays. Here, lessons learned and future directions will be discussed in order
to optimize design of microarrays targeting entire pan-genomes.
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Background
Bacterial isolates are traditionally classified into species by
bacteriological methods, and subtyped within the species by
phenotypic or genotypic characterization. For the identifica-
tion and subtyping of Escherichia coli isolates, a wide variety
of typing methods have been developed. A recent addition to
this spectrum is array comparative genomic hybridization
(aCGH) [1]. Thus, microarray hybridization is becoming a
standard procedure to evaluate the genetic content of a bacte-
rial species. For E. coli, a microarray covering the gene
content of seven strains was recently developed for the char-
acterization of emerging pathogens [2]. However, since then,
many additional E. coli strains and plasmids have been
sequenced, and the total number of genes potentially present
in E. coli strains, the so-called 'pan-genome' [3,4], increases
with each new E. coli genome sequenced. A microarray chip
approximating the complete pan-genome of E. coli would
provide optimal sensitivity to characterize isolates. Here, we
present a novel design of a microarray covering the complete
currently known genome content of 32 sequenced genomes.
Such a pan-genome microarray can be used for more precise
characterization of novel strains, including emerging patho-
gens, and can also deliver insights into phylogenetic
relationships.

Phylogenetic relationships are commonly determined by bac-
terial subtyping. Due to the complex sexual behavior of bacte-
ria, phylogenetic trees obtained with individual genes often
do not correspond to each other. Although multilocus
sequence typing is now regarded by many as a good standard
to determine phylogenetic relationships between and within
bacterial species, it does not always reflect the true genetic
diversity of members of a species; trees based on multilocus
sequence typing may, therefore, differ significantly from a
tree based on whole gene content [3]. A pan-genome microar-
ray may offer a suitable alternative to complete genome
sequencing for extracting the necessary gene content to con-
struct a realistic phylogenetic tree based on conserved gene
content. The recent technological development in sequencing
and the consequent price drop have led to an explosion of
available genome sequences and perhaps within a few years
will lead to sequencing being a faster and cost effective alter-
native to CGH microarray analysis. However, at the moment,
sequencing is still more costly and less time efficient than
hybridization experiments, while hybridization experiments
potentially also can provide information regarding gene
expression.

Here, we determine an approximate E. coli pan-genome,
based on 24 E. coli and 8 Shigella genomes available at the
time of analysis (November 2006). The inclusion of Shigella
genomes was justified as the genus division between Shigella
and Escherichia is historical but taxonomically incorrect
[5,6]. For simplicity, the Shigella and E. coli genomes are col-
lectively referred to as E. coli. From these genomes we con-
struct an E. coli pan-genome microarray. The technical

performance of this pan-genome microarray is assessed by
the correct identification of present and absent genes from
the completely sequenced genome of the MG1655 isolate of E.
coli strain K-12 (hereafter referred to as MG1655) and strain
O157:H7 EDL933 (EDL933 for short), collectively referred to
as the control strains. Pathogenic E. coli isolates are highly
overrepresented in the available genome sequences and,
hence, on our pan-genome chip. We assessed whether this
chip could nevertheless be useful for characterization of non-
pathogenic isolates by hybridizing four probiotic E. coli iso-
lates to the chip. These isolates are part of a commercially
available product (Symbioflor2) marketed for human use as
an enhancer of the immune system. The product contains via-
ble bacteria comprising at least four genotypes of commensal
E. coli. By characterizing their gene content, we investigated
the phylogenetic relationship of these isolates to other E. coli
strains.

Results
Defining the E. coli core-genome and pan-genome
For each of the considered genome and plasmid sequences
listed in Table 1, genes were predicted by EasyGene [7,8] and
translated into proteins. These were considered conserved
(belonging to the same protein gene group) if they showed a
sequence similarity of 50% or higher along at least 50% of the
full length of the protein sequence according to the similarity
criteria defined in [3] (see Materials and methods for details).
The core genome, that is, the number of conserved genes
present in all genomes, was estimated by fitting an exponen-
tial decay function by non-linear least squares (Figure 1). In
short, for each number of genomes (n), the gene content was
compared for multiple random combinations of n genomes
after which a best fit decay curve was fitted. Two slightly dif-
ferent decay functions were used: the originally suggested
decay function based on [3] (Figure 1, green line) did not fit
the data as well as a slightly modified exponential decay func-
tion (Figure 1, red line) (see Materials and methods for details
on the applied modifications). Based on the best-fitting
extrapolation, we estimate the size of the core genome to
approach approximately 1,563 genes for an infinite (or very
large) number of E. coli genomes.

We next estimated how many additional 'strain-specific'
genes would be added to the core genome with each genome
being sequenced. In this case the decay function defined by
[3] was found to be appropriate, as shown in Figure 2. By fit-
ting the data to the number of sequenced genomes approach-
ing infinity, we predict that additional genomes will continue
to add approximately 79 genes to the E. coli pan-genome, on
average. Exploiting the fitted parameters for the data set, the
size of the current E. coli core genome conserved within the
32 strains included in this study was estimated to contain
2,241 common genes. The estimated size of the current pan-
genome was estimated to contain 9,433 different genes. The
number of E. coli strains used for these estimates is approxi-
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Table 1

