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Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems
in the presence of noise
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3Department of Physics, The Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
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We study scaling regularities associated with the effects of additive noise on the bicritical behavior of a
system of two unidirectionally coupled quadratic maps. A renormalization group analysis of the effects of noise
is developed. We outline the qualitative and quantitative differences between the response of the system to
random perturbations added to the master subsystem or the slave subsystem. The universal constants deter-
mining the rescaling rules for the intensity of the noise sources in the master and slave subsystems are found
to be y=6.6190% ... andvy=2.7137®. . ., respectively. A number of computer graphical illustrations for
the scaling regularities is presented. We discuss the smearing of the fine structure of the bicritical attractor and
the Fourier spectra in the presence of noise, the self-similar structure of the Lyapunov charts on the parameter
plane near the bicritical point, and the shift of the threshold of hyperchaos in dependence of the noise intensity.

DOI: 10.1103/PhysReVvE.64.066207 PACS nunier05.45—-a, 05.45.Df, 05.10.Cc

[. INTRODUCTION developed in the works of Crutchfielet al. and Shraiman
et al. [4]. As shown by these authors, to observe one more
Starting with the works of Feigenbauj], it has become level of period doubling one has to decrease the intensity of
clear that a description of the transition to chaos is not ofhoise by a factory=6.619@ ... —the universal constant
qualitative nature only, but has a quantitative aspect as welfeésponsible for the scaling regularities of the effect of noise
The problem is not restricted to enumerating the possiblén the Feigenbaum universality class. Analogous analyses
bifurcation scenarios on the road from regular to chaotic dyWere undertaken, and the respective scaling constants were
namics; there exist classes of quantitative universality assd:Stimated for intermittency5] and quasiperiodicity 6] in
ciated with the distinct scenario@t least, with some of dissipative systems, as well as for period doubliy and
them), which have to be revealed and studied. Systems OKAM-torus destructlor’{8] in Ha}m|lton|an systemg. Never-
different naturesiterative maps, differential equations, delay theless, pther known un!versallty c[asses, in particular asso-
differential equations, etcrelating to a certain universality ciated with period doubling in multiparameter syste(ase

class demonstrate the same scaling regularities near the onsl,?e?f' [3] for a review, have not been investigated with re-
g reg spect to the effects of noise.

of chaos, characte_rlzed_ by definite universal sc_allng CON-" An interesting class of dynamical models with nontrivial
stants. _'I_'he _theoretlcal mstrqme_nt for the analysis of thesaynamics is represented by coupled maps with unidirectional
regularities is the renormalization grouiRG) approach. .o njing. In particular, these models were suggested to ana-
Suggested first in the context of the period-doubling transiyy;e and explain important peculiarities of turbulence in
tion to chaos by Feigenbaum, this approach was extended %en flow systemg9]. More recently they were discussed in
many authors in applications to other universality classeshe context of applications to secure communication on a
[2,3]. basis of the phenomenon of chaos syncronizafit@l. In

In the context of a multiparameter analysis of the onset othis paper we turn to a study of the effects of noise on the
chaos, a criticality of definite type may take place at certairso-called bicritical behavior in a model of two one-
surfaces, curves, or points in parameter space. RG analysisdimensional quadratic maps with unidirectional coupling
an invaluable tool for the search, study, and classification of11—17. The bicritical point corresponds to a situation when
the critical situations. Their codimensidthe number of pa- both subsystems are brought to the border of chaos by tuning
rameters that have to be adjusted to reach critidaityde-  of two parameters controlling the period doubling in these
termined by the number of relevant unstable eigenvectors dfvo maps. This may be regarded as the point of onset of
the linearized RG equatiofsee, e.g., Ref.3]). hyperchaos in the unidirectionally coupled maps. Empirical

Wishing to apply the concepts of universality and scaling(numerical and experimenjahdications of the existence of
to realistic systems, or to observe scaling regularities in ahis type of criticality and of the associated scaling regulari-
physical experiment, we must account for the presence dies were presented in an earlier wgikl]. Subsequently, a
noise. Hence a question arises concerning the effects of noigietailed theoretical study of the bicritical behavior was un-
on the dynamics near the critical points associated with thelertaken, accurate numerical values of the scaling constants
various universality classes. were found, and explanations of the scaling properties of the

Again, the deep and revealing approach to this problem iphase space and parameter space were given on the basis of
based on an appropriately modified version of the RG analythe RG analysi$12,3,13.
sis. For the Feigenbaum criticality such an approach was first As it follows from the RG and universality arguments, a
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FIG. 1. Chart of the dynamical regimes or bifurcation diagamand Lyapunov charfb) for unidirectionally coupled magd&qg. (1)] on
the parameter plane\( A) without noise;B=0.375. In panela) numbers indicate periods of regimes observed in the second subsystem.
“Ch-1" is the regime of chaotic synchronizationA\(;>0, A,<0: chaos in the first subsystem induces the chaoslike motion of the second
subsystern “Ch-II” corresponds to chaotic motion only of the second subsystém<(0, A,>0), and “Hyper” designates the regime of
hyperchaos £ ,>0, A,>0). The bicritical point is marked by a lett& on plot(a), and by a small cross ith).

