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The concept of transmission eigenchannels is described in a tight-binding nonequilibrium Green’s function
�NEGF� framework. A simple procedure for calculating the eigenchannels is derived using only the properties
of the device subspace and quantities normally available in a NEGF calculation. The method is exemplified by
visualization in real space of the eigenchannels for three different molecular and atomic wires.

DOI: 10.1103/PhysRevB.76.115117 PACS number�s�: 73.23.Ad, 73.63.Nm, 73.63.Rt

I. INTRODUCTION

Electronic transport properties of atomic-scale conductors
have been investigated intensively in the past decade.1,2 Ex-
amples of interest include molecular wires connected to
metal electrodes, atomic metal wires, and nanotubes. First-
principles transport calculations on these systems give results
that are, in general, difficult to interpret due to the multichan-
nel nature of the scattering problem and the fact that the
scattering states are generated from the atomic valence orbit-
als. The free-electron type of reasoning normally used in
mesoscopic quantum transport is, thus, not adequate. It is,
therefore, useful to analyze the conduction in terms of eigen-
channels. Eigenchannels are particular scattering states3 with
a well-defined transmission probability, 0�Tn�1, where the
individual eigenchannel transmissions add up to the total
transmission T=�nTn. In addition to being useful for analyz-
ing theoretical calculations, the eigenchannel transmissions
may be obtained experimentally �i� with superconducting
electrodes connecting the atomic-scale conductor, as shown
by Scheer et al.,4 or �ii� from shot noise measurements,1

where information about the individual channel contributions
can be obtained since the Fano factor involves the sum1,5

�nTn�1−Tn� /�nTn.
Eigenchannels have previously been calculated for atomic

metal wires6,7 and molecular contacts8 by directly solving for
the scattering states in the leads. This type of analysis breaks
up the transmission into the “nonmixing” channels3,9,10 and
gives an intuitive picture of electron transport. The ability to
plot the eigenchannel wave functions is especially useful,
since it gives a direct spatially resolved picture of the orbitals
involved in the transport. Another possibility is to consider
projections of eigenchannel wave functions onto, for ex-
ample, molecular orbitals.

An increasingly popular theoretical approach to calculate
transport properties is the nonequilibrium Green’s function
�NEGF� formalism.11 This is normally used in combination
with a tight-binding type or linear combination of atomic
orbitals electronic structure description.12–15 In this approach,
it is straightforward to calculate the single particle �retarded�
Green’s function �matrix� including coupling to the infinite
electrodes by introducing self-energies. The Green’s function
is, thus, the fundamental quantity in these calculations, and

scattering states are normally not considered. Interpretation
of the results in terms of scattering states is, therefore,
nontrivial.16 In contrast, the scattering states are the funda-
mental quantity in approaches based on the Lippmann-
Schwinger equation, where jellium models are normally used
to describe the electrodes.17–20

The aim of this paper is to show how the eigenchannels
can be easily generated within the NEGF approach without
solving for the scattering states in the leads. The eigenchan-
nel wave functions are here obtained directly from quantities
readily available in the NEGF calculation, e.g., the retarded
Green’s function matrix, GD of the device region, and the
�L,R matrices describing the coupling of the device region to
the two electrodes �“left” L and “right” R, see Fig. 1�. In the
case of atomistically defined electrodes, this approach is es-
pecially advantageous since solving for the scattering states
requires calculating the Bloch waves in the electrodes �com-
plex band structure�, which may be a nontrivial numerical
task for large unit cells.21 Related to our approach is the
so-called �left and/or right� open “channel functions” of
Inglesfield et al. based on the “embedding potential” in the
real-space formulation22 and the Korringa-Kohn-Rostoker-
based formulation by Bagrets et al.23,24 In addition to provid-
ing a simple way to calculate the eigenchannels, the method
presented here offers an intuitive understanding of the one-
particle NEGF equations; e.g., it may be used to understand
propensity rules for the effect of phonon scattering on the
electronic transport.25,26

The paper is organized as follows. Section II starts with
the definition of eigenchannels and a summary of the stan-
dard one-particle NEGF equations. Our method to obtain the
eigenchannels without solving for the full transmission ma-
trix is then derived. The usefulness of the eigenchannels is

FIG. 1. The generic two probe system which couples the left �L�
and right �R� leads through an intermediate “device” region �D�.
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illustrated in Sec. III, with three examples where the eigen-
channels are calculated for molecular and atomic wires con-
nected to gold electrodes using a first-principles density
functional method.