Sequences included in the microarray design

Strain Accession NCBI Proj ID Contigs ORFs Length

E. coli 042 chromosome -* 340 1 4,607 5,241,977

E. coli 042 plasmid - 340 1 106 113,346

E. coli 101-1 chromosome AAMK01000001-70 16193 70 4,353 4,880,382

E. coli 53638 chromosome AAKB01000001-119 15639 119 4,779 5,289,471

E. coli 536 chromosome CP000247 16235 1 4,341 4,938,920

E. coli B chromosome - 18083 1 4,076 4,629,819

E. coli B171 chromosome AAJX01000001-159 15630 159 4,780 5,299,753

E. coli B171 plasmid AB024946 15630 1 69 68,817

E. coli B7A chromosome AAJT01000001-198 15572 198 4,646 5,202,558

E. coli CFT073 chromosome AE014075 313 1 4,653 5,231,428

E. coli E11019 chromosome AAJW01000001-15 15578 115 4,839 5,384,084

E. coli E22 chromosome AAJV01000001-109 74230453 109 4,943 5,516,160

E. coli E2348 chromosome - 341 4 4,592 5,071,653

E. coli E2348 pB171 plasmid - 341 1 70 68,890

E. coli E2348 p9123 plasmid - 341 1 5 6,293

E. coli E2348 pGEPAT plasmid - 341 1 3 2,233

E. coli E24377A chromosome AAJZ01000001 13960 1 4,407 4,980,187

E. coli F11 chromosome AAJU01000001-88 15576 88 4,593 5,206,906

E. coli H10407 chromosome - - 89 4,865 5,428,706

E. coli HS chromosome AAJY01000001 13959 1 4,126 4,643,538

E. coli K12-MG1655 chromosome U00096 225 1 4,122 4,639,675

E. coli K12-W3110 chromosome AP009048 16351 1 4,133 4,646,332

E. coli O103Oslo chromosome† - - 1115 4,571 5,231,845

E. coli O157RIMD0509952 chromosome BA000007 226 1 4,989‡ 5,498,450

E. coli O157RIMD0509952 pO157 AB011549 226 1 70 92,721

E. coli O157RIMD0509952 pOSAK1 AB011548 226 1 3 3,306

E. coli RS218 chromosome - - 1 4,898 5,089,234

E. coli RS218 plasmid - - 1 115 114,233

E. coli UTI189 chromosome CP000243 16259 1 4,466 5,065,741

E. coli UTI189 plasmid CP000244 16259 1 114 114,230

E. coli VR50 chromosome† - - 1228 4,453 5,064,870

E. coli APEC-O1 chromosome CP000468 16718 1 4551 5,082,025

E. coli O157EDL933 chromosome NC_002655 259 1 4,664‡ 5,528,445

E. coli O157EDL933 plasmid AF074613 259 1 70 92,077

S. boydii Sb227 chromosome CP000036 13146 1 4,356 4,519,823

S. dysenteriae M131649 chromosome - 346 234 4,755 4,962,690

S. dysenteriae Sd197 chromosome CP000034 13145 1 4,237 4,369,232

S. dysenteriae Sd197 pSD1197 CP000035 13145 1 160 182,726

S. flexneri 2457T chromosome AE014073 408 1 4,388 4,599,354

S. flexneri 301 chromosome AE005674 310 1 4,410 4,607,203

S. flexneri 301 pCP301 plasmid AF386526 310 1 194 221,618

S. flexneri 8401 chromosome CP000266 166375 1 4,383 4,574,284

S. sonnei 53G chromosome - - 5 4,780 5,220,473

S. sonnei Ss046 chromosome CP000038 13151 1 4,443 4,825,265

S. sonnei Ss046 pSS plasmid CP000039 13151 1 179 214,396

*In progress: the genome sequence has not been fully completed and an accession number has not yet been assigned.
†Sequences generated using 454 technology representing a large number of contigs. These are almost certainly not complete.
‡These genes were predicted using EasyGene version 1.2. All other genes were predicted using EasyGene version 1.0.
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mately the same as the number of strains present in the
human gut [9,10]; thus, the number of E. coli genes in the
human gut is roughly a third of the number of human genes.

In designing the E. coli pan-genome microarray, genes were
grouped based on their nucleotide sequences since the probes
are based on DNA oligonucleotides. Moreover, the parame-
ters to group genes for similarity were adapted compared to
the parameters used for protein similarity to define the core
and pan-genome in order to improve differentiation between
the nucleotide sequences of similar E. coli genes found in dif-
ferent strains. For this purposes the '50% sequence similarity
of 50% of the sequence' conservation criteria [3] was found to
be sub-optimal. Instead, genes were grouped into gene
groups with a slightly different and somewhat stricter homol-
ogy criteria (see Materials and methods for details), produc-
ing a higher number of groupings. This resulted in a total of
11,872 gene groups present in all 32 genomes, compared to
the smaller pan-genome of 9,433 gene groups resulting from
comparison at the protein sequence level. Of the 11,872 gene
groups, 2,041 consisted of genes found in all 32 strains. Thus,
the stricter grouping criteria applied here produced a lower

number than the currently estimated core genome size of
2,241 protein gene groups for 32 E. coli genomes.

In the presented design strategy, the inclusion of 32 E. coli
strains in the microarray design necessitated the employment
of a common standardized gene prediction strategy since
some of the genomic sequences had poor or non-existing gene
annotations. One option is to either include as many open
reading frames as possible as potential genes (in a 'more is
better' strategy) or, alternatively, to use EasyGene, a well per-
forming and conservative gene predictor. One can argue that
a 'more is better' strategy is preferred to the conservative gene
prediction so that fewer genes would be missed. However,
including spurious hypothetical genes in the design would
potentially obstruct the probe design phase both in the group-
ing of gene families and in excluding otherwise perfect probes
due to cross-hybridization to these false genes. Furthermore,
in case of prediction of gene content in control and novel
strains by hybridizing genomic DNA to the array, such false
positives are just as unwelcome as false negatives. Nonethe-
less, absence of too many important E. coli genes is not desir-
able either. We therefore compared the genes predicted by