bicritical behavior may occur in systems of different nature, Xni1=1— )\xﬁ, Vs 1= 1—Ayﬁ— Bxﬁ, )
provided that they can be decomposed into two period-

doubling subsystg_m_s with unidirectional coupling. Besidesyherex andy are the dynamical variables for the fifstnas-
the somewhat artificial model of coupled quadratic maps, th‘?er“) and second®slave”) subsystems, respectively: and
bicritical point was found_ numerlcall_y in more realistic _mod- A are parameters that control the period doubling in the sub-
els, such as two Chua circuit&4], driven nonlinear oscilla- systems, an@ is a coupling parameter. Figuréal shows a

tors [15], and laser systems with unidirectional coupling ciyart of the dynamical regimea bifurcation diagramof the
[16]. Moreover, the bicritical behavior was observed in eX-model on the parameter plana,@) for B=const. As the

periments with the unidirectionally coupled driven RL-diode master systenx does not “feel” the dynamics of, the bi-
circuits[11,17). Obviously, a study of the effects of noise on cations in that subsystem occur along vertical lines, cor-
the bicritical dynamics is of interest for the interpretation of responding to the bifurcation values bffor a single qua-
theseb an(]il.other p035|fble ﬁxpenrpen;s. Atf tﬂe samtla (tjlme, Gratic map. The period-doubling bifurcation lines converge,
may be of importance for the application of the coupled MaR, 5ccordance with the Feigenbaum law, to the critical line

modd;:‘ls, e.g. for a desc_np'gon of rihenomina |r;hopefrf1 ﬂ(t)w =\g=1.4011%.... On theother hand, for any fixed
and for secure communication systems, where the etfects q Ng an increase ofA gives rise to a sequence of period

noise can be ess_entlal. . doublings in the slave system. The cascade starts from a

. In S_ec_. I we mtroduge a model of two quadratic _mapsperiod corresponding to dynamics of the master system at the
with unidirectional coupling, and recall_a number .Of signifi- given \, because this periodicity is induced in the second
cant (;(cajsultsdknown frobm prewoushstudl%s.ITh((ejn, In Sec. III'subsystem due to the coupling. The limit curve of the period-
we add random perturbations to the model and present so ubling accumulation in the slave systétw Ag(\) meets

humerical re_sults to give a prelimingry impressior_1 of thethe critical line of the master system at some point. This is
effects of noise. In particular, we obtain a rough estimate fo(/vhat we call thebicritical point In particular, for B

a scaling constant associated with the noise. Section IV is o
devoted to an accurate RG analysis of the effects of noise on 0.375 it is located at
the bicritical behavior. We derive the RG equation, and =~ = _

present the results of a humerical solution including the im- Ac=Ap=1.40115518908. .., A.=1.12498148... 2
proved high precision value for the universal constant. In 2
Sec. V further conclusions following from the RG analysis

are discussed, and computer illustrations for the scaling regu- The attractor at the bicritical point is a multifractal object
larities are presented. embedded in two-dimensional phase spacg/). The self-

similarity of the fractal structure near the origin is governed
by the Feigenbaum constant=—2.5029078% ... for X,
IIl. A MODEL OF TWO QUADRATIC MAPS and by a constanB=—1.50531818 ... fory [12]. The
WITH UNIDIRECTIONAL COUPLING. v!C|n|ty ' of the plcrltlcal pomt_ is characte_nzz_ed by 'two—
THE BICRITICAL POINT dimensional scaling. One scaling factor coincides with that
of Feigenbaumg; =4.66920160 . . . while the other is dis-
Let us consider a system of two unidirectionally coupledtinct, §,=2.3927248 ... [12]. Subsequent magnifications
quadratic map$12,3,13, of the picture in a neighborhood of the bicritical point by

066207-2
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1.6

FIG. 2. Lyapunov charts in the presence of
noise in the firs{mastey subsystem forx=0.01
() and«=0.06(b); e=0. The gray scales repre-
sent the values of the Lyapunov expondnt, as
in Fig. 1(b).

05 A A 17
(@) (b)

factors 8, and &, along the horizontal and vertical axes, re- lll. EFFECTS OF NOISE: EMPIRICAL RESULTS AND
spectively, allow the observation of a self-reproducing struc- NUMERICAL ESTIMATE FOR THE NEW SCALING
ture. CONSTANT

In fact, the bicritical situation takes place on a whole defi- To account for noise in modell) let us introduce two
nite curve in the three-dimensional parameter space of model

(1), so the same regularities can be observed for other posf andom sequences, and, . We assume that, and, are
tive values of the coupling parame®@{13,1§, For negative statistically independent, and represent discrete-time white

values ofB the bicritical behavior does not occur. noise, i.e., the elements of each sequence at different steps of

