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Scanning tunneling microscopy and electrical conductivity of redox molecules in conducting media
�aqueous or other media� acquire increasing importance both as novel single-molecule science and
with a view on molecular scale functional elements. Such configurations require full and
independent electrochemical potential control of both electrodes involved. We provide here a
general formalism for the electric current through a redox group in an electrochemical tunnel
contact. The formalism applies broadly in the limits of both weak and strong coupling of the redox
group with the enclosing metal electrodes. Simple approximate expressions better suited for
experimental data analysis are also derived. Particular attention is given to the effects of the Debye
screening of the electric potential in the narrow tunneling gap based on the limit of the linearized
Poisson-Boltzmann equation. The current/overpotential relation shows a maximum at a position
which depends on the ionic strength. It is shown, in particular, that the dependence of the maximum
position on the bias voltage may be nonmonotonous. Approximate expressions for the limiting value
of the slope of the current/overpotential dependence and the width of the maximum on the bias
voltage are also given and found to depend strongly on both the Debye screening and the position
of the redox group in the tunnel gap, with diagnostic value in experimental data analysis. © 2007
American Institute of Physics. �DOI: 10.1063/1.2766954�

I. INTRODUCTION

Electron tunneling through molecular bridge contacts in
condensed matter environment �in situ� has come to attract
increasing attention. Perspectives include single-molecule
electronics and chemical processes and their possible role in
new molecular scale electronics. In situ tunneling through
redox molecules with low-lying accessible electronic levels
inserted between the substrate and tip electrodes in electro-
chemical in situ scanning tunneling microscopy �STM� or
between a pair of electrochemically controlled nanogap elec-
trodes offer particular perspectives. The redox level�s� can
thus bring the molecule to display rectification, amplifica-
tion, negative differential resistance, and other properties of
possible importance in molecular scale electronics. In con-
trast to most reported cases of single-molecule electronics,
the electrochemical bridge group tunneling contacts more-
over operate in condensed matter environment �as opposed
to ultrahigh vacuum� and at room temperature �as opposed to
cryogenic temperatures�.

The theory of these processes goes back to reports in the
1970s on bridge-assisted electron transfer in the bulk of polar
media and at the electrodes.1–9 A crucial factor determining
the peculiarities of these processes is a strong interaction of
the transferable electron with polar environment �phonons�
and/or local vibrational modes. This interaction plays a deci-
sive role also in the electron tunneling between two metals

through a bridge molecular redox group. The mere existence
of two valence states of the redox group at a fixed electric
potential �a bistability property� is a result of strong interac-
tion of this group with vibrational subsystem. This was rec-
ognized in the first theoretical studies of electron tunneling
through a single molecular redox group10–12 where one of the
electron tunneling mechanisms in such systems was de-
scribed, viz., stepwise sequential electron transfer �ET�
through a relaxed intermediate state when the coupling of
the bridge group with both electrodes is weak �further
elaborated�.13 The current was expressed through the rate
constants �transition probabilities� for the individual ET
steps, and the limit of diabatic ET �employing the Fermi
golden rule�14,15 and the high-temperature limit were in fo-
cus. The strong interaction of the redox group with the vi-
brational subsystem results in the appearance of the Franck-
Condon factor in the expressions of the transition
probabilities. Essentially the same approach was used much
later in theoretical analysis of stepwise sequential electron
tunneling through solid state contacts in the low-temperature
limit.16,17 The notion of Franck-Condon blockade of the tun-
neling process16,17 is thus identical to the appearance of the
Franck-Condon factor in the earlier reports. A similar mecha-
nism, viz., inelastic electron tunneling with the excitation of
several phonons has been discussed in Refs. 18 and 19 where
the expansion in the powers of the coupling constant charac-
terizing the interaction of the electrons with phonons was
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used. This representation is valid in the weak coupling limit
in the case when the oxidized state is considered as the only
state of the bridge group.

Experimental investigations of single-molecule electro-
chemical redox switches was initiated by Tao’s report.20 This
work disclosed tunneling current features of a single redox
molecule �iron protoporphyrin IX� with a maximum in the
current dependence on the overpotential. An attempt of the-
oretical explanation of these data was offered in Ref. 21
using concepts of resonant or off-resonant electron tunneling
averaged over the distribution function of free phonons.
Electron tunneling only through a single, i.e., the oxidized
state of the redox group was thus considered, with emphasis
on the inverted free energy region. However, as shown11,12

and in later reports22–29 incorporation of both valence states
is of principal importance in a full theoretical formalism.

A new physical mechanism of electron tunneling in in
situ bridged contacts when the interaction of the redox group
with both metals is strong was reported in Ref. 30. A “boost”
of electrons, i.e., up to hundred�s� electrons can then be
transferred between the metals via the redox molecule in a
single in situ STM event, while the bridge group redox level
passes through the energy window between the Fermi levels
of the metals. An important step in the understanding of the
ET mechanism in these systems was offered in Ref. 23 where
the crucial role of the redox transformations and vibrational
relaxation of the bridge group confined in the tunnel gap was
documented and the relationships between the tunneling cur-
rent and electrode potential fully established.

