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Magnetic interaction between spatially extended superconducting tunnel junctions
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A general description of magnetic interactions between superconducting tunnel junctions is given. The
description covers a wide range of possible experimental systems, and we explicitly explore two experimen-
tally relevant limits of coupled junctions. One is the limit of junctions with tunneling distance much smaller
than the London penetration depth of the superconductors, the other is the limit where the tunneling distance
is much larger than the London penetration depth. The former case has previously been studied in the context
of adjacent conventional Josephson junctions, while the latter has been considered through arrays of supercon-
ducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model
to make direct interpretations of the published experiments and thereby propose that long-range magnetic
interactions are responsible for the reported experimental signatures of coupling between tunnel junctions.

DOI: 10.1103/PhysRevB.65.144512 PACS number~s!: 74.80.Dm, 74.50.1r, 85.25.Cp

I. INTRODUCTION

Coupling between spatially extended superconducting
junctions has been investigated vigorously over the past de-
cade. Most of this work has been focused on systems where
the dominant coupling mechanism, typically inductive, is
short ranged and due to the properties of common supercon-
ductors of different junctions.1–4 However, extended junc-
tions may have spatial variations of the surface currents,
thereby inducing magnetic fields in the surroundings, which
in turn will cause long-range interactions between
junctions.5,6 The existence of this long-range magnetic inter-
action was demonstrated experimentally by Holstet al.,4 by
studying phase locking between adjacent extended Joseph-
son junctions, and, at the time, modeled by the local coupling
form,1–3 which shares many characteristics with the long-
range~nonlocal! coupling mechanism of Ref. 5. More recent
experiments on arrays of superconducting weak links based
on InAs-AlSb quantum wells with Nb electrodes7 may also
suggest interjunction coupling due to long-range magnetic
effects, and we will, therefore, investigate the nature of the
external magnetic coupling in some detail.

We will initially assume that the superconductors are in-
finitely large in thex andy directions and have a thickness of
W in thez direction. The junctions are defined by slits along
the x direction ~parallel to theyz plane, see Fig. 1!. The
centers of the junctions are located atyi5ailJ and the elec-
tric width of the junctions ist0 the width of the oxide layer
between the superconductors. We will adopt the usual sine-
Gordon model for the dynamics of a single junction,8

fxx2f tt2sinf5af t2h, ~1!

wheref represents the difference between the phases of the
quantum-mechanical wave functions defining the supercon-
ducting state in each junction. In adopting this model, we are
assuming that the electromagnetic dynamics in the junction

is one dimensional, along thex direction, and thatW!lJ .
The spatial (x,y,z) and temporal~t! coordinates are normal-
ized to the Josephson lengthlJ5A\/2edm0I c and the in-
verse plasma frequencyvp

215A\«/2et0I c, respectively. The
permeability is denoted bym0, permittivity by «, critical
current density byI c , the normalized~to lJ! electric thick-
ness of the junction isb5t0 /lJ , and the magnetic thickness
is d5t012lL , wherelL is the magnetic~London! penetra-
tion depth of the superconductors. Voltagesf t are normal-
ized to\vp/2e, the normalized surface current density of the
superconductors is2fx , and the characteristic energy is
H05I cWlJ\/2e5(\/2e)2W/m0dlJ . Transport of quasipar-
ticles across the junction is given by the parametera
5r\vp/2eIc , r being the conductivity of the junction in the
normal state. The applied bias current densityh is normal-
ized to the critical current densityWIc .

II. NONLOCAL MAGNETIC COUPLING

A system of parallel superconducting junctions is
sketched in Fig. 1. Following the ideas of Refs. 5 and 6 we
analyze the magnetic coupling between different junctions,

FIG. 1. Sketch of the system under consideration forn54 par-
allel junctions. Superconductors are labeled with anS. All system
parameters are given with the symbols of the normalized units.
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or different points along thex axis within the same junction,
by writing the normalized, to\/2elJ

2 , magnetic-flux distri-
bution of the i th junction entering thez.0 half space at
(x,y) as

m( i )~x,y!5fx
( i )Q~y2ai !, ~2!

where the superscripti identifies the junction and where

Q~y!5H lJ

d
, uyu<

1

2
b

lJ

d
expF2S uyu2

b

2DlJ /lLG otherwise.

~3!

We here assume that the phase difference between the
quantum-mechanical wave functions of the two supercon-
ductors surrounding a junction is a function of thex direction
only and thatQ provides the flux distribution along they
direction,

E
2`

`

Q~y!dy51.