II. EIGENCHANNELS

We consider transport through a device region D coupled
to two semi-infinite leads, left and right �L ,R�, and limit
ourselves to leads built from periodic cells. The solutions in
the corresponding infinite leads are Bloch states �ul� ��ur��
denoted by band index l �r� for the left �right� lead. In order
to obtain the transmission amplitude matrix tr,l at a given
energy E, we consider the solutions to the Schrödinger equa-
tion, ��l�, with scattering boundary conditions and incoming
waves in the left lead,

��l� =
�ul�
�vl

+ reflected, left lead,

��l� = �
r

�ur�
�vr

tr,l + decaying, right lead, �1�

where �ul� is an incoming Bloch wave from the left lead, i.e.,
right-moving, with energy E and group velocity vl�0, and
�ur� is an outgoing Bloch wave �vr�0�. At a certain energy,
the number of such incoming channels, NL�E�, is determined
by the band structure of the lead. Likewise, there are NR�E�
such outgoing channels on the right. In Eq. �1�, we explicitly
state the flux normalization by dividing the Bloch state by
�vl, where the Bloch waves �ul� are normalized in the con-
ventional manner over the infinite leads31 �ul�k� �ul��k���
=�ll���k−k��. The reflected and transmitted parts may con-
tain evanescent decaying waves which have zero velocity,
and for those states, we use normal integral normalization.
With these considerations, we find that the flux-normalized
states fulfill the normalization,

1
�vl

�ul�k��ul��k���
1

�vl�

= ��ll���E − E�� , �2�

since the velocity is related to the energy as vl
=1/�d�l�k� /dk. The scattering states generated from the
flux-normalized incoming waves will also be flux normal-
ized, see the Appendix,

��l��l�� = ��ll���E − E�� , �3�

and likewise for r ,r� while ��l ��r�=0.
The advantage of using flux-normalized states is that we

can make any unitary transformation between the incoming
scattering states from the left lead at a particular energy,

�wl� = �
l�

�ul��
�vl

�UL�l�,l. �4�

These new states will again solve the Schrödinger equation,
only contain incoming waves in the left lead, and be flux
normalized. However, the mix of Bloch waves will no longer

have Bloch symmetry. Naturally, we can apply a similar
transformation of the outgoing right channels with UR. Espe-
cially, we can choose the transformations �UL ,UR� such that
the transmission matrix t becomes a diagonal matrix,9 te, at a
specific energy

te = UR
†tUL = diag��T1,�T2, . . . � . �5�

This corresponds to a singular value decomposition of the
transmission amplitude matrix, or a diagonalization of the
Hermitian �left to right� transmission probability matrix,

Te = te
†te = UL

†t†tUL = diag�T1,T2, . . . � , �6�

where there will be a maximum of min(NL�E� ,NR�E�) non-
zero eigenvalues 0�T��1.