Two-dimensional density plot of 'core genes' for the E. coli pan-genomeFigure 1
Two-dimensional density plot of 'core genes' for the E. coli pan-genome. The plot illustrates the number of E. coli core genes for n = 2,...,32 genomes based 
on a maximum of 3,200 random combinations of genomes for each n. The density colors reflect the count of combinations giving rise to a certain number 
of core genes; that is, for n = 3, genome number 3 is compared to genomes 1 and 2, and the number of core genes is the number of genome 3 genes 
conserved in genomes 1 and 2. The green line is the fit to the exponential decay function by [3], and the red line is our proposed fit to a slightly modified 
decay function as explained in the Materials and methods.
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EasyGene with the high-quality annotation of the K-12
MG1655 strain (version U00096.3). This revealed that of the
238 protein encoding genes not predicted by EasyGene, 206
were hypothetical genes, leader peptides, frameshifts, gene
fragments or pseudogenes. Of the remaining 32 genes, 12
were present in at least one other E. coli strain considered in
the design. Consequently, only 20 genes of potential interest
were missed by EasyGene. Since this is less than half a per-
cent of the genome (20/4,331 = 0.46%), we considered that
the advantages of conservative standardized gene finding
outweighed the disadvantages of missing a small minority of
genes.

Benchmarking the chip design
A pan-genomic approach represents a challenge in evaluating
and defining the trade-off in group inclusion stringency: a
similarity cut-off chosen too high will result in too many
groups, while a low similarity cut-off results in too much
sequence variability within a group (producing low conserva-
tion scores). Consequently, too much sequence variability
within groups will result in group-specific probes producing
too low a signal for that group in particular strains. On the

other hand, dividing the groups further to limit this undesired
inter-group variability causes another problem: some probes
may no longer be group specific, leading to undesired cross-
hybridization, while other probes might still provide a signal
specific for such a group. In the attempt to circumvent these
problems, an additional filter step was introduced in the
probe design strategy, where probes were removed from fur-
ther analysis if they were not specific enough to one group and
if they did not share a sequence overlap above a certain
threshold with the sequences in the group it was designed for
(for details refer to Materials and methods). Figure 3a gives
an example of how such probes may result in misleading sig-
nals, while the signal improves remarkably following
exclusion of such probes from the analysis by a filtering step
(Figure 3b).

The chip design was assessed by analyzing and comparing the
hybridization data from the two sequenced control strains,
EDL933 and MG1655. Both log2 intensities and log2 ratios
were considered. These results are visualized in a hybridiza-
tion atlas (Figure 4). Here, the median log2 intensity and log2

ratios of both control strains are illustrated for MG1655

Two-dimensional density plot of novel genome 'specific genes' for the E. coli pan-genomeFigure 2
Two-dimensional density plot of novel genome 'specific genes' for the E. coli pan-genome. The plot illustrates the number of novel genome specific genes 
for the nth genome when comparing n = 2,...,32 genomes (for a maximum of 3,200 random combinations at each n). The density colors reflect the count 
of combinations giving rise to a certain number of specific genes (y-axis) in one genome compared to n - 1 other genomes; that is, for n = 2, genome 
number 2 is compared to genome number 1 and, on average, approximately 650 genes are found to be specific to strain 2. The blue line is the fit to the 
originally suggested exponential decay function [3].
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probes, as well as probe coverage for this strain and the
sequence similarity at the DNA level of EDL933 genes to
MG1655 genes based on BLAST scores. The similarity of the
MG1655 probe hybridization pattern for EDL933 to the
sequence similarity based on BLAST scores confirms that the
probes reflect true biology. The same information is illus-
trated in the ratio circle (fourth outermost circle), where
MG1655 regions absent in the EDL933 genome are clearly
visible and correspond to the regions missing in the EDL933
sample (first and second outermost circle). On the contrary,
the MG1655 hybridization pattern (third outermost circle)
corresponds very well to the probe coverage pattern (inner-
most circle).

For further analysis, the probes were mapped to each gene
group according to the design, and a position-dependent seg-
mentation algorithm was employed to partition data points
into present and absent sequence segments [11]. Segmenta-
tion was followed by merging the output with MergeLevels
[12]. Since the distribution of log2 intensities is bimodal - that
is, composed of two density distributions (Figure 5a) - it is
likely that the best separation of present and absent probes
can be found at the local minimum between the two distribu-
tions. Consequently, following noise reduction by segmenta-
tion and merging, the cutoff for log2 intensities was found at
the merged value between these two distribution maxima
with the least segments assigned to it. All segments with

merged values above this cutoff were predicted as present. On
the other hand, the distribution of log2 ratios is largely unimo-
dal (although two extra, weaker modals occur) (Figure 5b).
Since ratios are only calculated for genes present in the con-
trol sample, and given the likely high similarity between a test
sample and control sample of the same species, most genes
are assumed present. Consequently, here the present level
was estimated as the merged level to which most segments
had been assigned.

Following the filtering step, several gene groups were left with
only few probes targeting them, and we found it necessary to
remove groups that were targeted by three or fewer probes
from further analysis. This reduced the average number of
false positives from 267 to 87 (for MG1655) and from 638 to
405 when analyzing all control samples with regard to genes
found to be present from analysis of log2 hybridization signals
compared to genes predicted present from the genome
sequence. On the other hand, gene groups represented by few
probes were not as likely to result in false negatives since
removal of these groups did not change the average number
of false negatives significantly (data not shown).