The contribution to the interaction energy from the non-
local magnetic interaction can then be written as the inte-
grated interaction between the magnetic-flux distribution,5,6

Hint
(nl)5

1

2
D(

i
(

j
E E E E m( i )~xi ,yi !m

( j )~xj8 ,yj8!

A~xi2xj8!21~yi2yj8!2

3dyidyj8dxidxj8 ~4!

5
1

2 (
i

(
j
E E gi j ~xi2xj8!fxi

( i )fx
j8

( j )
dxidxj8 , ~5!

where the kernelgi j is given by

gi j ~x!5DE E Q~yi2ai !Q~yj82aj !

Ax21~yi2yj8!2
dyidyj8

5DE E Q~yi !Q~yj8!

Ax21~yi2yj81ai j !
2

dyidyj8 , ~6!

with ai j 5ai2aj . The magnitudeD of the prefactor of the
kernelgi j can be estimated5 in the ideal case where the su-
perconductors extend the entirexy plane,

D5
N

4p

d

W
, ~7!

where N is a number, 4 or 8, determined by the specific
system geometry. One may expect the effectiveN to be
smaller than these values when finite length junctions are
modeled.

The relevant HamiltonianH describing a system of mag-
netically coupled long Josephson junctions is then given by

H5(
i
E F1

2
~fxi

( i )!21
1

2
~f t

( i )!2112cosf ( i )Gdxi

1Hint
(nl)1Hint

( l ) , ~8!

where Hint
( l ) is the local inductive coupling found, e.g., in

Refs. 1 and 3,

Hint
( l ) 5

1

2 (
i

(
j
E E gi j

( l )~xi2xj8!fxi

( i )fx
j8

( j )
dxidxj8 , ~9!

gi j
( l )~x!5S expF2

lJ

lL
uai j uG2d i j D d~x!5D i j8 d~x!, ~10!

whered(x) andd i j are Dirac’s and Kronecker’s delta func-
tions, respectively.

The equation of motion for the phase of theith junction is
then

fxixi

( i ) 2f tt
( i )2sinf ( i )5a if t

( i )2h i2(
j

D i j8 fxjxj

( j )

2(
j
E gi j ~xi2xj8!fx

j8x
j8

( j )
dxj8 .

~11!

We will in the following only consider the nonlocal mag-
netic coupling since the local coupling has already been ex-
tensively considered in the literature and since it can be di-
rectly added to the equations as indicated by the expressions
above.

For systems of finite lengthLlJ , L being the normalized
length, we will impose the usual8 boundary conditions

fxi

( i )~0!5fxi

( i )~L !5G, ~12!

whereG is the normalized external magnetic field along the
z direction.

A. Nonlocal magnetic coupling fordÉ2lLšt0

Most Josephson junctions are characterized by this limit
whered'2lL . We can here write the interaction kernel, Eq.
~6!, in the form

gi j ~x!5DS lJ

2lL
D 2E

2`

`
S uju1

lL

lJ
D e2ujulJ /lL

Ax21~j1ai j !
2

dj. ~13!

For i 5 j , we can express the kernel exactly as9

gii ~x!5D
plJ

4lL
HH0S lJ

lL
uxu D2N0S lJ

lL
uxu D

1
lJ

lL
uxuFH1S lJ

lL
uxu D2N1S lJ

lL
uxu D2

2

pG J ,

~14!
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whereHn and Nn are thenth order Struve10 and Weber11

functions, respectively.
This expression has the two distinct limiting forms

gii ~x!→gii
(`)~x!5

D

Ax21S 2
lL

lJ
D 2

for uxu@
lL

lJ

,

~15!

gii ~x!→gii
(0)~x!

5
D

2

lJ

lL
F12C1 lnS 2

lL

lJ
D2 lnuxuG for uxu!

lL

lJ
,

~16!

where the first expression has a leading error term
}(xlJ /lL)25. C is the Euler constant.12

For iÞ j , we cannot express the kernelgi j (x) explicitly.
However, one can, for largeuxulJ /lL , approximate the ker-
nel with

gi j ~x!→gi j
(`)~x!5

D

Ax21S 2
lL

lJ
D 2

1ai j
2

for uxu@
lL

lJ

,

~17!

with the leading error term being}(xlJ /lL)25. Since the
magnetic penetration depthlL is usually orders of magnitude
smaller than the characteristic length scalelJ at which
f ( i )(xi) varies in Josephson junctions, we can with very
good approximation use the above limiting expressions,
gi j

(`)(x) for xÞ0.
The remaining contribution foruxu,lL /lJ can thus be

accounted for through a purely local interaction of the form

gi j
(0)~x!5S E

2`

`

@gi j ~j!2gi j
(`)~j!# dj D d~x! ~18!