The diagonalization of the transmission matrix defines the
transmission eigenchannels �	�� of the system as the unitary
mix of left incoming flux-normalized scattering states
�“channels”� given by UL; i.e., the left eigenchannels are
given by �	��=�l���l���UL�l�,�. The eigenchannels have the
special property of being nonmixing in the sense that the
transmission of a sum of 2 is the sum of individual fluxes or
transmissions �equal for flux-normalized states�. For ex-
ample, consider the alternative channels given by the scatter-
ing states defined by the two first eigenchannels as �ua�
=a1�	1�+a2�	2�, with transmission Ta= �a1�2T1+ �a2�2T2, and
similarly, �ub� with transmission Tb. Now the total transmis-
sion of �uc�= �ua�+ �ub� will be Tc=Ta+Tb+ I, with the inter-
ference term I=2T1 Re�a1b1

*�+2T2 Re�a2b2
*�. It will, thus, not

simply be the sum of the two transmissions, Tc�Ta+Tb.
Since the purpose of this paper is to calculate the eigenchan-
nels without solving for the complex band structure in the
leads, we will use the fact that the eigenchannels also maxi-
mize the transmission through the device; i.e., the first eigen-
channel from the left contact maximizes the transmission
probability over the space of incoming states from the left,
the next channel maximizes the transmission while being
orthogonal to the first channel, etc.

In the following, we will, instead of flux normalization,
make use of energy normalization ��n�E� ��m�E���
=�nm��E−E��, with the trivial difference from flux normal-
ization being a factor ��. Energy normalization is advanta-
geous when working with energy resolved quantities since
the natural continuous quantum number for this normaliza-
tion is the energy. In addition, we can interpret the energy-
normalized states as a density of states; i.e., ��l�x��2
= ��x ��l��2 is the projected �local� density of states at x.

A. Preliminaries

The one-particle Hamiltonian for the tight-binding scatter-
ing problem shown in Fig. 1 can be written

H = H0 + V = HL + HD + HR + VL + VR, �7�

where the isolated leads HL,R and device HD are coupled
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together by the interactions between leads and device �V
=VL+VR� without any direct coupling between the leads. Us-
ing projection operators onto the device PD and left and/or
right leads PL,R �I= PL+ PD+ PR�, we can also define 
L,R

= PDVL,RPL,R, where VL,R=
L,R+
L,R
† . The rest of this section

provides a short summary of the standard definitions of one-
particle Green’s functions, self-energies, and the notation we
will use throughout the paper.11,27

From the definition of the retarded Green’s function �op-
erator� for the whole system, we can find the expansion of
the Green’s function in an eigenbasis, H��m�E��=E��m�E��,

G�E� = �E + i� − H�−1 =� dE��
m

��m�E�����m�E���
E + i� − E�

,

�8�

where the infinitesimal imaginary part �=0+ ensures that the
Green’s function yields the retarded response of the system.
The device part of the Green’s function can further be written

GD = �E + i� − HD − �L − �R�−1, �9�

where we have introduced the self-energies, �L,R
=
L,RgL,R
L,R

† , given by the Green’s functions of the isolated
leads gL,R= �E+ i�−HL,R�−1. In addition to the Green’s func-
tion, the spectral functions A�E�= i�G−G†� and aL,R= i�gL,R

−gL,R
† � and broadening �L,R= i��L,R−�L,R

† �=
L,RaL,R
L,R
† will

be needed. The fact that these matrices live on different sub-
spaces will be used repeatedly, e.g., �L= PD�LPD, etc.

For the scattering problem, see Fig. 1, we know that the
time independent discrete Schrödinger equation has a com-
plete set of solutions. These solutions can be divided into a
continuous set of solutions ��n�E�� �where there may be sev-
eral solutions at any given energy� and localized states ��m

Loc�
with energy Em

Loc. We use the energy as the continuous quan-
tum number together with a discrete quantum number n, i.e.,
subbands. Since we are only interested in the transport prop-
erties, we will, from here on, ignore localized states.32

In the following, we will describe a method to determine
the eigenchannel scattering states inside the device region
using the information contained in GD, �L, and �R. The spec-
tral function A is a central quantity in the following discus-
sion. It can be obtained from the expansion of the retarded
Green’s function in eigenfunctions to the Hamiltonian 	Eq.
�8�
,

A�E� = i	G�E� − G†�E�
 = 2��
n

��n�E����n�E�� . �10�

B. Scattering states from the leads

We may choose to express the solutions to the
Schrödinger equation as solutions consisting of waves origi-
nating in the left or right lead. These scattering states can be
generated from the spectral function, as will be shown here.
Decomposing the spectral function of the device AD
= PDAPD, using Eq. �9�, we find

AD = i�GD − GD
† � = iGD�GD

† −1 − GD
−1�GD

†

= GD�LGD
† + GD�RGD

† , �11�

where we, in the following, wish to show that AL,R
=GD�L,RGD

† is generated by the scattering states with incom-
ing waves in the left �right� lead.