The spectroscopic current/overpotential relation com-
bined with the expectations of an electronic “boost” was sup-
ported by new data and analysis for a group of bipy-based Os
complexes �bipy=2,2�-bipyridine�.31,32 The importance of
the multielectron boost is further strikingly illuminated by
the substantial difference between the many-ET process of
the Os complex and the single-ET behavior of analogous Co
complex.31

One of the most interesting theoretical outcomes was the
prediction of the maximum of the tunneling current/
overpotential dependence near the equilibrium potential of
the redox group at fixed values of the bias voltage,23 cf. the
experimental data of Tao.20 This expectation has been sup-
ported by a number of recent experimental studies.31–38 Not
only the maximum itself has been clearly observed but the
dependence of maximum current and the position of the
maximum on the bias voltage has also been studied32,33 and
analyzed.32 Closer examination of Tao’s data shows that the
current maximum for this system is also close to the equilib-
rium potential.23,39,40 As a whole, the multitude of new data
therefore accord broadly with the expectations of the theory.
However, the application of the theory to new experimental
data also shows the need to include other features in a more
detailed analysis. In particular, the Debye screening of the
electric potential in the tunnel gap needs to be considered in
more detail. As shown recently41–43 this is likely to disclose a
number of new interesting effects. The aim of the present
report is to present both general equations for the tunneling
current through a redox group and simple approximate ex-
pressions useful for experimental data analysis. The report is

organized as follows. The model and general relationships
for nonadiabatic electron transitions are described in Sec. II.
The relationship between the reaction free energies of the
transition is established in Sec. III. The effects of Debye
screening on the potential distribution and the current are
discussed in Sec. IV. The limit of strong coupling of the
redox group with both electrodes is considered in Sec. V,
while Secs. VI and VII offer a discussion of the results and
some concluding remarks.

II. THE MODEL AND THE LIMIT OF WEAK COUPLING
OF THE REDOX MOLECULE WITH THE METALS

The system consists of two metal electrodes �left, L, and
right, R� immersed into the electrolyte solution and a mol-
ecule with a redox group, B, confined in the gap between the
electrodes. Two potential differences can be controlled inde-
pendently: the bias voltage between the metals V and the
potential of the left ��L� or right ��R� electrode with respect
to the potential in the bulk of the solution ��s�. The latter will
be taken to be zero ��s=0� throughout �Fig. 1�. The case
where the Fermi level of the left electrode is located higher
than that of the right electrode, i.e., positive bias voltage, will
be specifically considered. Extension to negative bias volt-
ages is straightforward.

We consider first the case where the interaction of the
redox group with both metals is weak, corresponding to
nonadiabatic electronic transitions. The electron tunneling
mechanism in this case is of a stepwise character. We start
from the state where the redox group is, e.g., in the oxidized
state. ET from the left metal to the redox group, i.e., reduc-
tion of the redox group, is then the first step. The thermal
fluctuations of the molecular environment are crucial and
take the electronic energy level �B towards the Fermi level of
the left metal �FL. Following the first ET step, the molecular
level relaxes fully to a new position below the Fermi level of
the right metal �FR.

This configuration would prevail for a long time at low
temperatures and could here serve as a memory element.
However, at room temperature, due to renewed thermal fluc-
tuations of the molecular environment the occupied elec-
tronic energy level will approach resonance with unoccupied

FIG. 1. Energy diagram for the redox mediated tunneling contact. The
dashed line shows the position of the electrochemical potentials at equilib-
rium; equilibrium potentials are defined by Eqs. �8� and �9�.
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energy levels of the right metal. ET to these levels will then
reoxidize the redox group thus completing the ET cycle from
the left to the right metal.

The electric current through the contact following this
mechanism can be given as23,27

j = e
kLBkBR − kBLkRB

kLB + kBL + kRB + kBR
, �1�

where kLB and kBR are the rate constants for the ET from the
left metal to the redox group and from the redox group to the
right metal, respectively. kBL and kRB are the rate constants
for the reverse transitions.

The simplest expressions for the tunneling current
emerge in the so-called spinless model where the electron
spin is ignored. The spinless model is used in most theoret-
ical reports on one-electron electrochemical reactions. The
implicitly assumed or explicitly claimed single occupancy of
the molecular orbitals has been rationalized by infinitely
large repulsion energy, U, for two electrons with opposite
spin directions on a single electronic energy level in the re-
dox molecule. It will be shown below, however, that the
assumption of infinitely large repulsion energy is not the
same as the spinless model. The double spin degeneracy of
the electronic energy levels in the metal electrode means that
ET from a given energy level in the metal to the redox level
can involve transition of either of two electrons �with oppo-

site spins� from the occupied electronic energy level in the
metal. At the same time this is not the case for the reverse
transition of one electron occupying the redox energy level.
This effect will be taken into account below.

According to the detailed balance principle the rate con-
stants of the forward and reverse transitions are related to
each other as14,15

kBL =
1

2
kLB exp�−

�FBL

kBT
�, kRB = 2kBR exp�−

�FRB

kBT
� ,

�2�

where �FBL and �FRB are the reaction free energies of the
electronic transition from the redox group to the Fermi level
of the left metal �FL and from �FR to the redox group, re-
spectively, with spin degeneracy disregarded. The appear-
ance of the factors 2 and 1

2 is due exactly to the difference in
the occupation of the electronic energy levels in the metal
�two electrons with opposite spins� and in the redox group
�one electron only� �see also Eq. �A1��. The reaction free
energies are related to each other as

�FBR = eV − �FBL, �3�

with V being the bias voltage, i.e., the difference of electro-
chemical potentials of the two metals, Fig. 1.