Table 2 lists the resulting sensitivity and false discovery rate
(FDR) for all control samples. A very high sensitivity was
obtained for both strains, but false positives were suspiciously
high for EDL933 (Table 2). For both control strains, a large

Density plots of probe intensities before and after a filtering stepFigure 3
Density plots of probe intensities before and after a filtering step. The density distributions are illustrated for MG1655 probes and non-MG1655 probes 
separately. Log2 intensity data are from a representative MG1655 control sample. (a) Before filtering, all probes are divided into MG1655 probes (green 
lines) and non-MG1655 probes (red lines). It is clear that many probes initially designed for groups containing MG1655 genes do not hybridize well to 
these, resulting in low intensity (green arrow). Conversely, probes initially designed for groups without MG1655 genes cross-hybridize as if present in 
MG1655 (red arrow). (b) After filtering probes, the remaining probes have the expected hybridization profile.
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Hybridization and blast atlasFigure 4
Hybridization and blast atlas. The atlas illustrates the hybridization pattern of MG1655 probes for the two control strains, MG1655 and EDL933, and the 
four Symbioflor2 isolates. Also, it illustrates the MG1655 genes' BLAST score for presence in the EDL933 strain. The circles from outermost to innermost 
are: Blast score between 0 for absent and 1 for present MG1655 genes in the EDL933 strain, log2 transformed hybridization intensities for EDL933 and 
MG1655 samples, log2 ratio of EDL933/MG1655 samples, location of predicted coding sequences (CDS), log2 hybridization intensities for the four 
Symbioflor2 isolates G5, G4/9, G3/10, G1/2, probe coverage. A zoomable version of the atlas is available at [33].

Orig
in

Terminus

0M
0.5M

1M
1.5M

2M
2.5M

3M
3.
5M

4M

E. coli K12 MG1655
4,639,675 bp



Genome Biology 2007, 8:R267

http://genomebiology.com/2007/8/12/R267 Genome Biology 2007,     Volume 8, Issue 12, Article R267       Willenbrock et al. R267.8

proportion of the false positive gene groups were consistently
identified in replicate samples (a total of 62 and 360 in
MG1655 and EDL933, respectively). For MG1655, genes
annotated as hypothetical were highly overrepresented
among the false positive genes (P value approximately 0.002,
Fischer's exact test), indicating a significant enrichment in
hypothetical genes among false positives. In the majority of
cases, the corresponding consensus sequences aligned very

well to the genome sequence (with >50% of the sequence
length and >91% identity). Consequently, these false positives
are not a result of cross-hybridizations but rather a result of
genes not predicted by the EasyGene gene finder. Since most
of these are seemingly hypothetical and, therefore, are likely
not to be real genes, the consequences in terms of strain char-
acterization are considered to be minor.

Density distribution histogramsFigure 5
Density distribution histograms. (a) Example of bimodal density distribution of log2 intensities and histogram of merged log2 intensities. The merged level 
with fewest segments assigned to it is chosen as the cutoff value. All segments with merged values above this cutoff are predicted as present. An arrow 
indicates the cutoff level for this particular sample. (b) Example of unimodal (or trimodal) density distribution of log2 ratios and histogram of merged 
ratios. The merged level with the most segments assigned to it was chosen as the present level. All segments with this merged value or above were 
predicted as present. An arrow indicates the minimum log2 ratio for present probes for this particular sample.
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Table 2

Sensitivity and false discovery rate based on analysis of log2 intensities

MG1655 EDL933

Chip ID Sensitivity FDR Chip ID Sensitivity FDR

108276 0.988 0.021 1004602 0.994 0.13

108667 0.964 0.024 113504 0.988 0.12

113756 0.997 0.021 113509 0.980 0.12

114782 0.999 0.017 113757 0.989 0.13

1509502 0.999 0.043 1509502 0.970 0.11

1510802 0.999 0.015 1510802 0.994 0.11

Average 0.989 0.024 Average 0.986 0.12

Analysis of the hybridization data obtained with MG1655 and EDL933 DNA in six replicates, with data analyzed based on log2 intensities. The 
sensitivity and false discovery rate (FDR) are given for the prediction of gene presence in MG1655 or EDL933 in the corresponding samples.
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In contrast to the MG1655 control strain, we did not observe
enrichment in hypothetical genes among false positives for
EDL933. In this case we suspect that the 'false positives'
were actually true genes mistakenly missed by EasyGene. In
support of this, EasyGene did actually predict only 4,664
genes for the EDL933 main chromosome compared to the
5,349 annotated in GenBank, possibly due to a number of
unknown nucleotides still present in the published genome
sequence [13]. Gene expression profiling of these genes
would confirm if these are in fact true genes that are
expressed and thus incorrectly missed by EasyGene. Prelim-
inary data from a gene expression study run in parallel with
this work demonstrated that the gene expression profile of
these genes indeed resembled that of other genes present in
the EDL933 genome (Sekse C, Friis C, Wasteson Y, Ussery
DW and Willenbrock H, unpublished results). This observa-
tion supports our interpretation that they are actually not
false positives generated by bad chip manufacturing,
hybridization artifacts or poor analysis approaches, but a
consequence of an ambiguous DNA sequence that any gene
predictor would have ignored. Ideally, they should have
been categorized as true positives. Consequently, the low
FDR obtained from the other control strain, MG1655, is a
better indicator of our pan-genome chip performance.

Table 3 compares the performance obtained by analyzing
log2 ratios of control sample co-hybridizations with the per-
formance based on log2 intensities. In both cases, the sensi-
tivity is quite high, while FDR is low, in particular for
MG1655. The higher FDR for EDL933 may be assigned to a
low accuracy for the gene predictor on this particular
genome, as discussed above. While the sensitivity is slightly
higher when analyzing log2 ratios, FDR is marginally lower
when analyzing log2 intensities. Consequently, the single
channel log2 intensity analysis approach offers an acceptable
performance compared to the comparative dual channel
approach, at a limited risk of increased false negatives but
with the added advantage of being able to identify the pres-
ence and absence of any gene on the microarray and not only
genes present in the control strain.

