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This paper is concerned with the connection between the properties of dielectric relaxation and alternating-
current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-
response theory and a self-consistent dynamical modeling. The key issues are stretched exponential character
of dielectric relaxation, power-law power spectral density, and anomalous dependence of ac conduction coef-
ficient on frequency. We propose a self-consistent model of dielectric relaxation in which the relaxations are
described by a stretched exponential decay function. Mathematically, our study refers to the expanding area of
fractional calculus and we propose a systematic derivation of the fractional relaxation and fractional diffusion

equations from the property of ac universality.

DOI: 10.1103/PhysRevB.76.104201

I. INTRODUCTION

Many materials with a disordered structure show a dielec-
tric relaxation that is not described by an exponential (i.e.,
Debye-like) decay with a characteristic single decay time.
Rather the relaxations follow a stretched exponential, the so-
called Kohlrausch-Williams-Watts (KWW) function'?

bp(1) = expl— (t/7)”] (1)

with the exponent 0<<3=<1 and 7 a constant. The 3 values
generally depend on the absolute temperature and the chemi-
cal composition of the material and typically span between
0.3 and 0.8. The relaxation pattern in Eq. (1) has been found
empirically in various amorphous materials as, for instance,
in many polymers and glasslike materials near the glass tran-
sition temperature (for a review, see Refs. 3 and 4, and ref-
erences therein). Some physical models yielding general fea-
tures of the KWW-type dielectric relaxation are discussed in
Refs. 4 and 5, where one also finds a review of experimental
dielectric relaxation data. Other applications of the KWW
relaxation function include long-time decay in trapping
processes,6 nonradiative exciton recombination,’ and relax-
ation in sand piles.?

The stretched exponential KWW decay function ¢(7) can
conveniently be considered as a weighted average of single-
exponential relaxation functions

Pp(t) = f 0p(pexp(=t/u)du, (2)
0

where the weighting function @4(u) is expressible in terms
of a stable (Lévy) distribution® [Eq. (26) below]. Because of
this connection with the statistics of stable laws, the KWW
relaxation properties can be argued to appear naturally
through the dynamics, thus challenging the common view
that the stretched exponential function is just a suitable phe-
nomenological fitting tool without fundamental significance.’
We draw attention to the fact that the KWW relaxations arise
from a superposition of many single-exponential relaxation
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processes and are multiscale, contrary to a Debye relaxation.

In this paper, we are concerned with the connection be-
tween the KWW relaxation function in Eq. (1) and the
anomalous frequency dependence of ac conductivity of ho-
mogeneously disordered insulators. It has been found also
partly empirically that insulating and/or poorly conducting
materials with molecular and/or structural disorder exhibit a
common conductivity (dielectric) response, a phenomenon
often referred to as “ac universality” (see review!? and origi-
nal works in Refs. 11 and 12). This response is characterized
by low-frequency conductivity with very weak or no fre-
quency dependence, and a higher-frequency counterpart that
follows an approximate power law

o'(0) = 0, 3)

with ¢’ (w) the real part of the frequency-dependent complex
conductivity o(w), and the exponent 7 ranging between 0
and 1, and most often between 0.6 and 1, depending on the
material and the absolute temperature. The defining feature
of ac universality is independence of the microscopic details
of the disorder and of the nature of the charge conduction
mechanism operating in the system (classical barrier crossing
for ions and/or quantum mechanical tunneling for electrons).
Note that the power law in Eq. (3) is well defined for fre-
quencies higher than the dielectric loss peak frequency. The
system-specific properties are contained in the coefficient in
front of o’ (w) (not shown in the scaling relation). The sig-
natures of ac universality have been found in materials as
diverse as ion conducting glasses, amorphous and polycrys-
talline semiconductors, organic-inorganic composites, ion
and electron conducting polymers, and doped semiconduc-
tors at helium temperatures (see Ref. 10 for a review). The
observed characteristics including the temperature depen-
dence of the exponent 7 could be reproduced in a model'? in
which the conductivity is caused by random motion of
charged particles on a fractal lattice at percolation.'* The
scale-free behavior of the ac conductivity at higher frequen-
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FIG. 1. Schematic of cycles and dead ends of a percolating
fractal structure.

cies could be explained as arising from the hierarchic struc-
ture of the fractal (see Fig. 1), in which multiple cycles and
dead ends produce effective potential traps influencing the
motion of the charge carriers. This fractal-based approach
conforms in spirit with the issue of trap-controlled conduc-
tion and multiple-trapping transport of charges in disordered
media (see Ref. 15 and references therein).