With the use of Eqs. �2� and �3� the current expression
can be transformed to

jn,ad = e
2kLBkBRsinh�eV/2kBT�

kLB�exp�eV/2kBT� + exp��eV/2 − �FBL
�2��/kBT�� + kBR�exp�eV/2kBT� + exp�− �eV/2 − �FBL

�2��/kBT��
, �4�

where the reaction free energy �FBL
�2� is related to �FBL as

�FBL
�2�=�FBL+kBT ln 2.
The reaction free energy �FBL depends on the electrode

potentials

�FBL = �FL − �B − �Fsolv − e��L − �s�

+ e���z;�L − �L
pzc,�R − �R

pzc� − �s� , �5�

where the Fermi levels �FL and �FR are counted from the
energies −e�L and −e�R ��L and �R are the Galvani poten-
tials of the left and right electrodes, respectively�, and �B is
the electronic energy in the bridge group counted from the
energy −e�s, where �s is the potential in the bulk of the
solution. As noted, below the potential �s will be taken to be
zero throughout. �Fsolv is the difference of the solvation free
energies of the redox group in the reduced and oxidized
states and ��z ;�L−�L

pzc ,�R−�R
pzc� the potential at the site of

the redox group. This potential depends on the Galvani po-
tentials �L and �R and on the potentials of zero charge �L

pzc

and �R
pzc of the corresponding electrodes.

The rate constants are calculated with the use of the
Fermi golden rule and integration over all electronic energy
levels in the corresponding metal �Eqs. �A1�, �A2�, �A6�, and

�A7� in the Appendix�. Together with Eq. �4� they determine
the dependence of the current on the bias voltage and the
electrode potentials. As seen from Eq. �5�, the behavior of
the current depends on the potential distribution in the tunnel
gap. Analysis of the equations shows that the current as a
function of the electrode potential at fixed bias voltage V has
a maximum close to the equilibrium potential. Approximate
expressions describing the current in the neighborhood of the
maximum can be derived with the use of approximate ex-
pressions for the rate constants which emerge from Eqs. �A1�
and �A2� at small absolute values of the reaction free ener-
gies of the transitions

kLB � 2kL
0 exp�− ErL/4kBT�exp��FBL/2kBT� ,

�6�
kBR � kR

0 exp�− ErR/4kBT�exp��eV − �FBL�/2kBT� ,

where ErL and ErR are the reorganization energies of the
molecular environment and

kL
0 =

�

2�
2��L�LkBT, kR

0 =
�

2�
2��R�RkBT . �7�

� is effective frequency of the molecular environment, �L

and �R the densities of the electron states in the metals �with
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the neglect of spin degeneracy�, and �L and �R are electron
transmission coefficients. The latter correspond to onefold
passage through the crossing point of the diabatic free energy
surfaces �the factor 2 in Eq. �7� takes into account twofold
passage through the crossing point in the nonadiabatic case
and the factor � appears from the integration over the elec-
tronic energy spectrum�.

Equations �6� are valid when the absolute values of the
reaction free energies are much smaller than the correspond-
ing reorganization energies. The approximate expressions for
the electric current obtained from Eqs. �6� and �7� are given
in the Appendix �Eqs. �A3�–�A5��. These equations are still
rather complex since the dependence of the reaction free en-
ergy of transition �FBL

�2� on the electrode potentials in general
may be quite complicated. The relation of �FBL

�2� to the elec-
tric potentials is discussed in Sec. III.

III. REACTION FREE ENERGY OF THE TRANSITION
AND THE ELECTRODE POTENTIALS

The general relationship between the reaction free en-
ergy of the transition and the electrode potential is given by
Eq. �5�. It is convenient to introduce the “equilibrium” po-
tentials �L

0 and �R
0 determined by the condition that the cur-

rents through each electrode and the reaction free energies of
the transition �FBL

�2� and �FRB
�2� vanish at zero bias voltage.23

This gives

e�L
0 − e�0�z;�L

0 − �L
pzc,�R

0 − �R
pzc� − e	L

0 = 0, �8�

e�R
0 − e�0�z;�L

0 − �L
pzc,�R

0 − �R
pzc� − e	R

0 = 0, �9�

where standard redox potentials are equal to

e	L
0 = �FL − �B − �Fsolv + kBT ln 2,

�10�
e	R = �FR − �B − �Fsolv + kBT ln 2.

The last terms in the right-hand side of Eq. �10� take into
account the spin degeneracy of the Fermi levels in the met-
als.

Equations �8� and �9� give the following equation for
determination of the equilibrium potential �L

0:

�L
0 − �0�z;�L

0 − �L
pzc,	R

0 − 	R
pzc + �L

0 − 	L
0� = 	L

0 . �11�

As seen from Eq. �11�, �L
0 does not in general coincide with

the standard redox potential and differs from the latter by the
potential at the site of the redox group �0. We also introduce
the “cathodic” overpotential


 = �L
0 − �L. �12�

Positive values of 
 mean that the potential of the left
electrode is lower than the corresponding equilibrium poten-
tial. Taking into account the relationship between the bias
voltage and the electrode potentials41 �Fig. 1�

V = �R − �R
0 − ��L − �L

0� , �13�

we obtain for the reaction free energy15

�FBL
�2� = e�
 + ��z;�L

0 − �L
pzc − 
;�R − �x

pzc�

− �0�z;�L
0 − �L

pzc;�R
0 − �R

pzc�	 . �14�

The quantities � and �0 as well as the equilibrium potentials
�L

0 and �R
0 should be calculated as the solution of the corre-

sponding electrostatic problem. At small values of V and 

Eq. �14� can be recast approximately as

�FBL
�2� = e��
 + �V� , �15�

where

��z� =
 ��

��R



�R=�R
0
, ��z� = 1 −
 ��

��L



�L=�L
0

− ��z� . �16�

Equations �15� and �16� are exact only in the case of linear
response of the double layer to the electrode potentials.