Analysis of probiotic E. coli strains
The chip design was next tested for suitability to character-
ize isolates of non-pathogenic E. coli strains. Four probiotic
isolates were co-hybridized with MG1655 and EDL933
according to the combinations listed in Table 4; their
hybridization pattern to MG1655 probes is illustrated in a
hybridization atlas (Figure 4). Here, larger regions absent
from the probiotic isolates in comparison to MG1655 are vis-
ible. It is also evident that each isolate is different from the
next, since each isolate has a distinct hybridization pattern.

The gene content of each probiotic isolate was predicted by
the single-channel approach as found to be appropriate for
this type of analysis. Thereby, the presence of all genes
included on the pan-genome array could be assessed for all
four test isolates. First, we compared the findings between
the isolates used for hybridization. The number of identified
genes was highest for G1/2 and lowest for G4/9 (Table 5).
Two graphical representations further illustrate the results.
Figure 6 shows a cluster analysis based on all probes consid-
ered in this paper. The four probiotic isolates cluster
individually and form a super-cluster with MG1655 samples,
separated from EDL933. Indeed, each isolate shared more
of their predicted genes with MG1665 than with EDL933
(Table 5). Moreover, strain-specific genes were more fre-
quently different to EDL933 than to MG1655. This is not
surprising since the probiotic isolates are likely to be more
related to the non-pathogenic commensal K-12 than to
enterohemorrhagic EDL933. Each strain had more than 100
genes that were neither found in MG1655 nor EDL933
(Table 5). Moreover, a significant enrichment was observed
in hypothetical genes among the gene groups only found in
a single Symbioflor2 isolate. However, this is expected, since
E. coli core genes are generally better characterized than
genes found in only few E. coli strains. Figure 7 compares
the numbers of genes found to be either unique or shared
between one or more probiotic isolates in a Venn diagram. A
total of 3,093 genes were found consistently in all four iso-
lates. Figure 6 and Figure 7 both identify isolate G1/2 as the
most distantly related to the other isolates.

Table 3

Log2 intensity results versus log2 ratio results for test samples MG1655 and EDL933

log2 intensities log2 ratios

MG1655 EDL933 MG1655 EDL933

Sensitivity 0.99 0.97 1.00 1.00

FDR 0.003 0.060 0.007 0.063

The sensitivity and false discovery rate (FDR) were compared for data analysis based on log2 intensities and log2 ratios for the detection of genes in 
the two control strains for which gene presence is known from gene finding based on the known genome sequence. Thus, only known control gene 
groups were considered. Consequently, true positives make up the control genes correctly found to be present in all MG1655 or EDL933 samples, 
respectively. False positives are genes not found in the control strain, but predicted as present from the genome sequence.
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Next, genes detected in the probiotic isolates were compared
to the genes present (by gene prediction based on their
genome sequence) in each E. coli strain represented by the
chip. All four probiotic isolates shared the most genes with E.
coli H10407, closely followed by the two K-12 strains for three
of the isolates and the VR50 strain for G1/2 (refer to Table S1
in Additional data file 1 for a ranked list of the number of
shared genes with the strains considered for chip design).
While E. coli VR50 is an asymptomatic inhabitant of the uri-
nary tract [14], E. coli H10407 is an enterotoxigenic strain.
However, its virulence is mostly encoded by plasmids that
have not yet been sequenced and, therefore, were not consid-
ered in this comparison. Nonetheless, by gene prediction
based on the genomic sequence of the H10407 main chromo-
some, we identified the presence of genes encoding
hemolysin (hlyCABD). These genes were present in probiotic
isolate G1/2 as well, in accordance with its weak hemolytic
phenotype (described as alpha hemolysis type II; L Beutin
and K Zimmermann, unpublished results). Presence of this
gene cluster is, however, not sufficient to characterize an

isolate as pathogenic [15-17]. Also, the main chromosome of
the H10407 strain has previously been found to be highly
homologous to E. coli K-12 in contrast to other E. coli patho-
genic strains [18]. This indicates that in spite of the many
genes shared with a pathogenic E. coli strain, the probiotic
isolates are likely to share only the non-virulent parts.
Besides, the probiotic isolate shares only marginally more
genes with the H10407 strain than with the two K-12 strains
(16-57 genes). This is not significant, especially since novel
strains are much more likely to share more genes with the
large H10407 genome than with the smaller K-12 genomes
without actually resembling it more, simply because the
H10407 genome encodes 20% more genes. Supporting this, a
cluster analysis considering the presence and absence of all
gene groups analyzed from our pan-genome array (Figure 8)
clearly shows that the gene content of the probiotic isolates is,
in fact, more closely related to the gene content of other non-
pathogenic strains. In this analysis, all probiotic isolates clus-
ter together with the two K-12 strains while forming a super-
cluster with all the other non-pathogenic strains considered

Table 4

Co-hybridization setup

Chip ID Cy3 (test) Cy5 (control)

113756 G 1/2 MG1655

108667 G 3/10 MG1655

114782 G 4/9 MG1655

108276 G5 MG1655

113509 G 1/2 EDL933

113504 G 3/10 EDL933

113757 G5 EDL933

1004602 G 4/9 EDL933

1509502 EDL933 MG1655

1510802 EDL933 MG1655

Table 5

Comparison of Symbioflor2 isolates to predictions for control strain samples

G 1/2 G 3/10 G 4/9 G5

No. of predicted genes 3,978 3,683 3,568 3,660

No. of genes in common with (based on log2 intensities):

MG1655 3,464 3,323 3,319 3,399

EDL933 3,455 3,264 3,186 3,237

'Novel' sample genes not in (based on log2 intensities):

MG1655 358 251 162 197

EDL933 631 647 635 592

Either control 185 197 126 144

Results are based on log2 intensity analyses.
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in the analysis. This super-cluster contains only a few patho-
genic strains for which the sequences of their virulence plas-
mids were not included in the analysis (strains 101-1,
E24377A, and H10407). Furthermore, the validity of the clus-
tering is confirmed by the placement of the control strain
MG1655 closest to the two K-12 design strains, and EDL933
closest to the O157:H7 design strains.