In Fig. 1(b) we depict the same area of parameter plane ”yme are also independent. The maximal magnitudeg,of
the form of a Lyapunov chartsee Ref.[19] for previous and 7, are supposed to be bounded. The average,j@nd
applications of this methodFor comparison, this is shown "n IS Z€r0. (€n)=(70)=0, and the Sta;‘dafd deviation is
side by side with the chart of the dynamical regimes. some constant o, (&uén)=(mnmn)=0°, and cross-

Our system has two Lyapunov exponents;=A ,(\), correlations vanish(¢,7,)=0 for any n and m, and
which relates to the master system, ahg=A,(\,A,B),  (&ném)=(7n7m)=0 forn#m. Then we set
which relates to the slave system. This decomposition is pos- )
sible, of course, due to the unidirectional nature of the cou- Xn+1=1—AX5+ Kén,
pling. At each pixel of the two-dimensional plot we estimate (5

the Lyapunov exponent Yni1=1—-Ay2—BX2+e7,,

1 N
NE n|2AYn

wherex ande are parameters that characterize the intensity
) of the additive noise sources in the master and slave sub-
systems, respectively.

If the amplitude of noise is small, and the dynamics are
from numerical computations, and mark the pixel by a grayconsidered on a large time scale, the concrete form of the
tone. We code negative values of the Lyapunov exponerprobability distribution foré, and 7, appears not to be es-
(from —< to 0) by tones from dark to light gray. White sential, and the behavior of the noisy system will be of a
represents zero values, and black denotes positive values @hiversal naturdcf. Ref.[20]). In the present computations
the Lyapunov exponent. This convention ensures a clear viwe define£, and 5, as random values uniformly distributed
sion of the border between regular and chaotic dynamics. lever an interval —0.5,0.5. Hence, the standard deviation
contrast to the bifurcation diagram of Figal, the Lyapunov o= 1/{/12.
chart retains a meaning in the presence of noise, so it will be In Figs. 2 and 3 we present Lyapunov charts obtained in
useful in our further considerations. the presence of noise in only the first or in the second sub-

It is worth noting that the bicritical behavior appears assystem, respectively. As in Fig.(d), the gray tones code
well in a model with linear coupling11]. Indeed, if the values of the Lyapunov exponeit, defined by formulg3).
model map is chosen in the form It is interesting to compare these diagrams with Fidp) 1o
observe the increasing degree of smearing of the fine struc-
tures on the parameter plane as the noise intensity grows.

The clear difference between Figs. 2 and 3 indicates the
essentially distinct character of the effects of noise on the
then, substituting X,=x,-1, Y,=VY./(1+¢€), A=a(l master and slave subsystems. In the first case the smearing of
+¢€), B=eN/(1+¢€), we observe thaX,, Y, obey pre- the fine structure in the parameter plane looks more or less
cisely to Egs.(1). The bicritical behavior will take place at diffusivelike. In contrast, in the second case smearing takes
positive €. places only along the vertical direction. Vertical borders, as-

Ay= lim (

N—oo

Xnr1=1-NXZ,  Ynpri=l-ay’+ex,, (4)

066207-3
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FIG. 3. Lyapunov charts in the presence of
noise in the secondslave subsystem fore
=0.02(a) ande =0.06(b); k=0. The gray scales
represent the values of the Lyapunov exponent
A5, as in Fig. 1b).

A
(b)

1.8

Ae

(@)

sociated with the bifurcations in the master system, remain @)
clearly visible.

In accordance with the results of Refdl], to observe Now we raise the last equation to the second power, and
each next level of period doubling in the master system weperform an averaging over the ensemble of samples for the
have to decrease the noise magnitudeby a factor y random sequence,,. This yields
=6.619@ . ... It is natural to ask about an analogous rule
for the case when the source of noise is placed in the slave
system. To give a preliminary account and obtain a rough ~
estimate of the associated scaling constant, in Fig. 4 we showhereD,=(y2)/o?. (Here we take into account thai, and
the plots of the variablg versus parametek in a vicinity of 'y are independent random variables by virtue of the white-

the bicriticalkpoint[Ac—AA, A;+AA]. The other p?jram- noise nature ofy,. Hence, the tern'(ZAYnS’/nnn> disap-
eters are kept constantA=\;.=1.4011%... and B . ~ ~
ars(2AYYnmn) = (2AYYn){(17,)=0.)

=0.375. These pictures are analogous to the commonlf/)e

S;nJrl: - ZAYn?n+ Tn -

Dy, 1=4A%Y2D,+1, (8)

known Feigenbaum bifurcation diagranithe bifurcation
trees. However, here they are drawn for a slave map sub
jected to external drivingdue to coupling with the master
subsystem and due to the presence of a source of)ndise
computations were performed with noise only in the slav
subsystem, i.ex=0, while ¢ is nonzero.