IV. DEBYE SCREENING EFFECTS ON THE
POTENTIAL DISTRIBUTION IN THE TUNNELING GAP
AND ON THE TUNNELING CURRENT

We consider a narrow tunneling gap with a small redox
group the effect of which itself on the potential distribution
may be neglected. The Poisson-Boltzmann equation is non-
linear when the potential exceeds kBT /e. A number of other
effects such as dielectric saturation and spatial dispersion of
the dielectric properties of the solvent, the energy of ion
transfer from the bulk of the solution, “lattice saturation”
effects, etc., could also be important.44 However as shown,44

most of these effects compensate almost completely each
other in a narrow gap. The potential distribution is therefore
very close to that obtained as the solution of linearized
Poisson-Boltzmann equation. The solution has the following
form for a system with planar geometry:44

��z;�L;�R� = ��L − z;LD���L − �L
pzc�

+ ��z;LD���R − �R
pzc� , �17�

where L is the width of the tunneling gap, LD the Debye
length, and

��z;LD� =
exp�z/LD� − exp�− z/LD�
exp�L/LD� − exp�− L/LD�

. �18�

We obtain for � and � in Eq. �16�

��z� = 1 − ��L − z,LD� − ��z,LD�, ��z� = ��z,LD� . �19�

In this case the relationship between �L
0 and standard poten-

tials 	L
0 and 	R

0 can also be derived �see Eq. �A14��.
Equations �15�, �19�, and �A3� give a simple approxi-

mate current expression

jn,ad = j0 sinh
eV

2kBT

 �exp� eV

4kBT
�cosh� e�0.5 − ��V − e�


2kBT
− a

+ exp�−
eV

4kBT
�cosh� e�0.5 − ��V − e�


2kBT
+ a�−1

,

�20�
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where a and j0 are given by Eq. �A4�. The factor a describes
possible asymmetry of the contact due to nonsymmetric lo-
cation of the redox group and different electronic interactions
of the redox group with the electrodes. This equation is for-
mally exact if Eqs. �A12� and �A13� are used for j0 and a.

The current as a function of overpotential 
 has a maxi-
mum at 
=
max. 
max depends on the bias voltage and tends
to 
max=0 when V→0. The dependence of 
max on V can be
recast in parametric form as follows:

e�
max

2kBT
= �1

2
− ��ln

sinh�a + u�
sinh�a − u�

− u ,

�21�
eV

2kBT
= ln

sinh�a + u�
sinh�a − u�

, a � 0,

where the running variable u varies within the interval �u�
� �a�. The dependence of 
max on V can be found in explicit
form for large �V��Er� �V��kT�

e�
max

2kBT
= �1

2
− �� eV

2kBT
� a , �22�

where � and � correspond to negative and positive values
of V, respectively. Equation �22� holds also in the case when
a=0.

According to Eq. �22� the slope of the line 
max�V� is

S�z,LD� =
1 − 2��z,LD�

2�1 − ��L − z,LD� − ��z,LD��
. �23�

If the redox group is located symmetrically in the tunneling
gap �z=1/2�, then ��z ,LD�=��L−z ,LD�. The slope is there-
fore equal to S=1/2 and independent of the Debye length.
The quantity �a� in this case is small or zero.

The width of the maximum �at half height� is

�


kBT
=

4 arccosh 2

1 − ��L − z,LD� − ��z,LD�
. �24�

Unlike the slope, �
 depends on the Debye length even for a
symmetric contact. It should be noted, however, that �
 is
independent of Er and V in the weak coupling limit.

V. THE STRONG COUPLING LIMIT AND COHERENT
MECHANISM OF THE IN SITU STM TRANSITION

When the interaction of the redox group with both met-
als is strong the mechanism of the electronic transition
changes its character entirely. A boost of a large number of
electrons n now tunnel through the energy level of the redox
group as it relaxes through the energy window between the
Fermi levels of two metals at each reaction step �reduction
and oxidation�, cf. above and Refs. 30–32. The exact expres-
sion for the current can be obtained by averaging the partial
tunneling current �calculated at a given position of electronic
energy of the redox group� over the thermal distribution of
the vibrational coordinates in the adiabatic double-well
potential �Eq. �B4��.40 We present approximate equations
similar to those in the foregoing section. The reverse transi-
tions may be neglected in the adiabatic limit when
eV�kBT and the current is23

j = 2en
kLBkBR

kLB + kBL
, �25�

where

n � eV� 1

2�L�L
+

1

�R�R
�−1

. �26�

We note that the degeneracy of the energy levels in the
metal affects the number of electrons transferred in each re-
duction or oxidation step in this limit. The origin of the fac-
tor 2 in the first term in the parentheses is the fact that the
energy interval for the transition of one electron from the left
metal to the redox group, ��LB�1/ �2�L�L�, is one-half of
the corresponding energy interval calculated with the neglect
of double occupation of a given electronic state in the metal
by electrons with opposite spin. In the case of negative bias
voltage �opposite direction of the current� the factor 2 is
moved from the first to the second term in the parentheses.

An expression for the current similar to Eq. �20� can be
derived using Eq. �25� at small overpotential and bias volt-
age. The expression differs from Eq. �20� only by the form of
the constants j0 and a now described by Eqs. �B10� and
�B11�. A quite simple current expression is obtained, if a
weak dependence of the reorganization energy on the posi-
tion of the redox group within the tunnel gap may be
neglected22

jad � en
�

2�
exp�− Er/4kBT�


exp�eV/4kBT�

cosh��e�0.5 − ��V − e�
�/2kBT�
. �27�

The current/overpotential dependence shows a maximum
which is also described by Eq. �22� at a=0. It can be shown
with the use of Eq. �B4� that the position of the maximum
obeys Eq. �22� at arbitrary values of the bias voltage and �.40

Equation �27� shows that the slope of the dependence of 
max

on V in this approximation is also described by Eq. �23�.
Analysis of Eq. �B4� shows that the same equation is valid at
Er�0.5 eV, ��eV, eV, e
�Er.

