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This paper applies geometric methods developed to understand chaos and transport in Hamiltonian
systems to the study of power distribution in nonlinear waveguide arrays. The specific case of two
linearly coupled ��2� waveguides is modeled and analyzed in terms of transport and geometry in the
phase space. This gives us a transport problem in the phase space resulting from the coupling of the
two Hamiltonian systems for each waveguide. In particular, the effect of the presence of partial and
complete barriers in the phase space on the transfer of intensity between the waveguides is studied,
given a specific input and range of material properties. We show how these barriers break down as
the coupling between the waveguides is increased and what the role of resonances in the phase
space has in this. We also show how an increase in the coupling can lead to chaos and global
transport and what effect this has on the intensity. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2840461�

We first present the general physical model for an arbi-
trary number of quadratic nonlinear waveguides,
coupled linearly to each other. We normalize the system
so that the dynamical evolution variable, i.e., the distance
along the waveguides, can be big and therefore consid-
ered as a time variable, as is conventional in transport
and chaos studies. We then focus on the two-core coupler
(two waveguides) and investigate how structures in the
phase space can lead to information about the coupling
required for complete transfer of intensity from the fun-
damental wave (FW) in one waveguide to the second har-
monic (SH; at twice the frequency) in the other wave-
guide. In particular, we investigate the structures that act
as partial or complete barriers in the phase space. We
study how these structures are destroyed as the coupling
between the two waveguides is increased from the un-
coupled regime to a critical value and beyond. The
present work also includes a study of the effect of reso-
nances in the phase space, as well as their connection
with the destruction of complete barriers to transport.
The sensitivity of the resulting intensity distribution to
the strength of the coupling between the FW in the two
waveguides „�… is also studied. In particular, we show
how the nature of the structures (or barriers) in the
phase space can be changed with small changes in �, such

that a very ordered output can change to an output which
appears ordered over a long time, but then suddenly be-
comes disordered or more complicated, to finally reach a
very disordered state appearing to be the product of
spatial-temporal chaos. Such behavior is of much practi-
cal importance, as it shows that, for certain values of �, a
small change in � can produce very different outputs.
This also shows that such sensitivity is inherent in the
system and is not a product of noise or experimental
error.

I. INTRODUCTION

In this paper we study the geometry of the phase space
and the resulting transport and chaotic behavior in a funda-
mental discrete quadratic nonlinear system of equations,
which is used in solid-state physics to describe nonlinear
interface waves between two media close to Fermi
resonance,1,2 and in optics to describe arrays of waveguides
with a quadratic �or ��2�� nonlinearity.3–5 Here we focus on
the applications in nonlinear optics.

In particular we use tools from dynamical systems to
understand the geometry, chaos, and transport in the phase
space with the aim of applying our findings to the under-
standing of the power distribution in quadratic nonlinear
waveguide arrays. The specific case of two coupled ��2�

waveguides is modeled �see Fig. 1� and analyzed in terms of
transport and geometry in the phase space.

Propagation in quadratic nonlinear materials is charac-
terized by the nonlinear coupling between a wave at the fun-
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damental frequency and a wave at the double second-
harmonic frequency. Between neighboring waveguides only
the fundamental waves are assumed to couple linearly to
each other �see Fig. 2�. This is a reasonable approximation
because the second-harmonic modes are typically much bet-
ter confined to the waveguide than the FWs, creating a neg-
ligible overlap between the second harmonic modes in
neighboring waveguides �see Fig. 1�. For more details re-
garding the physics of the problem, see Refs. 5 and 4.

Mathematically speaking, the system under study gives
us a transport problem in a four degree of freedom Hamil-
tonian system. Geometry, transport, and chaos in Hamil-
tonian systems is a rich area of dynamical systems in which
many tools have been developed.6–18 It should be noted that
Arnold diffusion, or global instability,19–21 can take place in
our system, since it possesses enough degrees of freedom.
The effect of the presence of partial and complete barriers in
the phase space and their effect on transport has many appli-
cations. Geometric methods related to transport in the phase
space of Hamiltonian systems have been used to understand
the dynamics occurring in many different applications. For
example, there has been much work on this area in fluid
dynamics related to the problems of mixing and chaotic ad-
vection in laminar flows �for a review, see Ref. 22� and also
pollution dynamics in estuarine flows.23–25 However, the ap-
plication of such methods to nonlinear optics and coupled
nonlinear waves guides is new. In what follows, we show

how the geometry and transport in the phase space affects the
transfer of intensity between the waveguides, given a specific
input and a range of material properties.