Now Eq. (8) together with Eq(6) appear to be a closed
set of equations that may be iterated numerically. We can

take critical values for the parametedss=\. and A=A,
and perform 3 iterations of Eqs(6) and (8) starting from

&o=0, Yo=0, andD,=0. We may regardY.«| as a char-

acteristic scale for a displacementyobf dynamical nature,

The top left panel of Fig. 4 corresponds to a definite ar-
bitrarily chosen noise magnitude=¢,=0.0005. To make
the structure distinguishable, we do not plot all values ac-
cepted by the variablgin the process of dynamics, but only
those values that occur with a stepdfi= 16 iterations. The
three other diagrams are obtained under rescaling through six
period-doubling levels; that is, we increase the number of
iterations and the stefin by a factor 2, decrease the inter-
val for A by &5, the interval fory by 88, and the magnitude
of noise by some factor®. The constantr should be se-
lected to make the rescaled picture as similar as possible to
the original. Settingv=2.3, 2.7, and 3.1, we see that
=2.7 seems to be an optimal value. For smallethe res-
caled diagram looks more noisy, and for largeless noisy
than the original.

A simple numerical procedure makes it possible to im-
prove the estimate of the scaling constant. Let us turn to Egs.
(5), setk=0, and assume to be small. Then we can search

for a solution in the formy=Y+ey. Substituting this ex- FIG. 4. Bifurcation tree in the presence of noise in the slave
pression into Eq95) and retaining terms up to the first order system: variabley vs parameteA at \=\.. The first picture cor-

in £, we have responds to a noise magnitude=¢,=0.0005; the others are ob-
tained after a rescaling through six levels, i@A—>AA/6g, Ay
—Ay/pB%, ande—elv8, wherev=2.3, 2.7, and 3.1, respectively.
On the top left diagram each 16th iteration stepyfas plotted, on
the other diagrams we plot each 1024th step.

A4 —

0.2

y

-0.2
=0.

Yni1=1-AY5—Bx; (6)

Xn+1= 1_)\Xﬁ'
and

066207-4



SCALING PROPERTIES OF BICRITICAL DYNAMIG . .. PH'SICAL REVIEW E 64 066207

and D as a scale for a random displacement due to the Xn+1=G(X,) + kU (X,) &y,
noise. Their ratioR,= D,«/| Y, characterizes the relative 9

effect of the noise on the dynamics. Comparing the values of ~ Yn+1=F(Xq,Yn) +&V(Xq,Yn) 70+ kW(X,,Yn) & -
Ry at two subsequent levels we come to an estimate
=Ry 1/Ry. Performing the computations f&rof order 10—
13, we findv=2.712+0.002.

Obviously, Egs.(5) represent a particular version of this
model with G(x)=1—-Ax%, U(x)=1, F(x,y)=1—Ay?
—Bx%, V(x,y)=1, andW(x,y)=0.

The stochastic mapEgs. (9)] describes the evolution of

IV. RENORMALIZATION GROUP ANALYSIS thg system over one step qf discrete time. We can apply it
OF BICRITICALITY IN THE PRESENCE OF NOISE twice to obtain the stochastic map for two steps of iteration.
We suppose that the parameters of the noise magnitude are

Let us write out equations for two unidirectionally small (x, e<1) and neglect terms of second and higher

coupled noisy subsystems in following generalized forms orders. Then, using the rescaliRgsx/«, y—Yy/ 3, we have

Xn+2:aG(G(Xn/a))+ aK[G,(G(Xn/a))U(Xn/a’)gn"—U(G(Xn/a’))gn%—l]r

Yn+2=,8F(G(Xn/a)rF(Xn/a'vyn/B))+BE[F;/(G(Xn/a)!F(Xn/aaynlﬁ))v(xn/a’vynlﬂ) Mn
+V(G(Xy/@),F(Xa/a,yn! B)) 70+ 1]

(10)
+ Br[F(G(Xq/a),F(Xnla,yn! BIU(Xy/ @) éq+ F)’/(G(Xn/a)uF(Xn/avyn IBIW(Xn/a,yn! B)én
+W(G(Xn/@),F(Xn/a,Yn!B))én+1].
|
Accounting for the white-noise nature of the independent Xnt 2k= G(Xpn) + kU (X)) &n
random variableg and », we may redefine the white-noise (12)
random( p)rocesses to represent E39) in forms analogous Y+ ok=F(Xn,¥n) + eVi(Xn¥n) 7nt kWi (Xp,Yn) én s
to Egs.(9),

where the functions obey the recurrent functional relations
Xnt2= G1(Xp) + kU1(Xp) €n,

11 =
Ynt+2=F1(Xn,Yn) +eVi(Xn,Yn) 70+ kWi (X, Yn) én a( : Gicra(¥) aGk(Gk(X/a)),

by an appropriate selection of the amplitude functions at the Fir1(Xy)=BF(G(X/ @), F(X/a,yl B)),
noise terms.