The purpose of this paper is to explore the connection
between ac universality and the stretched exponential KWW-
type dielectric relaxation in disordered dielectrics. We shall
argue that the two phenomena share a statistical-mechanical
foundation, and a simple relation between the exponents 3
and 7 will be derived:

B+n=1. (4)

The paper is organized as follows. In Sec. II, we show that a
KWW-type dielectric relaxation implies a power-law
memory response function for short times and, related to this
feature, high-frequency dependence of ac conduction coeffi-
cient with the exponent 7=1-£. We then discuss the route
to the power spectrum and the occurrence of power laws for
high frequencies in the power spectral density (PSD). As a
consistency check, we rederive the power spectrum from a
Pareto-Lévy distribution of relaxation times and demonstrate
that the power-law spectrum is directly related to a power-
law distribution of relaxation times for the short time scales.
In Sec. III, we present a self-consistent model of dielectric
relaxation, in which the polarization and electric source
fields are self-consistently generated by the residual
polarization-charge density. We show that if the dielectric
observes ac universality, the relaxations are stretched expo-
nential for short times. Mathematically, our study refers to
the expanding area of fractional calculus and we propose a
systematic derivation of the fractional relaxation and frac-
tional diffusion equations from the property of ac universal-
ity. We summarize our conclusions in Sec. I'V.

II. RESPONSE FUNCTIONS, SCALING, AND POWER
SPECTRAL DENSITY
A. Response functions

Let a homogeneous, isotropic dielectric be exposed to the
external polarizing electric field E=E(z,r), which we con-
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sider as a function of time  and the space coordinate, r. By
homogeneous and isotropic, we refer to spatial scales larger
than the typical scales of the molecular and/or structural dis-
order. Assuming a linear and spatially local response of the
material, the polarization field at time ¢ at point r can be
written as

P(t,r) = fw x(t=t"E(' ,r)dt’, (5)

where x(t—t') is a response or memory function. Causality
requires that y(z—¢")=0 for t<<¢'. By considering the source
field of the form E(z,r)=E(r)d(r), with &(¢) the Dirac delta
function, we have the polarization response P(z,r)
=E(r)x(?), hence x() is the response to a delta pulse in the
source field.

In a basic theory of the dielectric relaxation, one is inter-
ested in the polarization response to a field which is steady
for +<0 and, then, is suddenly removed at time r=0. One
introduces the relaxation function ¢(z) as the magnitude of
the polarization response on an electric field with time his-
tory E(z,r)=E(r)0(-t)exp(vr) in the limit v— +0, where
6(r) is the Heaviside step function. The infinitely slow expo-
nential growth exp(vt) is included in order to satisfy E(z,r)
=0 for t— —o, required by causality. From Eq. (5), one can
see that the polarization response is P(¢,r)=E(r) ¢(¢), where

(1) = 6(— 1) p(0)exp(vt) + 0(t)l¢(0)— f X(l‘/)df’} (6)
0
and we defined
#(0) = J x(t')dt'. (7)
0

In the literature, one commonly writes the value of ¢(0) in
terms of the static permittivity of the dielectric medium €(0),
i.e., #(0)=[€(0)—1]/4. The definition in Egs. (6) and (7) is
practical for exploring the connection between the memory
kernel and the relaxation function. For these practical rea-
sons, we shall set ¢(0)=1 in the calculation below. By per-
forming d/dt on Eq. (6), one obtains
d¢

x(t)=-—-

dr’ ®

If we postulate the relaxation function in the KWW form
$(1) = 6(= )exp(vt) + O()exp[ - (1/7)°] ©)
from Eq. (8), we find