In the following sections, we first introduce the physical
system and the dynamical equations. We then provide an
analysis of the stationary solutions, the fixed points and their
stability. We then go on to study the barriers to transport in
the phase space and what effect they have on the transfer of
intensity between the waveguides.

II. PHYSICAL SYSTEM AND NORMALIZATION

In a single waveguide, the fundamental wave �FW� with
frequency � is propagating along the waveguide in the z
direction, while being nonlinearly coupled to its second har-
monic �SH� at twice the frequency �. The evolution of the
envelope of the FW, i.e., E1,n�z�, and the second harmonic,
i.e., E2,n�z�, in waveguide n is governed by the equations

i�zE1,n + �1�E1,n+1 + E1,n−1� + �1E1,n
* E2,ne−i�kz = 0, �1�

i�zE2,n + �2�E2,n+1 + E2,n−1� + �2E1,n
2 ei�kz = 0. �2�

Here, �k is the phase mismatch between the FW and the SH,
�1,2 are coupling coefficients determining the strength of the
coupling between the fields in adjacent waveguides, and �1,2

are the strengths of the nonlinearity. We let L be the length of
the waveguide array with z� �0,L� and n0 the total number
of waveguides with n=1, . . . ,n0. For this system the total
intensity

I = 1
2�0�

n

�N1�E1,n�2 + N2�E2,n�2� �3�

as well as the Hamiltonian are conserved quantities. In Eq.
�3�, N1,2 are the linear refractive indices at the two frequen-
cies, respectively, and �0 is the specific admittance of
vacuum.

We assume that �2=0 since E2,n is always more strongly
confined transversely in a waveguide than E1,n. We introduce
the dimensionless propagation variable �=z / lc, where lc

=� /�k is the so-called coherence length. This means that the
dimensionless mismatch parameter is fixed to �=�klc=�. In
typical experiments, the coherence length is much smaller
than the length of the waveguide, which means that the dy-
namical evolution variable �� �0,L / lc� can be very large and
treated as a time coordinate, the typical coordinate used in
studies of transport and chaos in Hamiltonian systems.

FIG. 1. The coupled waveguide sys-
tem with fundamental waves W1,2 and
second-harmonic waves V1,2.

FIG. 2. Spring system corresponding to the model of the two coupled
waveguides. � is a linear spring and � is a nonlinear spring.
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We further normalize the fields as E1,n�z�=a1Wn��� and

E2,n�z�=a2Vn���ei��. We choose an=�2I / �Nn�0� in order to
obtain the nice property that the normalized total intensity
is 1:

�
n

��Wn�2 + �Vn�2� = 1. �4�

Finally, we neglect linear dispersion, so that N1=N2, and
nonlinear dispersion, so that �1=�2. The resulting coupled
equations governing the propagation of the normalized field
components are

iẆn + ��Wn+1 + Wn−1� + �W
n
*Vn = 0, �5�

iV̇n − �Vn + �Wn
2 = 0, �6�

where �=�1lc is the normalized FW coupling coefficient and
�=�1lca1 is the normalized quadratic nonlinearity.

The Hamiltonian of the system takes the form

H = �
n=1

n0

��Vn�2 − 2�W
n
*�Wn+1 + Wn−1� − 2� Re�Wn

2V
n
*	 �7�

and is a conserved quantity; i.e., Ḣ=0. In the following, we
keep �=� and consider what happens when we increase �
from 0 to some large but finite value �0=L / lc, while � and �
are varied over a range of real values.