Next the same procedure may be applied to Ef$). to U100 =] al{[Gr(Gr(X/ ) ]2 (U (X @))?
obtain the stochastic map for four iterations, and so on. After
k steps we will have the maps foK Bteps of discrete time, +[ U (Gy(x/ a))]?}*2, (13

Vi 106Y) = | B F iy (Gi(x/ @), Fi( X/ a,yI B)V(x] a,y1 B) 1P+ [Vi(Gi(X] @) F (X @,y B)) 1?2,

Wi 1(6,Y) =| BRI F i x(Gk(X/ @) ,F (X @yl B))Ui(X] )
+Fy (Gl ), Fi(xla,yl B)Wi(x/ a,yl B) 12+ [W(Gi(X @), F (X a,yl B)) ]2} 2.

(Here the indicex andy denote the derivatives d¥ with g(x)=ag(g(x/a)),
respect to the first or second argument of this function, re- (14)
spectively) f(x,y)=pBF@g(x/a),f(xa,ylB)).
As we take the original map at the bicritical point and set
a=ap=—250D ... and B=-1.508...; then Gy(x) Equationg(14) determine the fixed point of the RG trans-

and F,(x,y) converge to definite limit functiong(x) and formation responsible for the universality class associated
f(X,y). These functions satisfy a set of functional equationswith the bicritical behaviof12,3]. The first line in Eqs(14)

066207-5
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obviously coincides with the well-known Feigenbaum- Wi 1(x,y) = | B FL(a(x/ ), f(xI a,yl B))U (X a)
Cvitanovicequation[1]. Here it is convenient to normalize

andy in such way thag(0)=1 andf(0,0)=1. +E(g(x/ ), f(x/ a,yl B))Wi(X/ a,yl B)]?
At large k the functionsU,(x) andV,(x,y) will behave
asympto%ically as ) () +[Wig(x/ ), f(x/a,yl B))]?H2. (20)
U ()= VORD(x), Vi(x,y)=VO T (xy), (15 Without the term proportional t&J,, it takes the same

form as the equation for the functidry, so the asymptotic

whereQ = y? and® = 12 are the largest eigenvalues, abd solution would behave as®. This component may be ac-

and ¥ the corresponding eigenfunctions for the linear func-counted for in the ternv, in the stochastic mafeq. (12)].
tional equations: In presence of the tertd, the solution is forced to behave as

¥* (note thaty>»). So, the equation fow does not provide
Q®(x)=a¥{[9'(g(x/ ) D (X/ @)+ P(g(X/@))}, new relevant scaling constants.
(16 In a linear approximation with respect to the noise ampli-
tude the stochastic map for the evolution ov&isgeps at the
and bicritical point is represented asymptotically as

OW(x,y)=BH[f (g(x/a),f(x/a,yI B))]*¥ (x| a,y! B) Xns k= 0(Xn) + kYU (X)) & s

+W(g(xl ), f (Xl a,yl B))}, 1 @D
(o M v} 0 yn+2k:f(xnvyn)+8VkV(XnaYn)77n+K7kW(Xnvyn)fn-
respectively.

Equation(16) describes the effect of noise on the master If we consider a slight shift of parametexsand A from
system, and, of course, it coincides with the previously obthe bicritical point then additional perturbation terms appear
tained expression for a single noisy period-doubling fi@gp  in the equatior(see Ref[12]):

As found numerically, the largest eigenvalue is
Xn+2k=0(%Xq) + C18 (Xq) + kY¥U (Xn) &r,
v=6.61903653 . . . . (18 (22)
Figure a) shows the eigenfunctiod® (x). Yot 26= T V) F C20501(Xp) + C103M12x)

Equation (17) describes the effect of the noise source +ev"V(Xn,Yn) 7t KYW(X,,Yn) & -
added to the slave system. It contains the universal functions
g(x) and f(x,y) relating to the fixed point solution of the D(x)

RG equation14). These functions were computed in a form
of polynomial expansions over even powers of the arguments
[see Refs[1,21,3 for the coefficients of expansion fgi(x),

and Refs[12,3] for f(x,y)]. Using these data we have con-
structed the functional transformation of the right-hand side 04 / / \ \
of Eq. (17) as a computer program. The unknown function / \\ / \ / \
¥ (x,y) is represented by a table of its values on a rectangu- \/ 7 \/
lar two-dimensional lattice in the squarel=x<1, —1 0

<y<1 and by a fourth-order polynomial interpolation 6 4 2 0 2 4 X
scheme between the lattice sites. Taking random initial con- (a)

ditions for¥(x,y), we then perform a functional transforma-
tion and normalize the resulting function¥?(x,y)

=V (x,y)/¥(0,0). This operation is repeated many times,
until the form of the function stabilizes, and the value of
¥ (0,0) (before the normalizatiorbecomes equal t® = v2.