It should be noted that the effect of spin degeneracy is
not in general reduced to a change of the number of electrons
transferred, n. Equation �27� is valid for small values of the
overpotential, bias voltage, and redox group energy level
broadening, � �as compared with the reorganization energy�.
If these values are close to each other, the activation free
energy becomes different �as studied in Ref. 40 for the spin-
less model�. The existence of the electron spin and the repul-
sion energy will cause additional effects to be studied else-
where.

VI. DISCUSSION

General equations for the tunneling current given in the
Appendix allow calculating the current both in the nonadia-
batic and adiabatic limits in the whole range of the bias
voltage and overpotential �Figs. 2 and 3�. Figure 2 shows
the dependence of the current �normalized to jmax

=ek0��Er /2kBT�1/2 at large bias voltage� on the bias voltage
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for a nonadiabatic process calculated with the use of Eqs. �1�,
�2�, �4�, �A1�, �A2�, �A12�, and �A13� and of the approximate
Eqs. �20� and �A4�. The correlations calculated with the use
of the simple quadratic �“Marcus-type”� expression for the
rate constants, Eqs. �A8� and �A9�, are also given. The com-
parison shows that the simple approximate equation �dotted
curves� works well for eV�Er as expected. The dependences
based on the quadratic rate constant expressions �dashed
curves� extend to a slightly wider region. However, they also
deviate strongly from the exact solution �solid curves� at
large bias voltage, showing a maximum and subsequent fast
decay. The exact current/voltage curve reaches a plateau
value rather rapidly at large LD /L whereas the current depen-
dence on the bias voltage is much weaker at small LD /L
values. The latter is due to strong screening of the potential
by the electrolyte, resulting in small values of � �e.g., �
=0.47 and 0.2 for LD /L=1.5 and 0.3, respectively� and there-
fore, in a weak dependence of the position of the electronic
energy level of the redox group on V. Figure 3 shows the
dependence of the current �normalized to k0�4�Er where
k0=kL

0 =kR
0 and Er=ErL=ErR� on the overpotential calculated

with the use of the exact equations. It is seen that current

passes a maximum near the equilibrium potential. The maxi-
mum is narrower when the screening is stronger. A more
detailed analysis of the current behavior in the neighborhood
of the maximum can be performed with the use of the ap-
proximate equations obtained within linear electrostatics
�Eqs. �20�–�24� and �27��. These involve the overpotential
and bias voltage in the combination 
v=�
+ ��−0.5�V,
where the quantities � and � depend both on the position of
the redox group z and on the Debye length LD �Eq. �19��.
Typical ��z� and ��z� curves are shown in Fig. 4. The quan-
tity � quantifies the effect of variation of the potential of the
right electrode on the potential at the site of the bridge group
and therefore increases monotonously with increasing z. The
quantity � quantifies the effect of variation of the potentials
of both electrodes and therefore passes through a maximum.
Typical dependences of the position of the maximum of the
tunneling current on the bias voltage are shown in Fig. 5. All
curves cross at the point 
max=0, V=0. The slope is well
described by the approximate Eq. �23� at small a values
whereas it reaches a limiting value at larger bias voltage
when a is large.

FIG. 2. Dependence of the tunneling current on the bias voltage at 
=0: �1�
LD /L=1.5; �2� LD /L=0.3. The solid curves are calculated according to the
exact equations �1�, �2�, �4�, �A1�, �A2�, �A12�, and �A13�; the dotted curves
are calculated with the use of Eqs. �20� and �A4�; and the dashed curves are
calculated according to Eqs. �1�, �2�, �A8�, and �A9�. z /L=0.5.

FIG. 3. Dependence of the tunneling current on the overpotential. The cur-
rent is normalized to k0�4�Er �see text�, Er=0.5 eV; z /L=0.5. �1� eV
=0.2 eV; LD /L=0.8; �2� 0.2 eV; 0.3; �3� 0.1 eV; 0.8; �4� 0.1 eV; 0.3.

FIG. 4. Dependence of the coefficients ��z� �solid lines� and ��z� �dashed
lines� on the position of the redox group in the tunneling gap at different
values of the Debye length LD. �1� LD /L=1.5, �2� LD /L=0.3.

FIG. 5. Dependence of the position of the maximum of the current/
overpotential relation on the bias voltage at different positions of the redox
group z and the parameter a calculated according to Eq. �21� �solid lines�.
The dashed lines are calculated according to Eq. �22� at corresponding po-
sitions of the redox group and a=0. LD /L=0.5. �1� z /L=0.3, a=0.2; �2�
z /L=0.7, a=−0.2; �3� z /L=0.3, a=5; �4� z /L=0.7, a=−5.
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The dependence of the slope on the position of the redox
group is shown in Fig. 6. The slope is close to 1

2 for small
values of the Debye length �strong screening� and practically
independent of the position of the redox group within the
interval between 0.3L and 0.7L. The dependence is stronger
at larger values of the Debye length. The slope is also larger
if the redox group is located closer to the left electrode. This
asymmetry is caused by the choice of the left electrode as the
substrate �with corresponding consequences for the potential
variations�.

The slope depends on two quantities, ��z ;LD� and
��L−z ;LD�, Eq. �23�. In order to determine these separately
from experimental data we need an additional relationship,
determined by the width of the maximum �
, Eq. �24� �Fig.
7�. As seen from Fig. 7, the width increases with increasing
Debye length. Within the approximations used the width is
independent of the bias voltage and determined by the same
quantities as the slope. The use of experimental data for the
slope and the width of the maximum therefore allows deter-
mining ��z ;LD� and ��L−z ;LD�

��z,LD� =
1

2
−

4S

�


arccosh 2,

�28�

��L − z,LD� = 1 −
1

2S
− �1 −

1

S
���z,LD� .