A. Equations for two-core coupler

We shall restrict our investigation to the so-called two-
core coupler �the dimer�, where we have only two
waveguides �i.e., n=1,2�, which are either coupled or un-
coupled. The system of equations �5�–�7� then reduces to the
following set of coupled ordinary differential equations:

iẆ1 + �W2 + �W1
*V1 = 0, �8�

iV̇1 − �V1 + �W1
2 = 0, �9�

iẆ2 + �W1 + �W2
*V2 = 0, �10�

iV̇2 − �V2 + �W2
2 = 0, �11�

with the condition that

�W1�2 + �V1�2 + �W2�2 + �V2�2 = 1, �12�

and the Hamiltonian

H = ���V1�2 + �V2�2� − 2��Re�W1
2V1

*	 + Re�W2
2V2

*	�

− 2��W1
*W2 + W2

*W1� . �13�

Separating into real �WnR, VnR� and imaginary �WnI, VnI�
terms gives eight coupled ordinary differential equations,
which describe the dynamics in the phase space for the dimer
with ��0. The equations for the monomer with no coupling
between the waveguides can be obtained by setting �=0.

III. STATIONARY SOLUTIONS, FIXED POINTS,
AND STABILITY

In the following, we look for solutions to the equations
set up in the previous section and we study their stability. In
particular, we look for stationary solutions, which are solu-
tions for which all individual intensities, i.e., �Wn�2 and �Vn�2,
are constant. Stationary solutions have the general form
Wn���=wnei	� and Vn���=vnei2	�, where the amplitudes wn

and vn are constants and the solution parameter 	 is a real
constant. Due to Gauge symmetry, the amplitude w1 can be
assumed to be real and non-negative. The fixed points of the
system are then obtained from the stationary solutions by
setting 	=0.

A. Stationary solutions and fixed points
for the monomer

For the monomer there is only one waveguide. For the
stationary solution we obtain the algebraic set of equations

− 	w1 + �w1v1 = 0, �14�

− �2	 + ��v1 + �w1
2 = 0, �15�

with w1
2+v1

2=1. Note that both amplitudes are real because
w1 is real. Bang et al.5 found stationary solutions for this
system, which we summarize below.

1. Solution MI
The solution MI is obtained for w1=0. This requires that

	=−� /2 and �v1�2=1. No solution exists for 	=0, because
�=� is nonzero and thus we have no fixed points for the
solution MI.

2. Solution MII
The solution MII exists for v1=	 /� and w1

2=	�2	
+�� /�2. From the requirement that w1

2+v1
2=1 we find that

the stationary solution MII exists for 3	2+	�−�2=0.
Setting 	=0 implies that v1=w1=0 could be a fixed

point solution for �=0. However, due to the normalization
with the total intensity I, the zero-solution is not a valid
solution, so no fixed points occur for the type MII solutions.

For more details on the existence and linear stability of
the solutions MI and MII, we refer to Bang et al.5

B. Stationary solutions and fixed points for the dimer

Let us now consider the dimer, or two-core coupler, for
which ��0. The stationary solutions for the dimer are ob-
tained from the algebraic set of equations

− 	w1 + �w2 + �w1v1 = 0, �16�

− �2	 + ��v1 + �w1
2 = 0, �17�

− 	w2 + �w1 + �w2v2 = 0, �18�

− �2	 + ��v2 + �w2
2 = 0, �19�

with w1
2+v1

2+w2
2+v2

2=1. Note that all amplitudes are real be-
cause w1 is real. Bang et al.5 found stationary solutions for
the more general dimer, or two-core coupler, where the sec-
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ond harmonics were also linearly coupled to each other. Set-
ting this SH coupling to zero gives us the stationary solutions
for our equations, which we summarize below.

1. Solution DI
For 	=−� /2=−� /2 the dimer solution DI exists. For

this solution, wn=0 and v1
2+v2

2=1. Because 	�0 we again
have no fixed point solutions with 	=0.

2. Solution DII
For 	�−� /2, two more dimer solutions exist, both with

wn�0 and vn=�wn
2 / �2	+��. The dimer solution DII has

w1
2=w2

2, which means that it has two branches: w2= 
w1 and
w1�0. This solution has the fundamental w1

2= �2	+��
��−	
�� /�2�0 and exists for �	+� /2��−	
���0. Set-
ting 	=0, we find the fixed point solution w1

2= 
�� /�2�0,
w2= 
w1, and vn= 
� /�.