The result of these computations for the new scaling constant
is

0.8

»y=2.7137@. . ., (19

which is in a reasonable agreement with the estimates of Sec.
[ll. Figure 5b) shows the three-dimensional plot for the
eigenfunction¥ (x,y). ()

With respect to the last unknown functiow,(x,y), it
follows from Eq.(13) that under subsequent RG transforma-  FIG. 5. Plots of the eigenfunctions for E(L6), eigenvalue()
tion it will asymptotically behave in accordance with the =4?=43.811@6... (a), and for Eq.(17), eigenvalue® =?
equation =7.364% ... (b).
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Here {h;,h;5} and {0h,} represent eigenvectors of the added to the master and to the slave subsystem. In the first
linearized RG equation without noise associated with the eiease the structure is blurred both in the longitudinal and
genvaluess; =4.662 ... ands,=2.397 . .. ,respectively. transversal directions; in the second case the transversal frac-
The coefficientsC, and C, depend on the parameters and tal structure continue to exist in spite of the action of noise.
vanish at the bicritical point. In a close neighborhood of the It is worth stressing that quantitatively the effects of noise
critical point it is sufficient to account only for the leading on the bicritical attractor are much stronger in the case when
terms of the expansions and s€;x(A—\.), C,x(A  the noise source is added to the master system than when it is
—A.). added to the slave systeitindeed, a comparable degree of

Now let us formulate the basic scaling property that fol-blur in the attractor structure on Figs. 6 and 7 corresponds to
lows from Eqgs.(22). If we double the number of time steps €q/xo=400) This circumstance is linked, obviously, with
(i.e., changek to k+ 1), decrease parameter differendes  the fact that the scaling constant for noise intensity is essen-
=\—\.andAA=A—A_ by factorss, and 8,, respectively, tially larger for the first situation.
and decrease noise amplitudesande by factorsy and v,
then the form of the stochastic m@Rqg. (22)] remains un- B. Effects of noise on the Fourier spectrum
changed. Thus, with the new parameters, the noisy system
will demonstrate the same behavior as with the old ones, bLge
with twice the time scale.

At the bicritical point both the master and slave systems
nerate Fourier spectra that are hierarchically organized and
contain components at frequencies2® with regularly de-
creasing intensities in dependence on the level nurkbler

V. SCALING PROPERTIES FOLLOWING the master subsystem this is the well-known spectrum asso-
FROM THE RENORMALIZATION GROUP ANALYSIS ciated with the Feigenbaum criticalif22]. In the slave sub-
AND THEIR DEMONSTRATION system the spectrum is qualitatively similar, but quantita-
IN NUMERICAL COMPUTATIONS tively distinct[11,12: the decrease of the spectral intensities

. , , ) from level to level is much slower. Figure 8 illustrates a
Now we intend to discuss some manifestations of the efehange of the spectrum generated by the slave system in the
fects of noise on dynamics of the unidirectionally coupledpresence of noise in the master system. Each subsequent plot
maps at the bicritical point and in its vicinity in view of the corresponds to a larger intensity of noise. Figure 9 presents

scaling properties stated in Sec. IV. analogous spectra for the case when the noise is added only
to the slave system. The observed effect of subsequent
A. Noisy bicritical attractor smearing of subtle details of the spectral structure from level

to level is more or less obvious, but we find it useful to
Eresent here the spectra because they could be directly com-

tifractal object embedded in two-dimensional phase spac ; ; ; . : -
: ; ) . ared with those obtained in physical experiments. Again we
(with an estimated fractal dimension of 1.07852]. In the Jpoint out that influence of tﬁeynoise aFo)Ided to thegmaster

presence of noise, the subtle s’gructur.e of th? attractor | ystem is stronger than that of noise in the slave system.
smeared out level by level as the intensity of noise grows. In

accordance with the conclusions of Sec. IV, each new level
of the structure blurs when we increase the magnitude of the
noise source in the master system by a factoand the In accordance with the results of Sec. IV, at the bicritical
magnitude of the noise source in the slave system by a factgroint the system will demonstrate similar behaviors for the
v. Figures 6 and 7 show portraits of the attractor of ournoise intensity parameters (g) as for (x/y,e/v), but with
model system (5) at the bicritical points A=\, a doubled characteristic time scale in the second case. Thus

Without noise the attractor at the bicritical point is a mul-

C. Lyapunov exponent in the presence of noise

=1.4011% ..., A=A,=1.1248..., and B=0.375 on the magnitudes of the Lyapunov exponents afye/v)
the plane of dynamical variablex,f) in the presence of must be half the magnitude at (¢). Hence we may estimate
noise. critical indices for the Lyapunov exponents with respect to

Figure 6 relates to the case of noise added only to théhe intensities of noise sources added to both subsystems.
master system. The top row corresponds to the noise intef-hat is, they must behave as
sity ko=0.0001, and the bottom row teyy. Each subse-
guent plot in a row shows a box from the previous diagram
under magnification by factore and 8 along the horizontal
and vertical axes, respectiveljvith an inversion, because where p=log,2=0.366%..., v=I0g,2=0.6942 ...,
of the negativity of both factorsFigure 7 presents analo- andcy, c;, andc, are some coefficients.
gous diagrams for the case when the noise source is added The scaling properties of the Lyapunov exponents are
only to the slave system. Here the intensity of noisejs demonstrated in Fig. 10. We show the plots for the both
=0.04 for the top row, and,» for the bottom row. On both exponents associated with the master and slave subsystems,
figures one can observe that diagratoy (f), (d), and (g) A4 and A,, versus the parameter of noise intensitywith
look remarkably similar in agreement with the expected scale =0 [(a) and (b)], and the plot forA, exponent versus the
ing property. noise parametes with k=0 (c). A selected box is shown
Visual comparison of Figs. 6 and 7 demonstrates an eviwith magnification by a factor 2 along the vertical axis, and
dent qualitative difference with respect to the effects of noiseby a factory [(a) and(b)] or v (c) along the horizontal axis.