X0 = S oessl- 7)), (10)

This is a very important expression because it reveals that
the stretched exponential relaxation function ¢(r) leads to a
response function x(¢) which behaves like a power law 17!
on short time scales = 7, with a stretched exponential cutoff
on long time scales = 7. This cutoff is necessary for the
existence of a finite relaxation function as a response to the
step-function electric field E(z,r)=E(r) 0(-t)exp(vt), since
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without it the integrals in Egs. (5) and (7) will diverge. How-
ever, if the electric field is an oscillating function or a white
noise, the response given by Eq. (5) will converge even with
x(1) ~ %! without such a cutoff. The response corresponding
to such an “unscreened” power-law response function be-
longs to the class of fractional Brownian functions,'® and
will be discussed in some detail in Sec. II C. By Fourier
transforming Eq. (9), we have

0

P(w) =

—00

0

exp(vt)e'“dt + f exp[— (#/7)Ple™dr,

0
(11)

yielding, for v— +0 and w higher than a nonvanishing lower
bound (physically corresponding to the dielectric loss peak
frequency),

d(w) = 10(w7) + iT|: ViwT) - L} , (12)
oT
where Q and V are the Levy definite integrals:
0(z) = f exp(— uP)cos(uz)du, (13)
0
V(z) :f exp(— uP)sin(uz)du, (14)
0

here expressed as functions of dimensionless frequency z
=wT.

B. Leading-term approximation

Series expansion of the Lévy functions Q(z) and V(z) has
been derived and discussed in the literature.’>!” Here, we
utilize an expansion good for higher frequencies, which goes
in inverse powers of z:

1 T(nB+1) . nBw

— _ 1)1
Q(Z)—E( 1) 2B D) Sty (15)
: - , 1 TB+1) nB
V(Z)—g(— 1) BT T(ua 1) cos == (16)

From Egs. (15) and (16), one can see that the expansion of
Q(z) starts from a term which is proportional to z=*# and
so does the expansion of V(z)—1/z. Hence, up to higher
order terms, ¢(w)x w18,

If we now define the frequency-dependent complex sus-
ceptibility of the dielectric, y(w) as a Fourier pair with x(z),
from Egs. (8) and (12), we find

x(w)=iwd(w)=1-wV(w7) + ivtQ(wT), (17)

with the leading term y(w)>*w™®. With the use of the
Kramers-Kronig relation y(w)* P [dw' o(w')/ o' (0’ -w),
the scaling of the frequency-dependent complex conductivity
of the material can be evaluated as

PHYSICAL REVIEW B 76, 104201 (2007)

0.1 B=0.54
x(@) ]
0.01 p=1

FIG. 2. The square amplitude of the frequency-dependent com-
plex susceptibility vs the normalized frequency w7 for different
values of the relaxation exponent 8. The plots show a transition to
a power-law regime for w7=1.

o(w) * w' P, (18)

which reproduces the phenomenological form in Eq. (3) with
7n=1-, whence Eq. (4) is obtained.

C. Power spectral density

By Fourier transforming Eq. (5), we find the following
expression for the PSD of the polarization field:

S(w) =([P(o,1)*) = [x()[X[E(w,1)]*), (19)

where the angle brackets (-) denote an ensemble average.
From Eq. (19), one can see that |y(w)|? is the PSD of the
polarization field when the driving electric field is an uncor-
related white noise signal. In Fig. 2, we have plotted (in
log-log axes) the |y(w)|*> function from Eq. (17), which
shows a transition to a power-law regime for w7=1.