3. Solution DIII
The dimer solution DIII also exists for 	�−� /2 with

wn�0 and vn=�wn
2 / �2	+��. However, in contrast to DII,

the DIII solution is more general with w2
2�w1

2 and w1�0. If
we define the parameter 
=�2 / �2	+��, then the DIII solu-
tion is given by w1w2=� /
 with the fundamental w1=�x
�0 being determined by the quadratic equation 
2x2−	
x
+�2=0.

Setting 	=0, we find that 
=�2 /�=�2 /� and 
2x2+�2

=0. Since �2�0 and we must have that x2=w1
4�0, fixed

point solutions only exist in the special linear case with
�=0.

For more details on the existence linear stability of the
solutions DI, DII, and DIII, we refer to Bang et al.5

IV. THE BREAK-UP OF THE LAST BARRIER
PREVENTING 
W1
2=0

We now consider the dynamical evolution of the fields in
the two-core coupler from the initial condition in which all
intensity is in the FW, i.e., W1R��=0�=1 with all seven other
fields being zero at �=0. This so-called unseeded initial con-
dition is typical in optical experiments. Our numerical simu-
lations show that as � is slowly increased from zero, for fixed
values of �=� and �, we move from a state at �=0, which is
completely integrable and the phase space is foliated with
invariant tori, to a state where none of the invariant tori exist
any longer, and hence the transport is no longer confined to
�or bounded by� barriers formed from invariant tori. This is
important as the state with no barriers is a state where it is
possible for the system to evolve from initially having all the
input in one waveguide and in one of the variables �i.e.,
W1R=1� to, for example, having all its output in the second
waveguide. Figures 3, 6, 7, and 9 have all been produced

using DSTOOL.26

A. The geometry and break-up of the barrier
in „W1R ,W1I… space with changing �

We study here what happens to the barrier seen in the
�W1R ,W1I� part of the phase space as the parameters are
changed. Due to our normalization, �=� is fixed. We further
fix the nonlinearity to �=10. We then vary � from 0 to �c and
above, where �c is the critical value of �, at which we break
through the last barrier to global transport in �W1R ,W1I�
space. In particular we look at the inner radius of the torus
�when it exists� for different values of �. Conclusions are
made regarding the way in which the orbits evolve on the
torus; i.e., whether they have an irrational rotation number, in
what direction do they wind around the tori, is the rotation
clockwise or anticlockwise, or is the rotation number
rational.

For �=0, it can be seen in Fig. 3�a� that the orbit winds
around the torus in a quasiperiodic, clockwise manner until it
densely covers the torus. This is expected as the system is
completely integrable for �=0 and hence we expect the
phase space to be foliated with such tori. We now perturb
this integrable system �i.e., the two uncoupled monomers� by
increasing the value of � away from zero and towards �c.

Increasing � to 0.45 �see Fig. 3�b��, we begin to see that
the outer limit of the torus is no longer so regular—it now
has a quasiperiodic wavy shape. Note that the orbit is still
winding around the torus in a quasiperiodic clockwise
manner.

If we now increase � to 0.55 �see Fig. 3�c��, we find that
the orbit winds around the torus much slower; this means
that the rotation number is very close to being rational. As a
result the orbit almost returns to the same position after a
certain time period. Note, however, that the orbit is still
winding round the torus in a clockwise manner.

A further increase in � to 0.65 shows a major change
�see Fig. 3�f��. The orbits are still bound by a torus and are
winding around the torus in a quasi periodic manner, how-
ever in an anticlockwise direction.

This means that for some value �r between �=0.55 and
�=0.65 we get a rational rotation number. See Figs. 3�d� and
3�e� for the second harmonic in the first waveguide for �
=0.58. A close look at these figures shows, however, that the
orbit is only approximately periodic. The reason is that the
amplitudes of both harmonics in the second waveguide are
small but not of the same period as in the first waveguide.
Such approximate periodicity suggests the presence of a
resonant region nearby in the phase space, the existence of
which could be shown analytically using normal forms.8 For
resonant or periodic conditions to be observed in the
�W1R ,W1I� space, the amplitudes of all the other waves
would either have to be zero or be periodic and of the same
period.