5Dd~x!H ln 412C21'1.541 for ai j 50

8

ai j
2

lL
2

lJ
2

for uai j u@
lL

lJ
.

~19!

For systems wherelL /lJ!1 anduai2ai 61u@lL /lJ , we
can, therefore, with good approximation write

gi j ~x!'gi j
(0)~x!1gi j

(`)~x! ~20!

for all i , j .

B. Nonlocal magnetic coupling forlL™t0Éd

While this limit of system parameters is not usually rel-
evant for Josephson systems, experiments on superlattices of
semiconductor quantum wells and superconducting
electrodes7 indicate that tunneling between superconductors
can be facilitated over distances of 500 nm, and, thus, that a

Josephson effect can be expected in systems where the tun-
neling distancet0 is much larger than the magnetic penetra-
tion depthlL . We will, therefore, analyze the long-range
magnetic interaction in this limit, providing a model for the
interaction between periodic arrays of semiconductor weak
links and superconducting lines.

The interaction kernel, Eq.~6!, is here given by

gi j ~x!5DS lJ

d D 2E
2b/2

b/2 E
2b/2

b/2 1

Ax21~yi2yj1ai j !
2

dyi dyj

5
D

b2E2b

b 12uju

Ax21~j1ai j !
2

dj. ~21!

This expression can be written in the exact form

gi j ~x!5
D

b2 F 2Ax21ai j
2 2Ax21~ai j 1b!22Ax21~ai j 2b!2

1~ai j 1b!ln
Ax21~ai j 1b!21ai j 1b

Ax21ai j
2 1ai j

2~ai j 2b!ln
Ax21~ai j 2b!22~ai j 2b!

Ax21ai j
2 2ai j

G . ~22!

It is here important to recall thatuai j u.b for iÞ j . For ai j
50 (i 5 j ) Eq. ~22! reads

gii ~x!52
D

b2 F uxu2Ax21b21b ln
b1Ax21b2

uxu G ~23!

and the asymptotic form of the general expression for large
uxu is

gi j ~x!→gi j
(`)~x!5

D

Ax21ai j
2 1

1

6
b2

for uxu@Aai j
2 1b2,

~24!

with leading error term}x25.
Equation~22! is exact, but still poses a few concerns for

x50. However,gii (x) has only a logarithmic singularity,
which is well behaved when integrated, andgi j (x) has the
well-defined limiting value

gi j ~0!5
D

b

uai j u
b F S 11

b

uai j u
D lnS 11

b

uai j u
D

1S 12
b

uai j u
D lnS 12

b

uai j u
D G for iÞ j . ~25!

Assuming that the magnetic-flux distribution can be ex-
pressed by Eq.~2!, we have then provided the kernel that
determines the magnetic interaction between tunnel junctions
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in the limit where the the magnetic and electric thickness of
the junctions are equal,lL!t0'd.

III. NUMERICAL SIMULATIONS

In order to explore the possible relevance of the above
coupling mechanism, we have performed numerical simula-
tions of experimentally relevant superconducting systems,
which produce measurements that may be interpreted in light
of nonlocal magnetic coupling. The following two sections
consider simulations of equations of motion in the form of
Eq. ~11!, where the interaction kernelgi j takes the form of
the above two extreme parameter limits. We are not consid-
ering the local inductive couplingD i j8 .

A. Nonlocal magnetic coupling fordÉ2lLšt0

Observation of phase locking between two~or more! ad-
jacent extended Josephson junctions have been reported in
cases where the oscillators are operated in self-resonant
~fluxon! modes.4,13,14 The experiments reported in Refs. 4
were performed on a system with two junctions of lengthL
'4, width w'0.2, interjunction distancea'0.35, 0.75, and
magnetic thicknessd'0.0009lJ ; all lengths are normalized
to lJ'100 mm. Phase locking between fluxon modes was
reported in this system both when the bias currents of the
two junctions were of the same (s51) and opposite (s5
21) sign and a local coupling model was adopted to explain
the core features of the experimental data. We will here dem-
onstrate the phase-locking results based on the nonlocal
magnetic coupling, whose strength and functional form is
almost entirely given by the geometry of the system.

The above geometry provides for an interjunction cou-
pling parameter@see Eq.~7!#

D'0.001 45, ~26!

where we have usedN54 since the junctions are adjacent,
and a coupling parameter of

D'0.002 90 ~27!

for the junction self-interaction@gii (x)#. We have performed
the presented simulations with a damping coefficient ofa
50.05 and external magnetic fieldG50. The experimental
system consists of two junctions with slightly different sys-
tem parameters, and the study of phase locking between
fluxon oscillations in the different junctions was conducted
by having two independent current sources biasing the junc-
tions. We will, for simplicity, model the junctions as being
identical except for their individual bias currents.