Apart from the hemolysin genes and a gene annotated as
'putative iron-regulated outer membrane viruence gene', no
other virulence genes were detected in the probiotic isolates.
The observed genetic relatedness of probiotic strains to a vir-
ulent strain illustrates that both pathogenic and non-patho-
genic E. coli strains use common strategies for adaptation to
their niche. Of the genes found to be present in the probiotic
isolates but not in a non-pathogenic E. coli strain (MG1655),
many were bacteriophage-derived. Nevertheless, complete
prophages were not present and variation between and within
phage gene content between the four probiotic isolates sug-
gested these bacteriophages have been introduced in inde-
pendent events. Transposases and other insertion sequence-
related genes provided further evidence of the influence of
mobile DNA on introducing genetic variation in a bacterial
population. Of interest were genes present in the probiotic
isolates but absent in MG1655 that were annotated as having
general metabolic functions. A closer analysis of these find-
ings would be necessary to assess if such genes provide
improved fitness for colonization of the human gut, and so
could explain the probiotic nature of the isolates. Also, one

should keep in mind that the K-12 isolates represent a
reduced E. coli genome, and some essential metabolic genes
are known to be missing in these isolates. Complete lists of
annotated genes found in each of the four Symbioflor2 iso-
lates but not in the MG1655 control strain is provided as
Additional data file 2.

Discussion
The design of a microarray covering more than 30 genomes
proved to be a considerable challenge. Multiple aspects had to
be considered but the greatest difficulty was to filter out false
positives, at the risk of introducing additional false negatives.
The level of similarity between gene sequences should justify
conserved annotation, but the borders of significance are
diffuse and poorly defined. This is a consequence of biological
processes that undergo gradual genetic changes. On one
hand, probes should cover all versions of the same gene, but
at the same time they should be able to distinguish between
different genes and even, when relevant, distinct versions of
the same gene in different strains. In light of this, conven-
tional microarray design strategies, such as inclusion of mis-
match probes for background estimation, will not work when
dealing with multiple genomes. One can never ensure that a
perfect match is absent for such probes in novel strains.
Moreover, because the array should be able to interrogate for
the presence of genes at the DNA level (as presented in this
paper), the number of probes per gene should be allowed to
vary. A higher number of probes is required for a sufficient
coverage of long genes, whereas low quality probes would
result if attempting to design the same number of probes for
very short genes. Consequently, the challenge is to define, in
a sensible way, such goals and to search for the best possible
solution. Our pan-genome approach proved to be a suitable
solution.

Recently, the idea of an 'open pan-genome' was introduced,
where each newly sequenced strain would continue to add
novel genes to the pan-genome of the species. It was sug-
gested that Streptococcus agalactiae would have an open
pan-genome, with the consequence that despite sequencing
hundreds of strains, novel genes would still be discovered [3].
E. coli is likely to also have an open pan-genome since it col-
onizes multiple environments, complex microflora biotopes,
and, therefore, has multiple ways and sources for exchanging
and obtaining genetic material [4]. In line with this expecta-
tion, Chen and co-workers [19] predicted that each new E. coli
genome would add 441 genes to the E. coli pan-genome pool.
However, this prediction of 'new genes' is possibly too high,
since it was based on seven very diverse E. coli genomes only.
Genome size differs considerably within the species, from the
relatively small K-12 strains to the larger pathogenic O157:H7
strains. Therefore, we believe that our estimate of the E. coli
pan-genome and the core genome is closer to what might be
expected in the 'real world', since it is based on a much larger
number and variety of strains. Thus, the number of added

Hierarchical cluster analysis of hybridization signals from the samples summarized in Table 4, including control samplesFigure 6
Hierarchical cluster analysis of hybridization signals from the samples 
summarized in Table 4, including control samples. The analysis is based on 
remaining probes (refer to Materials and methods for details) after filtering 
and removal of probes in gene groups with three or less probes. For 
clustering, the '1-pearson correlation' distance metric was used.
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new genes per genome has dropped to about 79 genes when
including data from 32 different strains, and may decrease
further with improved genome annotations. This smaller
estimate is in the same order of magnitude as predicted for
other pan-genomes, such as Streptococcus (27 per genome
for group A and 33 for group B) [3]. Still, our estimate for E.
coli may be too conservative if the true diversity of E. coli is
still insufficiently covered by the current genome sequences,
that is, environmental and non-mammalian strains are

under-represented, and the addition of these may initially
add a significant number of novel genes to the E. coli pan-
genome.

Furthermore, we were able to come up with a more accurate
prediction of the E. coli core genome. Previously, the size of
the E. coli core genome was assessed, based on seven different
E. coli strains, to consist of between 2,865 and 3,475 genes
[2,19]. Based on the 32 genomes included in this study, we

Venn diagram comparing Symbioflor2 isolatesFigure 7
Venn diagram comparing Symbioflor2 isolates.

G 3/10 G 4/9

G5

5105

147227

136

113

181216

3127

G 1/2 G 4/9

G5

4969

109363

120

151

76232

3232

G 1/2 G 3/10

G5

4890

188362

114

152

82203

3261

G 1/2 G 3/10

G 4/9

4872

217369

132

226

53196

3187

Common genes among all 4 strains:  3093



http://genomebiology.com/2007/8/12/R267 Genome Biology 2007,     Volume 8, Issue 12, Article R267       Willenbrock et al. R267.13

Genome Biology 2007, 8:R267

predict that the size of the core genome will approach approx-
imately 1,560 essential genes, about half that of the previous
estimates. We believe the current estimate to be more accu-
rate, as it is based on a much larger number of genomes. How-
ever, in the present study, several unfinished genome
sequences were included. Improving these both in terms of
sequencing and assembly and in gene annotation quality,
may result in an increased core genome size if the current
partly finished genome sequences are missing core genes.