Viewing the coupling between device and leads as a per-
turbation, we can start with a set of orthogonal and normal-
ized eigenfunctions, �ũl�, of the isolated left lead �and simi-
larly for the right�, which are totally reflected solutions since
they are solutions for the isolated semi-infinite leads. From
these states, the full solutions ��l� can be generated,

��l� = GVL�ũl� + �ũl� . �12�

The response given by the retarded Green’s function only
contains waves traveling outward from the device region.
These solutions to the Schrödinger equation, thus, have the
required property of being incoming from the left lead. In
addition, the solutions are energy normalized and orthogonal;
see the Appendix.

We can then express the device part of the spectral func-
tion from the solutions generated by Eq. �12�,

AL = 2��
l

PD��l���l�PD

= 2��
l

PD�GVL�ũl� + �ũl����ũl� + �ũl�VL
†G†�PD

= PDGVLaLVL
†G†PD = GD�LGD

† , �13�

where we have used Eq. �10� for the whole system and for
the isolated lead. Apart from rederiving Eq. �11�, we have
proven that the two parts of the device spectral function
AL,R=GD�L,RGD

† are built up of scattering states originating
from the respective leads. This immediately leads to the well
known formula for the density matrix in nonequilibrium �ex-
cluding localized states�

 =
1

2�
�

−�

�

	fL�E�AL�E� + fR�E�AR�E�
dE , �14�

where fL,R is the Fermi function of the leads.

C. Current operator

To find the eigenchannels of the system, we will need the
current operator. The number of electrons in lead R is de-
scribed by the projection operator PR. The operator for cur-
rent into R is, thus, determined as the time derivative of PR,

ĴR = 2eṖR =
i2e

�
	H,PR
 =

i2e

�
�
R − 
R

†� , �15�

where we have evaluated the commutator using the Hamil-
tonian, Eq. �7�, and included a factor of 2 for spin.

The current into lead R due to the scattering state with
energy E, ��l�, originating from L from the original incom-
ing �standing� wave �ũl�, can be written
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jll = ��l�Ĵ��l� . �16�

To simplify this expression, we extract the right lead part of
the wave function using the Lippmann-Schwinger Eq. �A2�,
which gives

PR��l� = PRG0V��l� + PR�ũl� = gR
R
† ��l� , �17�

where all quantities are evaluated at energy E. The current
carried by the scattering state ��l� is then given by

jll =
i2e

�
��l�
R − 
R

† ��l�

=
i2e

�
���l�
RgR
R

† ��l� − ��l�
RgR
†
R

† ��l��

=
e

��
2���l��R��l� . �18�

Summing the current over all the orthogonal, energy-
normalized scattering states originating in L at the specific
energy yields the net current or total transmission and, thus,
the Landauer formula,

j = �
l

Jll =
e

��
2��

l

��l��R��l�

=
e

��
Tr�AL�R� =

e

��
Tr�GD�LGD

† �R� . �19�

From Eq. �18�, we notice that the transmission probability
for any scattering state from the left ��l� is given by
2���l��R��l�. The transmission probability matrix can,
therefore, be written

Tl�l = 2���l���R��l� , �20�

since we consider energy-normalized �flux normalized ex-
cept for the factor of �� scattering states, ���, for which the
current is equivalent to the transmission.