The origin of the power-law regime at the high frequen-
cies can be found in the short-time behavior of x(r), which
diverges as t*~! when t— 0. In fact, the Fourier integral

*® B
() = T—if P! exp{— <£> + iwt}dt (20)
0 T

converges for ¢t/ 7— 0 if > 0. This integral is essentially the
Fourier transform of the power-law function #7!, with a
stretched exponential cutoff starting to take effect in the in-
tegrand for time scales 7~ 7 or longer (i.e., the frequencies
w~ 2/ 7 or smaller). For wr sufficiently large, the integral
has already nearly converged before the cutoff region in the
integrand is reached, enabling one to evaluate the suscepti-
bility function as

x(w) = ﬁf P exp(iot)dt = w™P. (21)
L

The scaling in Eq. (21) complies with the leading term in the
series expansion of the complex function 1-zV(z)+izQ(z).
From Eq. (19), one obtains, for the correspondingly high
frequencies, S(w) « w=2# provided that the input driving field
is an uncorrelated white noise signal.
The short-time power-law behavior x()~t*"! corre-
sponds to a memory kernel which defines, by means of a

104201-3
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convolution with Gaussian white noise, the family of frac-
tional Brownian functions, ¢ i.e., yy(f) ~ #~'/2, where the ex-
ponent H is often referred to as the Hurst exponent. The
connection with the KWW relaxation function exponent is
given by

H=8-1/2. (22)

Depending on the value of H, one distinguishes between
fractional Brownian motions (0<H<1) and fractional
Brownian noises (H<0). The difference is that a noiselike
function has a stationary quality in the sense that its variance
does not asymptotically grow with time. From Eq. (22), one
can see that on time scales shorter than 7, the response signal
on a white noise source field is a persistent fractional Brown-
ian noise for 0<B<1/2 (since —1/2<H<0) and an anti-
persistent fractional Brownian motion for 1/2<8<1 (since
0<H<1/2). In the Debye limit of 83— 1, the response sig-
nal is an ordinary Brownian motion with H=1/2. Note that
B=1/2 corresponding to H=0 is a special value which sepa-
rates motionlike and noiselike response processes.

On time scales longer than 7, the memory function x(¢) is
strongly influenced by the stretched exponential decaying
factor. For 8<<1, the long stretched exponential range leads
to a deviation from the flat white noise spectrum for the low
frequencies w<<27/7, and more so for smaller 8. This im-
plies correlations on time scales > 7 (though not yet long-
range correlations'? in the strict sense, since the latter would
require a spectrum which diverges faster than logarithmic as
w—0).

From Eq. (8), we have &(w)=—ix(w)/w. Hence, the
power spectrum of the response to a step-function driving
field is

S(w) = |¢(w)|2 = w_2|)((w)|2 ot @ 20+A) (23)

The extra factor w2 in the PSD compared to the PSD with
an uncorrelated white noise driving field is due to the non-
stationarity of the step-function source signal.

D. Physical origin of power-law spectra and stretched
exponential relaxation

It is instructive to rederive the power spectrum in Eq. (23)
from the distribution of relaxation times as characterized by
Eq. (2), then from the weighted superposition of the Debye
single-exponential relaxation processes. From Eq. (11), we
have

d(w)=—- L +f ei‘”’dtf Qﬁ(#)eXP<— i)tl,u, (24)
@ Jo 0 I

where we expanded the stretched exponential over the partial
relaxation times w. By changing the order of integration in
Eq. (24) and Fourier transforming the exponential function
exp(—t/u), one finds

w

)=+ f — o (25)
0 [10]

The weighting function @4(u) is given by Egs. (51d) and
(55) of Ref. 5, where one replaces the exponent a with 3, the

PHYSICAL REVIEW B 76, 104201 (2007)

time constant 7" with 7, and the variable u with 7/u. In our
notations:

T

0p(p) = éLﬁ,q(;), (26)

where Lg_; is the Lévy distribution function with skewness
parameter —1.'° For short relaxation times u << 7, the param-
eter 7/u corresponds to the tail of the Lévy distribution,

which is approximated by the Pareto inverse-power
distribution,’ i.e.,
Lg_i(7/p) = Ap(rl/ )™ 1P, (27)

where Ag is a normalization parameter and 0<<g<1. The
distribution of relaxation times is then a pure power law:

0p(p) o« w2 p! P o y~(17F), (28)

Now let us demonstrate directly the connection between the
power-law distributed relaxation times for w<<7 and the
power-law power spectra for w>2m/7. By considering o
> 24/ 7, we can define a crossover time scale a ~ 0/ w, with
O a constant much larger than 1. We can then split the inte-
gration in Eq. (25) into a tail integral [{du and a core inte-
gral [ fd/.L. In the core integral, we have wu=0>1, and we
can neglect 1 in 1—iwu, then integrate the distribution func-
tion @g(u) through all w to find, with [@g(u)du=1,

f - opmdp =~ —. (29)
. 1—iow ®

Thus, the core integral compensates for —i/w in Eq. (25),
leading to

Hw) = f 1 B os(wdpu. (30)
0o | TIOM

In the tail integral, we have 7/u>1, and we can substitute
0 () from Eq. (26) and utilize the power-law distribution in
Eq. (28) to obtain

a B
qs(w)ocf £

) ? gﬁ
== _(1+B —_—
du=w fo 1—i§d§’ (31)

with é= wu varying from 0 to ©. The integral on the right of
Eq. (31) converges to a constant, while the scaling factor in
front yields the PSD in Eq. (23).

Our findings so far can be summarized as follows: The
stretched exponential relaxation corresponds to a power-law
memory response function for short time scales =< 7. For a
white noise driving electric field, this in turn implies a frac-
tional Brownian polarization response signal on these time
scales. These features are intimately connected with the de-
scription of the stretched exponential relaxation as a super-
position of exponentially decaying signals with a distribution
of characteristic relaxation times u which are power-law dis-
tributed for u<<7.

Power-law distribution of durations of relaxation events
as responses to external perturbation is a hallmark of systems
in states of self-organized criticality.?’ The discussion pre-

104201-4



STRETCHED EXPONENTIAL RELAXATION AND AC...

sented in this section supports the hypothesis that dielectrics
exhibiting stretched exponential relaxations are in a self-
organized critical state.

E. Fractional-derivative representation

If one wishes to calculate the spectrum S(w) from the
dynamics of the relaxation process, the procedure is to re-
place the memory function in Eq. (5) by its KWW represen-

tative in Eq. (10) to give
—" |8
E(t ) XP{ {—(t Tt)} } (32)

P(z.r) = J dr' ()P
The integration in Eq. (32) is singular at ¢’ =, but the integral
converges if 0<<B<1. As mentioned in Sec. Il A, the
stretched exponential cutoff factor in the integrand is neces-
sary for convergence of the integral if E(¢',r) is a step func-
tion. However, for a white noise electric field, the integral
converges even if this cutoff is removed by replacing the
exponential factor with unity. The effect this removal will
have on the nature of the response signal is to introduce
long-range statistical dependence on time scales longer than
7, while the statistical properties on scales shorter than 7 are
unaffected. Focusing on the shorter time scales, we shall pro-
ceed with the cutoff factor removed. By applying d/dt to
both sides of Eq. (32), we have

J _
YBEP(LI‘) = _D!"PE(1,r), (33)

with YB=7'3/F(1+ B) a constant and _OCD,I_B the so-called
Riesz fractional derivative,”! which is defined through

a " ., f',r)
F(B)é’tf_wdt TR

where f(z,r) is differintegrable for t' —¢ at point r. Along
with the Riemann-Liouville derivative (to be discussed in
some detail below), the Riesz derivative in Eq. (34) offers a
fractional generalization of ordinary derivative d/4¢, which
can be thought of as a special case of _thl'B, with the inte-
ger B=0 and 1-B=1. A Fourier transformed Riesz deriva-
tive _.D)” is (—iw)'~P, in analogy to the transform of d/Jr.
Performing a Fourier transform of Eq. (33), we get