To assess the performance of the chip as well as to identify the
best way of analyzing data from it, control sample hybridiza-
tions were analyzed. Comparative hybridizations on dual
channel microarrays have the advantage of reduced noise due
to limited variations of probe hybridization efficiencies. How-
ever, a dual channel analysis is limited to probes covering the
control sample so that noise reduction applies only to probes
hybridizing to genes present in the control sample. Although
the false positive rate was slightly higher for the single-chan-
nel analysis approach, we demonstrate that sensitivity is only
marginally lower than for the dual channel approach while
information can also be extracted regarding genes not present
in the control sample. Consequently, this analysis approach
offers a favorable possibility for deriving predictions for any
gene present on the pan-genome microarray.

Pathogenic E. coli genomes are highly overrepresented on
this pan-genome chip because the majority of the E. coli
genomes sequenced to date are from pathogenic strains, and
few originate from environmental sources or are commensal
strains. Nonetheless, we found that the chip was widely useful
for characterizing the gene content of non-pathogenic E. coli
isolates and for investigating the non-pathogenic nature of
these E. coli isolates.

Lessons learned from this microarray can be used to design
better arrays in the future. Although we considered all
designed probes for the chip, including probes with low spe-
cificity to all strains in a given gene group, based on our anal-
ysis of experimental results, we have found that a filtering
step is necessary to remove less specific probes. Moreover,
gene groups for which only few probes could be designed
(above the probe score cutoff) were not as reliable as gene
groups represented by a larger number of probes. While this
is not surprising, it nonetheless makes it a difficult task to
accurately probe for these genes.

Conclusion
Based on 32 E. coli and Shigella genome sequences, we have
developed an E. coli pan-genome microarray representing the
current pan-genome of E. coli. Although any individual E. coli
genome contains between 4,000 and 5,000 genes, we find
about twice as many distinct gene groups in the total gene
pool examined. High-density pan-genome microarrays can
be quite useful for characterizing either DNA content or gene
expression from unknown E. coli strains. Thus, we found the
technique highly sufficient to investigate gene content of four
non-pathogenic E. coli isolates despite the strong bias for
pathogenic strains represented on the pan-genome array. The
four analyzed probiotic E. coli isolates share a gene pool very
similar to the E. coli K-12 strains, and additional strain-spe-
cific genes were often phage genes, transposases, insertion
elements and metabolic genes. It remains to be seen to what
degree these genes contribute to the probiotic nature of the
isolates. Generally, we conclude that our high-density pan-

Hierarchical cluster analysis of the 32 design genomes according to gene absence or presence based on the design (normal font)Figure 8
Hierarchical cluster analysis of the 32 design genomes according to gene 
absence or presence based on the design (normal font). The four 
Symbioflor2 isolates as well as the two control strains are included in the 
dendrogram (bold font) by clustering them according to gene predictions 
based on the sample hybridizations. For clustering, the Euclidian distance 
metric was used.
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genome array provides an excellent tool for characterizing the
genetic makeup of unknown E. coli strains and can also
deliver insights into phylogenetic relationships.

Materials and methods
Twenty-four E. coli chromosome sequences that were pub-
licly available at the time of analysis (as one or multiple con-
tigs) and nine plasmid sequences belonging to seven of the
sequenced strains were included in this study. In addition,
eight Shigella chromosomes were included (two S. sonnei,
three S. flexneri, two S. dysenteriae and one S. boydii) with
their three corresponding plasmids (Table 1).

Probe and microarray design
All considered genome and plasmid sequences (Table 1) were
searched for genes using EasyGene version 1.0 or 1.2 [7,8] in
order to standardize gene finding. Genes were screened for
homology using BLAST [20] in order to prevent redundancy
of the probes. Genes were placed in a group when homolo-
gous by the following criteria: E-value <10-5, bitscore >55,
and alignment constituting 50% or more of the longer of the
two aligned sequences. Genes with no homology were repre-
sented as 'singles'. Groups of genes ('multiples') were aligned
using ClustalW with default settings [21] and a consensus
sequence was derived using the most frequent nucleotide at
each position, weighted by its background frequency in all
genes. The probe design strategy employed by OligoWiz [22]
was used for probe selection. Two additional scores were
introduced as parameters for the probe design software deal-
ing with consensus sequences: a weighted conservation score
and a gap score. The weighted conservation score uses Shan-
non's information measure [23] for conservation at each
nucleotide position in a probe. According to [24], the influ-
ence of a mismatch on measured hybridization intensities
varies with its position, with positions towards either end
having less influence. Therefore, each position was weighted
according to a second order polynomial function. The probe's
weighted conservation score is the product of the weighted
position scores for mismatch basepairs. The gap score was
used to identify probes that targeted gaps in the alignment of
multiples. This score was used to design probes that specifi-
cally identified conserved regions of all genes in each group
(thus attempting to avoid gaps).

All probes were designed as 55-60 mers, with variable length
and sequence to optimize for the same melting temperature.
Only standard nucleotides (GATC) were considered in the
probe design. In total, 305,285 probes covering 11,768 gene
groups and singles were designed. A detailed description of
the microarray design may be found in Additional data file 3.
The probe design was given the NimbleGen design_id 5137
and is available upon request.