The use of the dependences of ��z ;LD� and ��L−z ;LD� on z
and LD �Eqs. �18� and �19�� allows in turn estimating the
position of the redox group in the tunneling gap.

The current expressions in the nonadiabatic limit take
into account only sequential electronic transitions with the
probabilities calculated in first order in the interactions with
the metals. The adiabatic tunneling current involves both
resonance and off-resonance electron tunneling. The latter is
commonly denoted as superexchange. This notion goes back
to the early theory of bridge-assisted ET in bulk solution.9

Similar processes in solid state contacts have been denoted
“cotunneling.”45

As noted in Sec. I, reports of experimental work on
in situ tunneling through a redox molecule have appeared
recently32,38 showing a strong tunneling current maximum
close to the equilibrium potential. The dependence of the
position of the maximum on the bias voltage was studied in
Refs. 31 and 33. The dependence of the maximum tunneling
current position on the bias voltage was fairly linear with the
slope close to −0.5 for the Osmium complexes.31 Taking into
account that the data were plotted with the use of the ordi-
nary overpotential 
a=�L−�L

0, the sign of the slope must be
changed when Eq. �23� is used. As noted, the slope 0.5 is
typical for a symmetric contact where ��z ;LD�=��L−z ;LD�
=��L /2 ;LD�. Unfortunately there were not enough data to
determine the absolute value of ��L /2 ;LD�. The Os-based
system also showed the “boost” of a large number of elec-
trons expected when the electronic interaction between the
redox molecule and the enclosing electrodes is strong.32

The tunneling current through a single azurin molecule
attached to a gold electrode also showed an approximately
linear dependence of the maximum position on the bias volt-
age with the slope approximately equal to −0.5.33 This would
correspond to a redox center located symmetrically within
the tunneling gap �S=1/2 in the terms of the present report�
or to another location in the case of strong screening
�S�1/2�. In spite of the scatter of the data one may make
some observations concerning the width and the height of the
maximum. The width of the maximum increases with the
increase of the bias voltage �from 50 to 300 mV�. The height
of the maximum also increases which is in line with general
predictions of the theory. These results were fitted in Ref. 33
the use of the approximate equations �20� �with a=0� within
the sequential stepwise mechanism. The electronic coupling
matrix element was also used as a fitting parameter. How-
ever, there are no physical reasons to assume that the matrix
element depends significantly on the bias voltage.

Instead we calculated current/overpotential dependences
at different values of bias voltage with the use of exact equa-
tions for the strong and weak coupling limits �Eqs. �1�, �A1�,
�A2�, and �B4�–�B8�� keeping the electronic matrix element

FIG. 7. Dependence of the width of the current/overpotential maximum on
the position of the redox group at different values of the Debye length.
LD /L=0.2�1� ;0.3�2� ;0.4�3� ;0.5�4�.

FIG. 6. Dependence of the slope of the line 
max�V� on the position of the
redox group at different values of the Debye length. LD /L
=0.1�1� ;0.5�2� ;1�3� ;1.5�4�.
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�and therefore �� constant. Figures 8 and 9 show that the
experimental data of Ref. 33 are reproduced rather well with
respect to the width of the current/overpotential maximum. It
was assumed that the Debye screening is strong so that �
�0 and ��1. The reorganization energy was chosen to be
0.1 eV in both limits. However, the ratios of the current
maximum values for the values of the bias voltage 300 and
50 mV are about twice as large as the experimental value in
both cases. Thus these calculations do not allow discriminat-
ing between the weak and strong coupling limits for the ex-
perimental data of Ref. 33.

VII. CONCLUDING REMARKS

The present work follows previous theoretical reports on
tunneling spectroscopy of redox molecules in solution when
the molecule is confined either in an in situ STM tunneling
gap or in the gap between a pair of nanoelectrodes, but ex-
tends this work in important respects. The formalism is first
generalized relative to the previous formalism particularly in
the sense that the tunneling current forms apply to the whole
range of overpotential and bias voltage, in either the nona-
diabatic or adiabatic limits. There is, for example, no need

for resorting to interpolation formulas29 between the limits of
small and large bias voltages �although the analysis shows
that the interpolation formula qualitatively rather well de-
scribes the current in the neighborhood of the maximum,
differing from the exact one by a factor of 2–3�. The gener-
alized form is represented by Eq. �1� or the simpler Eq. �25�
�with n= 1

2 �, combined with Eqs. �A1� and �A2� for the nona-
diabatic limit, with concomitant single-electron transfer in
the individual in situ STM event. The general nonadiabatic
tunneling current form can also be given the form in Eq.
�A3� combined with Eqs. �A12� and �A13�. The correspond-
ing general tunneling current forms in the adiabatic limit are
given by Eqs. �B4�–�B9�.

The general formalism reduces, secondly to attractive
simplified forms subject to constraints which can, however,
be expected to accord with experimentally accessible condi-
tions. Such constraints are, for example, small driving forces
compared with the reorganization free energy, reducing the
general rate constant forms to Eqs. �4�–�7� combined with
Eqs. �A3� and �A4� in the nonadiabatic limit and Eq. �27� in
the adiabatic limit. Merits of these limiting equations are
their immediate suitability for experimental data analysis.
Simple approximate equations allow one to calculate the
tunnel current in the neighborhood of its maximum whereas
the exact ones given in the Appendix describe the current in
the whole range of the variation of the bias voltage and over-
potential.