The results of the numerical simulations are summarized
in Figs. 2 and 3. Figure 2 shows the simulated dc-average
current-voltage characteristics of the two junctions, both op-
erated in a zero-field-step~ZFS! mode ~single oscillating
fluxon!, with identical magnitude bias current (h05h1
5sh2 , s561). Given the small magnitude~s! of D, we
find that the current-voltage characteristics are almost inde-
pendent of the current polaritys561. However, due to the
self-coupling, given bygii (x), the ZFS’s are not stable for all
bias currents up to the critical currents,uh i u51, of the junc-

tions. Figure 3 shows how the range in bias current differ-
ence,Dh5maxuh12sh2u, for which the average voltages
of the junctions are identical (^V1&5s^V2&) as a function of
the bias point h05 1

2 (h11sh2). The simulation results
clearly show that nonzero, and measurable, phase-locking
ranges may be expected as a result of magnetic interactions.
We further observe that the locking range in bias current is
roughly independent of the bias polaritys and that the lock-
ing ranges for the interjunction distancea50.35 are roughly
four times those the locking ranges of the system witha
50.75, in reasonable agreement with the experimental data.4

Making quantitative comparisons between our simulation
data and the corresponding experiments, we notice that the
simulations exhibit maximum locking ranges of about the
size exhibited by the experiments. Some discrepancy is of
course not unexpected, since the experimental system is re-
ported with, e.g., slightly different critical currents of the
junctions, a large uncertainty in the characteristic Josephson
length, etc. Additionally, the above theory is based on ideal
geometries where considerations of magnetic interactions
can be simplified~e.g., the parameterN in the magnitudeD
of the interaction kernel is likely smaller than predicted, as
mentioned above!. With such considerations in mind, the
agreement between the simulated theory and the experimen-
tal data is remarkably good and demonstrates the potential

FIG. 2. Dc current-voltage charateristics (h0 ,Vi) for n52 iden-
tical adjacent Josephson junctions with parametersL54, a
50.05, lL /lJ50.0009, and~a! a50.35, ~b! a50.75, operated at
the first zero-field step fors561.

FIG. 3. Ranges of phase locking,Dh5maxuh12sh2u, as a func-
tion of the current bias pointh05

1
2 (h11sh2) for the junctions

whose current-voltage characteristics are shown in Fig. 2. The junc-
tions are biased at the first zero-field step shown in Fig. 2.
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importance of the long-range magnetic interaction and cross
talk between extended Josephson junctions.

B. Nonlocal magnetic coupling forlL™t0Éd

Current-voltage measurements on periodic superlattices
of gratings of superconducting Nb electrodes and InAs-AlSb
quantum wells7 in a weak magnetic field have revealed re-
sistance with periodic components as a function of the ap-
plied magnetic field. The oscillation period has been found to
correspond to a flux quantum being injected into~ejected
from! the grating cells. However, for long grating cells a
doubling of the frequency is observed for low applied mag-
netic fields. This frequency doubling was interpreted as a
result of symmetry breaking in the flux configurations of the
superconducting gratings.

We will here investigate this interpretation using our long-
range magnetic coupling as the coupling mechanism between
the superconducting gratings. Since the superlattice of grat-
ings exhibits periodic resistivity behavior as a function of
magnetic field, and since a critical current is measured across
the superlattice, we assume that Josephson coupling exists
between the superconducting Nb strips. However, since the
physical~tunneling! distance between the superconductors is
blJ'500 nm@lL'45 nm, we will consider the magnetic
coupling of Sec. II B. The Josephson penetration depth of
each extended weak link is estimated to belJ'2.3 mm
from the experiments. Thus, all the relevant geometric pa-
rameters, a5960 nm/lJ , b, L<95 mm/lJ , and w
515 nm/lJ , can be appropriately normalized. The critical
current density of the lattice is measured to beWIc
'1.26 A/m.

We have conducted numerical simulations of systems
consisting of up ton518 overdamped weak links with the
above system parameters and with normalized lengths ofL
510–30 for varying normalized applied magnetic fieldsG.
Since the experiments are probing a dynamical resistance at
a low frequency of 497 Hz, we cannot expect to simulate the
exact measurement within such a long time scale. Instead,
we have decided to numerically measure therelative magne-
tization DMi5f ( i )(L)2f ( i )(0)2LG for each junction in
the applied magnetic field, without bias current. Thus, we
apply the desired magnetic field and let the system relax until
ḟ ( i )(x)50 for all x and i, whereafter the relative magnetiza-
tion is measured. We then define thetotal relative magneti-
zation DM5^DMi& i as a measurement relevant for the ex-
perimentally observed dynamical resistance.