Filtering of probes
Probes were aligned against all predicted gene sequences
included using NCBI-BLAST blastn version 2.2.11 [25] and
the identity of each probe with each gene sequence was deter-
mined in base pairs. Sequences were extracted for which the
ratio [bp identity/probe length] was >0.8. Probes that either
matched more than one single group or failed to match all
genes in the design group were excluded from further analy-
sis. Furthermore, groups for which three or less probes
remained after filtering were removed from the subsequent
analysis due to their increased risk of generating false
positives (see Results). This resulted in a reduction to
224,805 probes covering 9,252 gene groups and singles.
Consequently, the number of probes targeting each gene
ranged from 4 to 29 with a median coverage of 27 probes per
gene.

Annotation of gene groups
Each gene group in the probe design was annotated according
to the results from hits against the UniProtKB/Swiss-Prot
release 52.5 and UniProtKB/TrEMBL release 35.5 protein
database [26] using NCBI-BLAST Blastp version 2.2.11 [25].
Only alignments covering >50% of the gene lengths and hav-
ing 50% or better identity within the alignment were
included. Among all the sequences within each group, the hit
producing the highest percent identity was chosen. In this
way, 5,348 of our 11,872 gene groups could be annotated
against Swiss-Prot and 9,320 of our 11,872 gene groups could
be annotated against TrEMBL. Thus, while Swiss-Prot gener-
ally produces more reliable annotations, the number of anno-
tations produced was quite low. Consequently, when
available, genes were assigned the more reliable Swiss-Prot
annotation, otherwise it was assigned the TrEMBL annota-
tion if one was available. Gene groups that could not be
assigned an annotation were assigned hypothetical proteins.

Pan-genomics
The pan-genome was estimated as suggested by Tettelin et al.
[3], with modifications to reduce computational load for our
large dataset. Briefly, protein sequences were compared by
Blastp version 2.2.11 [25]. Proteins with at least 50%
sequence identity over at least 50% of their length were iden-
tified as the same. For each n additional genome, genome n
was compared to any combinations of n - 1 genomes, and the
number of identical 'core genes' and 'strain-specific genes'
(specific for strain n) were counted for each n. According to
the approach suggested, when all genomes are compared to n
other genomes (n = 1,..,N), this would result in 32!/[(n -
1)!·(32 - n)!] possible combinations (for each n) of drawing n
genomes out of the pool of 32 genomes. Consequently, for 16
or 17 genomes (n = 17,18 in above formula), a total of 9.62 bil-
lion possible combinations exists. To reduce computational
time, we lowered the number of combinations by randomly
selecting 3,200 different combinations (or the maximum
number of combinations; 3,200 is dividable by 32, which
ensures that all genomes are used an equal number of times
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as blast template for each n) with an equal distribution among
query genome. This was repeated ten times and an exponen-
tial decay function was fitted to each of these repeats. The
decay function suggested by Tettelin et al [3] was first
applied:

where g equals the number of 'core genes' or 'specific genes',
while κ and τ are free parameters for amplitude of exponential
decay. The speed at which F(n) converges was found to fit the
data for 'strain-specific genes' satisfactorily, while a modified
decay function with the double square root of n was found to
fit the 'core genes' data better (lower sum of squared errors):

Strain selection, DNA preparation and hybridization
Control strain K-12 MG1655 was kindly provided by Flem-
ming G Hansen (CBS, BioCentrum-DTU, The Technical Uni-
versity of Denmark) and genomic DNA from control strain
O157:H7 EDL933 was kindly provided by Camilla Sekse (Nor-
wegian Veterinary school, Oslo). As test strains, Kurt Zim-
mermann from Symbiopharm (Herborn, Germany) supplied
four probiotic E. coli isolates, designated G1/2, G3/10, G4/9
and G5, from their commercially available Symbioflor2 prod-
uct. G1/2 has previously been serotyped as O rough:K-:H-
and O rough:H-, G3/10 as O 35,129:K-:H-, G4/9 as O
rough:K-:H-, and G5 as O rough:K-:H-.

All test strains were grown overnight in Luria-Bertani (LB)
broth with continuous agitation [27], and DNA was isolated
as described previously [28]. The genomic DNA was labeled
with cy3 or cy5 and hybridized to NimbleGen custom arrays
according to NimbleGen standard protocols for CGH (pre-
pared and hybridized by NimbleGen (Madison, Wisconsin
USA)). The raw data are available from the Gene Expression
Omnibus (GEO) database [29] with series accession number
GSE8595.

Analysis methods
The probes were mapped to each gene group including posi-
tion according to the design and analyzed as described previ-
ously [2] with minor modifications. Briefly, a position-
dependent segmentation algorithm was employed to parti-
tion data points into present and absent sequence segments
constituting any given gene. For this, we used circular binary
segmentation [11] with default settings as implemented in
DNAcopy developmental version 1.2.1 written for the R statis-
tical language [30]. As recommended by the authors, the data
were first smoothed and subsequently segmented. Segmenta-
tion was followed by merging the output with MergeLevels
[12] with a fixed threshold at the standard deviation between
segmented log2 intensities and observed log2 intensities, or
the standard deviation of segmented log2 ratios.

Consequently, following noise reduction by segmentation and
merging, the cutoff for log2 intensities was found at the
merged value between these two distribution maxima with
the least segments assigned to it. All segments with merged
values above this cutoff were predicted as present. Since
ratios are calculated only for genes present in the control
sample, and given the likely high similarity between a test
sample and control sample of the same species, most genes
are assumed present. Consequently, here the present level
was estimated as the merged level to which most segments
had been assigned. Moreover, for a gene to be called present,
at least 90% of its probes should be found to be present.
Accordingly, the samples were both analyzed individually as
log2 intensities and combined with the appropriate control
experiment, as log2 ratios.

Atlases were created using the GeneWiz software [31]. The
blast atlases were constructed as described previously [32].

Abbreviations
aCGH, comparative genomic hybridization; FDR, false dis-
covery rate.
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