Further increases in � lead to the destruction of the torus,
which binds the motion �see Fig. 3�g��. We see that the bar-
rier appears to remain a barrier for a long period of time until
eventually the orbit crosses the barrier and evolves in a dif-
ferent region of the phase space. These barriers, which ap-
pear to be complete �i.e., no orbits are allowed through, for
our specific initial conditions and for ���0� but which in
fact are not �i.e., the orbit corresponding to our specific ini-
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tial conditions eventually crosses the barrier for ���0�, will
be termed partial barriers. These partial barriers could be due
to nearby “sticky” Kolmogorov–Arnold–Moser �KAM� tori.
Note that in using this definition, some of the barriers we
define as complete could in fact be partial for different initial
conditions and for values of � greater than �0. However, we
use these definitions as we are interested in what would be
observed practically, and hence we are only interested in our
specific initial conditions and the range of 0����0. Partial
barriers are important, because if the likelihood of transport
across them is sufficiently small, then practically speaking,
they act as though they are complete. It is observed that the

trajectory is now more complicated and is no longer
quasiperiodic. Instead, the trajectory evolves around the
torus in such a manner that we can observe many changes in
the direction of rotation from clockwise to anticlockwise and
back again �unlike in the case before, where the orbit just
rotated in one direction� as the orbit densely covers the sur-
face. Note that Figs. 3�d�–3�g� are all drawn for the same
range of �; i.e., the same �0.

If we increase � further still �i.e., to �=0.69�, we then
see that the partial barrier has a minimal effect on the dy-
namics on the time scales that we are interested in and hence
we do not feel its effect significantly. As expected, this shows

FIG. 3. For all axes, −1�W1R ,W1I ,V1R ,V1I�1. �a� W1R vs W1I for �=10, �=�, and �=0; �b� W1R vs W1I for �=10, �=�, and �=0.45; �c� W1R vs W1I for
�=10, �=�, and �=0.55; �d� W1R vs W1I for �=10, �=�, and �=0.58; �e� V1R vs V1I for �=10, �=�, and �=0.58; �f� W1R vs W1I for �=10, �=�, and
�=0.65; �g� W1R vs W1I for �=10, �=�, and �=0.68; and �h� W1R vs W1I for �=10, �=�, and �=0.69.
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that the rate of transport across these barriers is a function of
� �when ���c, we get no transport across them, but for �
��c in the ranges we have considered, the rate of transport
across increases with ��. This behavior is important as it
indicates the kind of values of � that are needed for fixed
values of � and � to obtain an chaotic transfer of intensity
from the fundamental harmonic in the first waveguide to
either of the harmonics in the second waveguide.

We also measured the inner radius of the torus for dif-
ferent values of �. This gives a value for the minimum of the
intensity in the fundamental wave; i.e., a value for �W1�min

2

�see Fig. 4�. For this figure, it should be remembered that, for
���c, the circle no longer exists; neither does it exist when
the orbit is in resonance, i.e., �=0.58.

The values of �c for a range of � from 1 to 20 and �
=� are also calculated. As can be seen in Fig. 5, there is an
approximately linear relationship between �c and � for the
range of parameter values we considered. It was also noticed
that when ���c, lower values of � give a wave with a com-
plicated amplitude changing more slowly and having less
disorder than a wave that is calculated for higher values of �.

We also found approximate values for �r �the value of �
for which we get resonance� to be 0.2725, 0.471, and 0.58
for � equal to 4 , 7 , and 10, respectively. It should be noted,
however, that the rotation number was different in each case,
but we could still observe the same type of phenomena we
described for �=10.

We investigate now the possible mechanism for the de-
struction of the complete barrier. It can be shown for systems
evolving on the plane that, as the perturbation of the inte-

grable case is increased, the resonance appears and grows in
size, and the region of the phase space occupied by the in-
variant tori shrinks. It is also found that invariant tori are
destroyed when resonances engulfs the region of phase space
they once occupied �see Meiss13�. In our system it appears
that the orbit gets trapped in a resonance zone in between the
case when it evolves on a torus and the case where there is
global transport in W1 space. This can be seen by the exis-
tence of particular values of � for which we have a change in
the way of rotation around the torus, and also in the fact that
after this occurs �i.e., for �r����c�, we have a motion that
is more irregular than before �but not as irregular as for val-
ues of ���c�, and which appears to be bound between two
tori, up until ���c. This is consistent with what happens for
systems that evolve on the plane as we increase the pertur-
bation.