Figure 4 shows the magnetization simulation results for
the above parameters withL510 andL520 as a function of
the ~decreasing! applied magnetic field~normalized to inte-
ger number of flux quanta per junction!. The results clearly
show that the system responds periodically with the mag-
netic field and that the period is the flux quantum. Both
simulated lengths show that the periodic response vanishes at
very low magnetic fields. However, for the longer system,
L520, we observe a transition into frequency doubling at
intermediate magnetic fields—all these observations are in
direct agreement with the experimental observations of the
dynamical resistance as a function of magnetic field.7 In or-

der to investigate the more detailed reason for this behavior,
we have, in Fig. 5, displayed the individual relative magne-
tizationsDMi for i 55 –14 andL520 as a function of the
magnetic field. For large fields we observe that all junctions
behave identically in their magnetizations~the vertical
dashed lines define field intervals of a single flux quantum

FIG. 4. Normalized relative magnetizationDM5^f ( i )(L)
2f ( i )(0)& i2LG as a function of normalized applied magnetic field
G for systems ofn518 junctions with (b@lL /lJ) coupling param-
etersa50.42,b50.22, andD50.3. The horizontal axis is scaled to
the flux quantum,F05h/2e. Indicated by the arrows (↔) of unit
length, large applied magnetic fieldsG result in magnetization pe-
riod of F0, while the longer system (L520) exhibits a frequency
doubling for smaller values ofG.

FIG. 5. Normalized relative magnetizationDMi5(f ( i )(L)
2f ( i )(0))2LG of junctions 5 –14 of then518 participating junc-
tions of lengthL520 described in Fig. 2.DMi is shown as a func-
tion of normalized applied magnetic fieldG. Vertical sections indi-
cated by dashed lines demonstrate that the global periodicity (DM
5^DMi& i) seen in Fig. 2 is due to ‘‘in-phase’’ (fxi

( i )5fxi 61

( i 61))
magnetic-field distribution in the junctions for highG, and ‘‘out-of-
phase’’ (fxi

( i )Þfxi 61

( i 61)) magnetic-field distribution for low external
fields.
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per junction!. However, as the field is decreased, the flux
distribution of neighboring junctions slide out of phase re-
sulting in a frequency doubling of the total magnetization.
This scenario corresponds exactly to the suggested explana-
tion given by Thomaset al. in Ref. 7 and it can be justified
through the following intuition. All the junctions will re-
spond identically~in phase! if no magnetic interaction be-
tween the junctions is present. Thus, when the external field
is strong, the boundary effects dominate the flux structure.
Additionally, at a dense packing of fluxons, the effective re-
pulsive flux interaction between junctions is vanishing. How-
ever, since unipolar fluxons are mutually repulsive, decreas-
ing magnetic fields result in the boundary effect eventually
becoming insignificant compared to the internal repulsion
between the flux modes, which will favor an out-of-phase
flux distribution between junctions. Since the effective repul-
sion between the fluxon modes of the different junctions de-
pends strongly on the length of the junctions@see, e.g., Eq.
~5!# and since the boundary effect is independent of the sys-
tem length, the frequency doubling transition may not be
observed in the shorter junction systems since the boundary
effects become relatively more important for shorter systems.

As we did for the above case of coupled long Josephson
junctions, we conclude here that the long-range magnetic
coupling model has provided a strong component to the in-
terpretation of the experimental data of the behavior of su-
perlattices of superconducting weak links in the limit ofd
't0. While the simulations do not directly account for the
low frequency dynamical measurements, and while we simu-
late only n518 junctions instead of the experimental 310,
we submit that the agreement between simulation and ex-
perimental observation is quite good considering the simplic-
ity of the model.

IV. CONCLUSION

Based on the above simple theory and the accompanying
simulations with their direct correspondence with published
experiments, we conclude that the long-range magnetic inter-
action is relevant for a wide variety of superconducting sys-
tems where the dynamics and configurations of flux quanta
are present. We have demonstrated the importance through
two very different experimental situations and interpreted the
experimentally observed features as originating from the
magnetic coupling. It is important to emphasize that while
the agreement between our simulation results and the pub-
lished experimental observations are quite reasonable, the
strengths and form of coupling used in the simulations arise
directly from the experimental system parameters without
fitting. Thus, even though specific quantitative agreement
with experimental data may depend on system details, such
as the electromagnetic properties of the surroundings, the
principles of the simple magnetic model will provide a good
starting point for interpreting many features of experimen-
tally observed coupling between fluxon behavior.
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