—ioP(w,r) « (- in) PE(w,r), (35)

_.D;Pf(1,r) =

where we omitted Y 4 for simplicity. From Eq. (35), one im-
mediately recovers the PSD of the polarization field. In the
integrated form, Eq. (33) reads

Y 4P(t,r) = _.D;PE(t,r), (36)
with _th_ﬁ acting as
b fWr)
_D; Pr(t,r) = F(B) _wa’ (i) F (37)

The operator in Eq. (37) is known as the Riesz fractional
integral. With B=H+1/2 and E(¢,r) a Gaussian white noise,
the integration in Eq. (36) generates a fractional Brownian
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function (i.e., antipersistent fractional Brownian motion for
1/2<B<1 and persistent fractional Brownian noise for 0
< 8<1/2). The origin of fractional Brownian type polariza-
tion response to a white noise electric source field can be
imagined as arising from nonrandom motion of dielectric
molecules driven by the uncorrelated external forcing.

III. FRACTIONAL KINETIC EQUATIONS
A. Self-consistent dynamic-relaxation model

We have assumed in Sec. II that the electric field E(¢',r)
has an external origin, and we have investigated the proper-
ties of the polarization response field for different forms of
the electric source field (i.e., the white noise and step-
function driving fields). In this section, the assumption of the
external origin will be relaxed and we shall consider E(#',r)
as the inherent field of the polarization charges.

We propose that if, in a dielectric medium, the property of
ac universality is verified, then the decay of polarization goes
as a KWW stretched exponential relaxation function. We for-
mulate the problem as an initial-value problem for time non-
local polarization field of the form

P(z,r) =P(0,r) + fw x(t—1t")E(¢ ,r)dt’, (38)

0

where P(0,r) is the initial polarization. We shall assume that
the response processes to all the external driving fields have
been accomplished by time =0, and we are interested in the
self-consistent dynamics of relaxation when the residual po-
larization field is essentially the response to the residual elec-
tric field due to the polarization charges.

Let p(z,r) be the density of the polarization charges at
time ¢ at point r. The function p(z,r) is defined as the mean
density of the electric charges in a physically small volume
around r such that the highly fluctuating molecular densities
are averaged out. One assumes that there is a length scale
separation between the microscopic molecular scales and the
length scales on which the mean density varies. On length
scales comparable to or shorter than the molecular scales, the
dynamics of relaxation must be described statistically. We
shall return to this issue in Sec. III C.

Assume for simplicity that there are no external charges,
i.e., the total charge of the medium is zero. The polarization
charges are then the only source for the polarization and
electric fields, i.e.,

V- E(t,r) =47p(t,r) (39)
and
V.-P(t,r)=-p(t.r). (40)
Hence
V-D(t,r)=0, (41)

where D=E+47P is the electric displacement in the me-
dium. The density of the polarization and/or relaxation cur-
rents is defined as the time derivative of the polarization
field, i.e., j=dP/dt. From Eq. (38), we have
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400
j@r)= f o(t—t")E(t',r)dt’, (42)
0
where

’ _ﬁ 4!
a(t—t)_ﬂtx(t ') (43)

is a new memory function. A Fourier transformed o(z) de-
fines the frequency-dependent complex conductivity of the
medium, which is related to the susceptibility function via
o(w)=—iwy(w). Causality requires that o(r—1")=0 for r<t’
so that the integration in Eq. (42) is nontrivial only in the
window 0=<¢'<r. Performing d/dt on Eq. (40), we obtain
the continuity equation

J
Ep(t,r)+V-j(t,r)=O, (44)
with j(z,r) in Eq. (42). In the following, we proceed with the

derivation of the KWW stretched exponential function.