B. Partial and complete barriers and their effect
on how the intensity 
W1
2 changes with time

We now study how the presence or absence of partial or
complete barriers affects the intensity of the fundamental and
second harmonics in each waveguide. We do this by investi-
gating how the intensities varies with time and with each one
of the cases where we have a complete barrier, an approxi-
mate resonance, a partial barrier, and finally no barrier of any
consequence.

The first case studied �see Fig. 6�a�� is the case of the
complete barrier. As an example, we take �=0.65, �=10, and
�=�. This corresponds to Fig. 3�f�. As we can see from Fig.
6�a�, the intensity in the fundamental remains bound by an
upper ��W1�2=1� and lower value ��W1�2= �W1�min

2 �, where
�W1�min

2 is a constant corresponding to the inner radius of the
tori seen in Fig. 3�f�.

We now increase the value of � to 0.68 �see Fig. 6�b�� to
show the effect of the partial barrier seen in Fig. 3�g�.

As can be seen in Fig. 6�b�, the intensity appears bound
for quite a period of time but, when the orbit breaks through
the partial barrier, a dramatic change in the minimum value
of the intensity �W1�2 is observed; i.e., its minimum now
becomes 0 and the intensity no longer oscillates between
�W1�min

2 and 1.
We now increase the value of � to 0.69 �see Fig. 6�c�� to

show the effect of the lack of a presence of a barrier of any
consequence for the minimum intensity �W1�min

2 , as can be
seen in Fig. 3�h�. The amplitude here is characteristic of that
resulting from a relatively high dimensional system in which
the orbit is evolving in a spatially temporally chaotic manner.

Finally we study the case where the orbit is nearly reso-
nant �see Fig. 6�d��, which corresponds to Figs. 3�d� and
3�e�. We notice that the minimum and maximum values are
no longer a constant but vary in time in some periodic man-
ner. This is to be expected by observation of Figs. 3�d� and
3�e�: the orbits are nearly resonant.

FIG. 4. �W1�min
2 vs � for �=10, �=�. Notice that �c is the minimum value of

� for which �W1�min
2 =0.

FIG. 5. �c vs �, for �=�.
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C. Partial and complete barriers and the relationship
between the intensity in each of the harmonics

Having studied how the intensity varies with time, we
now concentrate on investigating how the intensity �W1�2 var-
ies with �W2�2 and �V2�2. This will show how the intensity is
transferred between the waves in the two different
waveguides. We follow the same procedure as before and
study the case where we have complete and partial barriers
as well as the case where there is no barrier of any conse-
quence and the case when the orbit is close to a resonance.

We start with the case where there is a full barrier; i.e.,
�=0.65. We then increase � to 0.68 and finally up to

�=0.69. For Fig. 7, it should be noticed that the intensities of
W1 and W2 are never simultaneously zero. This explains the
fact that the intensity is never equal to 1 for �V1�2+ �V2�2 for
the parameter ranges we consider. This implies the existence
of other barriers to motion in phase space, which prevent
�V1 � + �V2�2 from becoming 1, even when �W1�2 becomes 0. It
can also be seen in Fig. 8 that, for values of � of approxi-
mately 1 or less, we have a constant minimum intensity that
is the same as that existing for �=0. We also observe that
�W1�min

2 + �W2�min
2 =C1, where C1 is a constant, whereas for

larger values of �, we have the relationship �W1�min
2 + �W2�min

2

=C2, where �W1�min
2 + �W2�min

2 =1 for � so large that � can be

FIG. 6. The intensity �W1�2 vs time for different values of � with fixed �=� and �=10. On all axes, 0� �W1�2�1 and time runs from �=0 to �=1010. �a�
�=0.65; �b� �=0.68; �c� �=0.69; and �d� �=0.58.
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considered effectively equal to zero. It should also be noted
that, by observation of how the trajectory evolves in Fig.
7�c�, partial barriers can be found to exist in the phase space
for �=0.68. This can be easily seen from the density of the
points in these figures.