A third outcome of the study is the incorporation of ionic
screening effects in the description of the potential distribu-
tion in the tunneling gap. The Debye �Gouy� approximation
was used. Nonlinearity of the Poisson-Boltzmann equation
and ionic finite-size effects were shown in previous studies
to largely cancel each other41–44 but these studies addressed
superexchange of nonredox molecular tunneling processes
and did not extend to redox molecules. The potential distri-
bution is given by Eqs. �17�–�19� which can be combined
directly with the general tunneling current forms in the nona-
diabatic �Eqs. �4�–�7�, �20�, and �A3�–�A5�� and adiabatic
limits �Eq. �27��. A potentially very useful basis for ionic
strength analysis is, however, achieved by the introduction of
the bias voltage dependence of maximum position, 
max, and
the maximum width, �
, in the tunneling current/
overpotential correlation at different ionic strengths. These
quantities are represented approximately by Eqs. �21� and
�24�, to which adds the slope of the 
max�V� correlation in
Eq. �23�. These equations are only limited by the constraint
of dielectric linearity of the solvent in the electrochemical
double layers of the two electrodes.

The dependence 
max�V� may in general be nonmonoto-
nous but is linear for large bias voltages with a slope de-
scribed by Eq. �23�. Equations �23� and �24� show that the
limiting value of the slope of the function 
max�V� and the
width �
 depend on the position of the redox group z and on
the screening of the electric potential in the tunneling gap. At
small and moderate screening the slope increases with a shift
of the redox group towards the left electrode �substrate�. The
slope is close to 1

2 at strong screening and depends here
rather weakly on the position of the redox group.

Although the approximate expressions for the current

FIG. 8. The current/overpotential dependence in the totally nonadiabatic
regime. Calculated according to Eqs. �1�, �A1�, and �A2� with Er=0.1 eV for
different values of the bias voltage, im=kL

0; kL
0 =kR

0 . �1� V=50 mV; �2� V
=100 mV; �3� V=200 mV; �4� V=300 mV.

FIG. 9. The current/overpotential dependence in the totally adiabatic re-
gime. Calculated according to Eqs. �B4�–�B8� with Er=0.1 eV and �
=0.025 eV for different values of the bias voltage, jm=2e�L�R /���, �L

=�R.
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and the conclusions regarding the slope and width of the
function 
max�V� were derived in the approximation of linear
electrostatics, the main qualitative trends remain also for
nonlinear screening. For example, as follows from Eq. �16�,
the stronger the screening, the smaller is ��z� whereas ��z�
gets close to unity. The slope S �Eq. �23�� is therefore equal
to 0.5 for strong nonlinear screening and is independent of
the position of the redox group. In the case of nonlinear
screening, the quantities ��z� and ��z� may also depend on
the electrode potentials �in particular, on the bias voltage�.
This may result in an additional dependence of the width of
the maximum on the electrode potentials at large potentials.

The effect of spin degeneracy on the electronic energy
levels in the metals is rather small and may be neglected in
the first approximation for nonadiabatic transitions. The ef-
fect can be much more significant for adiabatic ET due to the
change of the height of the activation barrier on the adiabatic
free energy surface, again caused by the large value of the
repulsion energy U such as shown for ordinary ET reactions
involving only a single metal/solution interface.46

Electrochemically based tunneling current/overpotential
and current/bias voltage relations for confined redox mol-
ecules involve, finally, invariably inert ions, sometimes in
substantial concentrations. A need for large bias voltages,
exceeding or comparable to the reorganization free energy
can also be expected frequently. The formalism offers, con-
cluding, a useful comprehensive frame, both for precise data
analysis of broader ranges particularly of the bias voltage,
without the need of introducing interpolation formulas such
as shown previously.29,47 In these respects the formalism also
offers a facile route to systematic ionic strength analysis or

assessment of ionic strength effects via the 
max�V� correla-
tion, and explicitly the width and slope of this correlation.
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APPENDIX A: GENERAL RELATIONSHIPS FOR
NONADIABATIC TRANSITIONS

General expressions for the electrochemical rate con-
stants of nonadiabatic ET reactions have the form14,15

kLB = 2kL
0 � d�

kBT
fL���

exp�− �ErL − �FBL − �� − �FL��2/4ErBkBT	 , �A1�

kBR = kR
0 � d�

kBT
�1 − fR����

exp�− �ErR − eV + �FBL + �� − �FR��2/4ErRkBT	 ,

�A2�

where fL��� and fR��� are the Fermi distribution functions of
the left and right metals, respectively. The origin of the factor
2 in Eq. �A1� is the same as in Eq. �2�.

The approximate equations for the rate constants �6� and
�7� are obtained from Eqs. �A1� and �A2� if ��FBL��ErL and
�eV−�FBL��ErR. The current expression is then reduced to

jn,ad = j0
sinh�eV/2kBT�

exp�eV/4kBT�cosh��eV/2 − �FBL
�2��/2kBT − a� + exp�− eV/4kBT�cosh��eV/2 − �FBL

�2��/2kBT + a�
, �A3�

where

j0 = e
�

2�
2��2�L�L�R�RkBT exp�− Ēr/4kBT� ,

�A4�

a = ln���L�L

�R�R
exp�ErR − ErL

8kBT
�, Ēr =

1

2
�ErL + ErR� .