B. Kohlrausch-Williams-Watts decay function and fractional
relaxation equation

By Laplace transforming Egs. (39), (42), and (44), we get

V-E(s,r) =4mp(s,r), (45)
j(s,r) = o(s)E(s,r), (46)
sp(s,r) = p(0,r) +V - j(s,r) =0. (47)

If we apply V- on Eq. (46) and utilize Eq. (45), we find
V-j(s,r)=0o(s) V - E(s,r) =4ma(s)p(s,r). (48)
When substituted into Eq. (47), this yields
sp(s,r) + 4ma(s)p(s,r) = p(0,r). (49)

We assume that the sample observes ac universality, i.e.,
o(s)=as”, with «a a constant and 7 a fraction between 0 and
1. This power-law form is just the Laplace version of Eq. (3).
We shall use this form as an approximation of o(s) for the
corresponding (short) time scales, 1~ 1/s. Equation (49) be-
comes

sp(s,r) + 4masp(s,r) = p(0,r). (50)

Separating variables, we write p(s,r)=@(s)i(r), with ¢(s)
the Laplace transform of the relaxation function ¢(r). From
Eq. (50), it follows that

1

s+ dmas™

P(s) = (51)
where the initial condition ¢(0)=1 has been applied. In the
time domain,

+i%® st
e

$(1) = —

gyl A g LK (52)

where we used the notations 8=1-17 and 7P=4ma. Equa-
tion (52) is exactly the definition of the Mittag-Leffler func-
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tion Eg—(t/7)?] [Eq. (B.1) in Appendix B of Ref. 21]. The
Mittag-Leffler function has the series expansion

N\l <, o, WD
Eﬂ[_(?) ]2%(‘ D TnB+1) (53)

For short times, this expansion goes as a stretched exponen-

tial, i.e.,
)] (t/7)° }
Eﬂ{_(r) }Ne"p[_ rg+1)] 59

This closed analytic form replicates the KWW relaxation
function in Eq. (1).

We now derive a dynamical relaxation equation from the
dispersion relation (50). The key step is to notice that the
power law s7 with 0<#n<1 is the Laplace transformed
Riemann-Liouville derivative,?! which is defined through

a " fi.r)
a9

The Riemann-Liouville derivative differs from the Riesz de-
rivative in that the integration starts from =0 and not from
t=—. Despite some particularities’’ of the composition
rules and initial-value terms, both vehicles share the property
of being well-defined fractional extensions of the ordinary
differentiation. In the limit of 77— 1, the fractional derivative
in Eq. (55) reduces to ordinary time derivative, d/dt. Replac-
ing s7 by (D/ in Eq. (50), we write, with 7P=4ma,

()Dtnf(t’r) =

J _

Ep(t,r) =- T_BOD,] Bo(t,r). (56)
It is instructive to derive Eq. (56) directly from Eq. (38).
Applying V- to Eq. (38) and utilizing Eqgs. (39) and (40), we
find, with p(0,r)==V-P(0,r),

t

p(t,r) = p(0,r) — 4 f x(t=1")p(t'" r)dt’, (57)
0

which is a closed integral equation for p(z,r). Note that the
causality condition x(z—¢")=0 for <’ has allowed us to set
the upper limit of integration to ¢. By time differentiating Eq.
(57), we get

J a [
—p(t,r)=—47— t—t")p(t',r)dt". 58
mp( r) WarJOX( )p(t',r) (58)

The memory kernel x(¢) is calculated from Egs. (8) and (52).
Here, we are interested in the short-time behavior, which can
be most readily evaluated from the power expansion in Eq.
(53) to give

o« & Bl
x(1) T B)t : (59)
Of course, the scaling in Eq. (59) may be obtained as the
inverse Laplace transform of the complex susceptibility,
x(s) < o(s)/s<sP. When the power law in Eq. (59) is sub-
stituted to Eq. (58), the Riemann-Liouville derivative OD;‘B
is built, whence the dynamical Eq. (56) follows.
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STRETCHED EXPONENTIAL RELAXATION AND AC...

Equation (56) with the Riemann-Liouville fractional de-
rivative is the canonical form of the fractional relaxation
equation.”! The short-time behavior of the solution of the
fractional relaxation equation is the KWW stretched-
exponential decay function, in accordance with the power
expansion of the Mittag-Leffler function.