Figure 8 shows how the minimum of �W1�2+ �W2�2 varies
with � for �=10 and �=�. It can be seen that for small
values of �, ��W1�2+ �W2�2�min remains constant, having the
same value as the ones that can be obtained from the inte-
grable case, where �=0. This means it may be possible to

FIG. 7. Intensity evolution for different values of � with fixed �=� and �=10. On all axes, 0� �W1�2 , �W2�2 , �V2�2�1. �a� �W1�2 vs �W2�2 for �=0.65; �b� �W1�2
vs �V2�2 for �=0.65; �c� �W1�2 vs �W2�2 for �=0.68; �d� �W1�2 vs �W2�2 for �=0.69; �e� �W1�2 vs �W2�2 for �=10; and �W1�2 vs �W2�2 for �=100.
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obtain an analytical solution for this value. At the other limit,
we know that, as � becomes infinitely larger than �, then
��W1�2+ �W2�2�=1 for all time, as no intensity is transferred to
Vn �see Fig. 9�.

V. CONCLUSIONS

The present study shows the importance of barriers to
transport in the phase space of the model �1� and �2� of two
coupled quadratic nonlinear waveguides, and the effect the
barriers have on the transfer of intensity between
waveguides. This is important as the parameter values for
which the last barrier to global transport in W1 space is bro-
ken provide the minimum value for which there is complete
transference of intensity from the fundamental in the first
waveguide ��W1�2� to the other harmonics. Figure 4 shows
the presence of a critical coupling strength �c, which is the
minimum value of � for which �W1�2 can go from initially

being equal to 1 to being equal to 0 after a finite time. Figure
5 shows the values of �c for different values of �, keeping
�=�.

We also show that, just before the last barrier preventing
�W1�2=0 breaks up, the orbit gets trapped near a resonance
zone. We make the conjecture that the barrier breaks up be-
cause it becomes engulfed by a resonance. We show that
partial barriers in the phase space also exist. These partial
barriers are important as they act as complete barriers for
long time periods and then suddenly the orbit breaks through
them and is able to explore more of the phase space. What is
of interest, practically speaking, is that the partial and com-
plete barriers can be almost indistinguishable for long time
periods, depending on the initial conditions and on how easy
it is to cross the partial barrier. We show that the intensity
�W1�2 becomes very disordered �i.e., it appears spatially and
temporally chaotic� for a very small increase in � past �c �for
���c the orbit evolves on a torus and hence the intensity is
trapped between an upper and lower limit�. It is important to
note the disordered pattern of the intensity in time as it
shows that such responses are inherent in the system and are
not just a product of noise or experimental error. What is also
important is the proximity, in terms of the coupling �, be-
tween the ordered and disordered response.

It is also shown that the barrier, which prevents the
transport in �W1� space, is not the last barrier to break down
in the phase space in the range of parameter values we
looked at �� variable, �=10, and �=��. This can be seen in
Figs. 7�c� and 7�d�, in which we can see that we never obtain
the intensities �W1�2= �W2�2=0. Figure 8 shows how ��W1�2
+ �W2�2�min varies with the coupling constant �. It can be seen
that for � small, this is almost a constant of similar size as for
�=0, whereas for 20���1000, ��W1�2+ �W2�2�min is again
approximately constant, but is now equal to 0.2. This is im-
portant as it shows that if we want to find the minimum
value, which transfers all the intensity to being in either of
the second harmonics, we have to investigate the break-up of
some of the other barriers in the phase space.

Finally, we note that we can also obtain interesting phe-
nomena by perturbing the integrable case of ��0,�=0 with
small values of �. This would be a study of a route to chaos
from a coupling limit other than the one we have just stud-
ied. It should also be noted that further interesting informa-
tion regarding the location of resonances and close invariant
tori in the part of the phase space relevant to this application
could be provided with the use of geometrical and analytical
tools, such as normal forms and KAM theory.
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