We have, for a symmetric contact ��L=�R=�; ErR=ErL

=Er; �L=�R=�� a=0,

jn,ad = e
�

2�
2�2���kBT

exp�− Er/4kBT�
sinh�eV/4kBT�

cosh�eV/2 − �FBL
�2��/2kBT

. �A5�

In the general case Eqs. �A1� and �A2� can be rewritten in
the form

kLB = 2kL
0 exp�− �ErL − �FBL�2/4ErLkBT	

� dx exp�x�1 − �FBL/ErL − kBTx/ErL��
1 + exp�2x�

, �A6�

kBR = kR
0 exp�− �ErR − eV + �FBL�2/4ErRkBT	

� dx exp�x�1 − ��FBL − eV�/ErR − kBTx/ErR�	
1 + exp�2x�

.

�A7�

The exponential factors in front of the integrals in Eqs. �A6�
and �A7� represent the usual quadratic free energy forms. If
the values of the reorganization energies in the integral terms
are increased to infinity, Eqs. �A6� and �A7� take the well
known quadratic form
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kLB = �kL
0 exp�− �ErL − �FBL�2/4ErLkBT	 , �A8�

kBR = ��/2�kR
0 exp�− �ErR − eV + �FBL�2/4ErRkBT	 . �A9�

These equations involve the inverted region at large
overpotentials and bias voltages. However, the correct ex-
pressions have no inverted region because the integral factors
suppress the increase of the activation free energies. These
integrals �IL and IR� thus behave as

IL � ��ErL

kBT
�1/2

exp��ErL − �FBL�2/4ErLkBT	 , �A10�

IR � ��ErR

kBT
�1/2

exp��ErR − eV + �FBL�2/4ErRkBT	 ,

�A11�

in the limit when ��FBL��ErL and �eV−�FBL��ErR. The
expression for the tunneling current in the general case is
formally identical to Eq. �A3� with different values for the
parameters j0 and a,

j0 = e
�

2�
2��2�L�L�R�RILIRkBT exp�− Ēr/4kBT�

exp�− ��FLB
�2� − kBT ln 2�2/�8kBTErL�

− ��eV − �FLB
�2� + kBT ln 2�2�/�8kBTErR�	 , �A12�

a = ln���L�LIL

�R�RIR
exp�ErR − ErL

8kBT
�

−
��FLB

�2� − kBT ln 2�2

8ErLkBT
+

�eV − �FLB
�2� + kBT ln 2�2

8ErRkBT
.

�A13�

The parameter a is a function of the bias voltage in the
general case.

The relationship between the equilibrium potentials in
the case of linear electrostatics is of the form

�L
0 = ��1 − ��z��	L

0 + ��z�	R
0 − ��L − z��L

pzc − ��z��R
pze	/��z� .

�A14�

APPENDIX B: ADIABATIC TRANSITIONS

When the interaction of the redox group with both elec-
trodes is strong, the electron tunneling may be addressed
following the Born-Oppenheimer scheme: A partial tunnel-
ing current, j�qk�, at fixed position qk of the nuclei constitut-
ing the slow vibrational subsystem may first be calculated.
This current is then averaged over the distribution of the
coordinates qk in the double-well potential formed by the
adiabatic free energy surface Uad�qk�

39,40,46,48–50

Uad��qk	� = E��qk	� +
1

2�
k

��kqk
2, �B1�

where E��qk	� is the ground state energy of the electronic
subsystem including the electrons of both electrodes and the
electrons in the valence orbital of the bridge group.

The dependence of E��qk	� on the vibrational coordi-
nates is due to that of the electronic energy level in the redox
group

�B��qk	� = �B − �
k

�kqk + e��L − ��z;�L − �L
pzc;�R − �R

pzc�� ,

�B2�

where �k are the coupling constants.
Since Eq. �B2� �and hence the energy E��qk	�� involves

the vibrational coordinates only in the combination �k�kqk, a
single dimensionless coordinate may be introduced

q = �
k

�kqk/2Er, Er =
1

2�
k

�k
2

��k
. �B3�

The averaging over the vibrational coordinates may be
then reduced to40

j��L,�R,
,V� =
�−�

� j�q,�L,�R,
,V�exp�− Uad�q,�L,�R,
,V�/kBT�dq

�−�
� exp�− Uad�q,�L,�R,
,V�/kBT�dq

, �B4�

where

Uad�q,�L,�R,
,V� = �B�q�nL�q� +
�L

2�
ln��B

2 �q� + �2�

+ ��B�q� + eV�nR�q�+
�tip

2�
ln���B�q�

+ eV�2 + �2	 + q2, �B5�

j�q,�L,�tR,
,V� =
2e�L�tR

���
�arctan

eV + �B�q,
,V�
�

− arctan
�B�q,
,V�

�
 , �B6�

nL�q� =
�L

�
�1

2
−

1

�
arctan

�B�q�
�

 , �B7�
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nR�q� =
�R

�
�1

2
−

1

�
arctan

�B�q� + eV

�
 . �B8�

�L and �R are here the widths of the electronic energy level
of the redox group due to the interaction with the corre-
sponding electrode ��=�L+�R� and

�B�q,
,V� = 1 − 2q − �e
 − �eV . �B9�

All energies are measured in units of the reorganization en-
ergy and �B�q ,
 ,V� is counted from �FL.

The overpotential and bias voltage are the same as in
Eqs. �12� and �13�.

An approximate equation is obtained at small values of
the overpotential and bias voltage if approximate expressions
for the rate constants of the adiabatic transitions �similar to
Eqs. �A8� and �A9� with the electron transmission coeffi-
cients equal to 1� are used in Eq. �25�. It is similar to Eq. �20�
with

j0 = en
�

2�
exp�− Ēr/4kBT� , �B10�

a =
ErR − ErL

8kBT
, Ēr =

1

2
�ErL + ErR� . �B11�
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