Our main finding in Sec. III B is as follows: The KWW
stretched-exponential decay function can be derived from the
basic electrostatic equations under the additional assumption
that ac conduction coefficient behaves as a fractional power
of frequency.

C. Fractional diffusion equation describing subdiffusion

Our purpose now is to contrast the electrostatic descrip-
tion of the decay of polarization with a statistical-mechanical
description of the dynamics of charged particles on the mi-
croscopic scales of the molecular motions.

Microscopically, the relaxations are due to the motion of
charges which interact with the fluctuating molecular envi-
ronment. As a model approximation, we shall rely on the
hypothesis of trap-controlled conduction and diffusion, in
which the transport occurs as a result of hopping of charged
particles between the localized states. If the hopping has a
characteristic time, then the transport is described by a Mar-
kovian chain process. In a more general situation, there is a
distribution of waiting or residence times between the con-
secutive steps of the motion, and the Markovian property is
invalidated. The system response to a charge-density pertur-
bation is then a flow with memory:

jr)=- f D(t—1t")Vp(t',r)dt, (60)
0

which goes against the concentration gradient as due to
Fick’s law. Here, D(t—1t') is a memory function, such that
D(t—1")=0 for t<t'. A Fourier transformed D(¢) is defined
as the frequency-dependent complex diffusion coefficient
D(w). The value of D(w) can be expressed in terms of the ac
conduction coefficient as

D(w) = ~a(w), (61)
ne

where e denotes the carrier charge, n their number density,
and T the absolute temperature. In the zero-frequency limit,
Eq. (61) reduces to the conventional Einstein relation be-
tween the diffusion constant and the dc conductivity. Based
on Eq. (3), we can argue that D(w) < w” for the correspond-
ing high frequencies.

We now turn to demonstrate that if the sample observes ac
universality, the microscopic dynamics of charges is de-
scribed by a fractional extension of the diffusion equation.

By Laplace transforming Eq. (60), we get

i(s,r)==D(s) V p(s.r), (62)

where D(s) is the Laplace transform of D(z). When substi-
tuted into the continuity Eq. (47), this yields
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sp(s,r) = p(0,r) = D(s)Vp(s,r). (63)

Adhering to the power-law form o(s)=as” from Eq. (61), we
have D(s)=As", with A=aT/ne?*. Utilizing this in Eq. (63),
we write

sp(s,r) = p(0,x) = s"V?p(s,1), (64)

where we set A=1 for simplicity. In the time domain, Eq.
(64) reads, with 7=1-p,

J _
Ep(t,r) = OD} PY2p(t,r). (65)

Equation (65) is the canonical form of the fractional diffu-
sion equation describing subdiffusion,?! with 8 the fractal
dimension in time.?? In various settings, this equation has
been derived and discussed in the literature.>!~26

The characteristic function of the fractional diffusion Eq.
(65) obeys the fractional relaxation equation

J _
Pk == k2D, Pp(1.k), (66)

where k is the wave vector in the ambient real space. From
Eq. (54), one can see that the short-time behavior of p(,K) is
the stretched exponential

k%P }
rgen ] o

p(t.k) = exp{—
With this observation, we conclude the analysis of connec-
tion between the KWW stretched-exponential relaxation
function and ac universality in disordered solids.

IV. SUMMARY

We have analyzed the properties of dielectric relaxation
and ac conduction in disordered dielectrics. We have dis-
cussed the route to the statistical-mechanical foundation and
suggested physical models that might connect to the typi-
cally observed dynamical characteristics. We proposed a
self-consistent model of dielectric relaxation, in which the
polarization and electric source fields are self-consistently
generated by the residual polarization-charge density. This
self-consistent approach has led us to a systematic derivation
of the fractional relaxation and fractional diffusion equations
from the property of ac universality. Our results support the
hypothesis that dielectrics exhibiting ac universality and
stretched exponential relaxations are in a self-organized criti-
cal state.
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