A]_ECOKP and AZEC]_KP+ CZSU; (23)
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11
@ ! (b) (©) )

/ f / / ,

y / f | }( / | 4

-0.8
-0.8 X 1.1

Ll
(e) / (f) (@ (h)

-Q.8
-0.8 X 1.1

FIG. 6. Portraits of attractors on the phase plarg/Y in the presence of noise in the master subsystem owmy)., A=A;, B
=0.375, anck =0, x«=0.0001 for(a)—(d), andx=0.0001y for (e)—(f). Each subsequent diagram of the top and bottom rows reproduces a
selected box from the previous plot under magnification by factaasd 8 along the horizontal and vertical axes, respectively. Com(zare
with (f) and (d) with (g) to observe scaling.

1.1
(@) f (b) (c) (d)

y . | f L “ | | ‘l

-0.8
-0.8 X 1.1

1.1

(e) (f) (@ (h)

|
‘11'

1% It'

-Q.8
-0.8 X 1.1

FIG. 7. Portraits of attractors on the phase plargy) in the presence of noise in the slave subsystem axiyr., A=A., B
=0.375, k=0, ande=0.04 for (a)—(d), and e=0.04v for (e)—(f). Each subsequent diagram of the top and bottom rows reproduces a
selected box from the previous plot under magnification by factomed 8 along the horizontal and vertical axes, respectively. Comf@re
with (f) and (d) with (g) to observe scaling.
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207 (@) (b) ©) (d)

-60

-140;

Spectral intensity (dB)

0 1
Normalized frequency

FIG. 8. Fourier spectra generated by the slave system at the bicritical point in the absence ¢remiskin the presence of a noise
source in the master system st ko=0.00006(b), k= xoy (C), and k= kyy? (d).

Observe the self-similarity of the pictures under this scaldor the case when the noise source is in the slave subsystem.
change. The first picture corresponds to=¢,=0.06, and the two

It is worth emphasizing that the effects of noise on theothers tos,/» andsq/v?. Observe the excellent correspon-

master and on the slave subsystem are of opposite charactgénce of the charts in each row.

In the master system the Lyapunov exponent becomes

greater in the presence of noise, Wh”? in the slave sy_stem it E. Scaling indices for a parameter shift of the corner point
decrgases[.llj other words, the cogfﬁmemo in Eq. (22) is of the region of hyperchaos
positive, whilec; andc, are negatived.

As we mentioned, in the presence of noise the Lyapunov
exponent in the master system grows, while in the slave sys-
tem it falls. To restore the situation of the chaos threshold,
i.e., that of zero Lyapunov exponents, we should decrease the

In the presence of noise the structures visible on theontrol parameter of the master system and increase that in
Lyapunov chart become more and more blurred as the noistae slave system. In Fig. 12 we present a chart of the param-
intensity grows[cf. Figs. 2 and (b)]. On the basis of the eter plane for a system of two unidirectionally coupled maps
scaling arguments of Sec. |V, we can now reveal a quantitaFEqgs. (5)] with the noise intensity parameters=e=0.05.
tive aspect of this process. In Fig. 11 we show the Lyapunowhe areas marked “Ch-I" and “Ch-Il" correspond to the
charts for close neighborhoods of the bicritical point, whichpresence of a positive Lyapunov exponent in one of the sub-
is located exactly at the center of each plot. Diagrean  systems, either in the master or in the slave system. The area
relates to the case of the noise source in the master subf two positive exponentghyperchaok is designated as
system. The first panéh) corresponds to the noise intensity “Hyper.” Around the figure we present a set of so-called
parameterk=«k,=0.01, and the next two panels te  snapshot phase portraitsee Ref.[23]) at representative
=koly and k=kq/y?, respectively, with magnification points of the parameter plane. Such a portrait is a set of
along the horizontal and vertical axes using the faci@rs points on the planex(y) depicting instantaneous states of a
and é,. For the three pictures in the row the gray tones coddarge number of identical systenian ensemble subjected
values of A,, 2A,, and 4\, to illustrate rescaling of the to identical realizations of the noise. Using the scaling prop-
Lyapunov exponent, and to make the similarity of the struc-erties of the system in the presence of noise, it is possible to
tures clearly visible. Pandgh) supplies analogous diagrams obtain an estimate of the shift of the corner point of the

D. Self-similar arrangement of a vicinity of the bicritical point
in the parameter plane for the noisy system

207 (@) (b) ©) (d)

-60

-140;

Spectral intensity (dB)

0 1
Normalized frequency

FIG. 9. Fourier spectra generated by the slave system at the bicritical point in presence of a noise source in the slavecsyStamdat
£=£0=0.001(a), e=¢4v (b), e=g4v? (c), ande=e1° (d).
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Mia) ey

-0.12
0

A,

(b)

g M 2 AL 02 02 §AA 02 02 §2AL 02
-0.1 ' H Y )

A, FIG. 11. Lyapunov charts demonstrating scaling in a neighbor-
(c) hood of the bicritical point(a) the noise source in the master sub-
system, andb) in the slave subsystem. The first pl@) corre-
sponds to the noise intensity parameter0.01, which is decreased
0 by factor y=6.619 ... foreach next diagram in the row. The first
\\“M diagram(b) corresponds t@=0.06, and others to the values subse-
M quently rescaled by=2.713 .. .. Thegray scale coding for the
-0.060 Lyapunov exponent\, is redefined at each new level of magnifi-

€ 0.05 cation to make the similarity clearly visible.

FIG. 10. Lyapunov exponents vs noise intensity at the bicritical ANx k2, AAx Kb, (24)
point \=X\., A=A, and B=0.375: (a) and (b) with the noise
source in the master map, at@ in the slave map. Observe that the

here
self-similarity of the pictures under scale changes with factor 2
along the vertical axes, and with factoys6.619[diagramsa) and _ - _ —
(b)] and v=2.713[diagram(c)] along the horizontal axes. a=log, 9,=0.815359 and b=log, 52_0'46161(72'5)

region of hyperchaos from the bicritical point. That is, if a  If the source of noise is added only to the slave system,
source of noise is present only in the master system, ththen

displacement of the hyperchaos corner from the bicritical

point will behave as AN=0, AAxkS, (26)

1.6

1.1 Ch-ll Hyper

FIG. 12. Snapshot phase por-
traits at some representative points
of the parameter plane for an en-
semble of about T0copies of the
system effected by an identical

|
y ! sample of the noise after 768 it-
i erations. Initial conditions were
‘ chosen randomly from the square
i —1<x=<1,-1<y=<1. Noise is
0.8 present both in the master and
0.8 x 1.1 slave subsystems,k=g=0.05.

The marks Ch-I and Ch-Il desig-
nate regimes with one positive
Lyapunov exponent relating to the
master and slave subsystems, and
Hyper designates the regime of
two positive Lyapunov exponents
and hyperchaos in the noisy sys-
tem. The bicritical point found in
absence of noise is marked Bs
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FIG. 13. Shift of the parameteis andA vs the intensity of noise added in the magt@ and(b)] and in the slave subsystefo) on a
double logarithmic scale. The straight lines show the slopes corresponding to the power-law e$Eaatesh—(27)].

where ties. In particular, we paid attention to the smearing of the
fine structure of the bicritical attractor and the Fourier spec-

c=log, 8,=0.8739009. (27) tra due to the presence of noise. We discussed the self-similar

structure of the Lyapunov charts on the parameter plane near

the bicritical point, and the shift of the hyperchaos threshold
The double-logarithm plots shown in Fig. 13 present date}n delpelnlden(F:)elof the noise ir:tensity. vp

of computations supporting these scaling estimates. The \ye considered a particular representative of the universal-
stralght Ime;_ are drgwn with a slope corresponding to th‘?ty class(two coupled one-dimensional mapslevertheless,
predicted critical indice$Eqgs. (24) and (27)]. on the basis of RG argumentation, we may conjecture that
the same regularities will be intrinsic to a wide class of sys-
tems composed of two period-doubling subsystems with uni-
We have discussed scaling regularities associated with ﬂ%recnonal coup!mg. We expect that. these results will b.e
effect of additive noise on the bicritical behavior in the sys- eIpf_uI for _exp_enmental _r(_asearches_amjed at the observatlon
tem of two unidirectionally coupled quadratic maps, both Ofand investigation of blcrltlc_al behawo_r in systems of gm‘fer-
which are brought to the threshold of chaos by adjustment of Nt physmal natures. In_ this connection, we emphaS|z_e th_at
their two control parameters. A renormalization group analy-1n€ influence of noise is much stronger when the noise is
sis of the effect of noise was developed, and respective unf’—‘dde‘j to th? master system than to th? slave system. Hence
versal functions and constants were computed. We outline the .expenme'nts'one should pay particular attention to the
the qualitative and quantitative differences between the rer-Ed'“'CtIon of noise in the master system.

sponse with respect to random perturbations added to the
master system and to the slave system. In particular, the uni-
versal constants determining the rescaling rules for the pa- The work was performed under a partial support from
rameters of the intensity of the noise sources in the mastdRussian Foundation of Basic Researct@®snt Nos. 00-02-
and slave subsystems were found toy3e6.6190% ... and 17509 and 01-02-06388J.K. and A.K. acknowledge sup-
v=2.7137@ . . ., respectively. We also presented a humberport from CRDF, award REC-006. S.K. acknowledges the
of computer graphical illustrations for the scaling regulari-DTU for financial support.

VI. CONCLUSION
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