D. Scattering states in the device region

To find the eigenchannels from the left lead, �	l�
=�l��UL�ll���l��, we need to diagonalize the transmission
probability matrix. Since we do not, in this paper, explicitly
calculate the Bloch states in the leads, we will diagonalize
the transmission probability matrix in an abstract basis
formed by incoming waves from the left lead. Another,
equivalent, formulation is to find the eigenchannels by maxi-
mizing the transmission at a given energy while keeping the
eigenchannels orthogonal �ULUL

† =1�,

max 2��	l��R�	l� . �21�

The main problem in finding the eigenchannels is that we do
not have access to the wave functions, Green’s functions, or
spectral functions of the entire system in a typical calcula-
tion. We, therefore, have to find a method using only prop-
erties from the device part of the system.

We will now show that optimizing the current by varying
the scattering state over space spanned by the incoming

states from the left lead, ���l��, is equivalent to varying over
the states ��̃l� defined on the device subspace; see Fig. 2. We
start by diagonalizing the device part of the spectral function
from the left lead,

AL�E� = �
l

��l��l��l� = 2��
l

��̃l���̃l� , �22�

where the eigenvectors on the finite device space are ortho-
normal ��l ��l��=�l,l�. Each ��̃l�=��l /2���l� with nonzero ei-

genvalues ��l�0� is the device part of a specific state ��̃l�,
i.e., ��̃l�= PD��̃l�, where the ��̃l� states are normalized and
orthogonal linear combinations of the scattering states ��l�,

��̃l� =� �l

2�
��l� =

1
�2��l

AL�E���l�

= PD�2�

�l
�
l�

��l����l���l�  PD��̃l� �23�

	using Eq. �13�
, where we have defined

��̃l� = �
l�

�2�

�l�
��l���l���l��  �

l�

Wll���l�� . �24�

This shows that the states ��̃l� are spanned by the incoming
scattering states from the left lead. We further wish to show
that these states are normalized in the same manner as the
original scattering states; i.e., we want to show that Wmn is
unitary,

�
n

WmnWm�n
* =

2�

��m�m�
�

n

��m���n���n��m�

=
1

��m�m�

��m��AL��m�

=
�m

��m�m�

��m���m� = �mm�, �25�

using Eqs. �13� and �22�.
In addition, any scattering states outside the space

spanned by ��̃n� are orthogonal to the device subspace. This

|�Ψ1�

|�Ψ2�

|Ψ� ⊥
�
|�Ψl�

�

|Φ�
|�χ1� = PD|�Ψ1�

|�χ2� = PD|�Ψ2�
0 = PD|Ψ�

PD|Φ�

{|Ψl�} {|�χl�}
PD

FIG. 2. Overview of the different states used in this paper. Note
that the scattering states which are nonzero in the device subspace

are all spanned by the ��̃l� states. We can, therefore, find the eigen-
channels by studying the wave functions spanned by the ��̃l�
= PD��̃l�.
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can be seen from the fact that we can write the spectral
function on the device subspace as

AL = 2��
l

PD��̃l���̃l�PD = 2��
l

PD��l���l�PD. �26�

Comparing the two equations reveals that PD������PD must
be zero for any ��� which is orthogonal to the space spanned

by ��̃l�.
In this section, we have shown that the wave functions

��̃l� span the device part of any scattering state generated
from lead L; see Fig. 2. To find the left eigenchannels, we
can, therefore, maximize the current through the device with
respect to a linear combination of ��̃l� instead of maximizing
with respect to the full scattering states ��l�. This is equiva-
lent to diagonalizing the transmission matrix 	Eq. �20�
 in the
basis formed by ��̃l�.

E. Finding the eigenchannels

In general, the basis ��ei�� used in the calculations is non-
orthogonal with the overlap matrix defined by 	S
ij = �ei �ej�.
Although the eigenchannels may be calculated directly in
this nonorthogonal basis, we will make use of Lövdin or-
thogonalization to simplify the algebra. The orthogonalized

matrices �denoted by a bar� are given by �̄R=S−1/2�RS−1/2

and ĀL=S1/2ALS1/2. The eigenchannels obtained in the Löv-
din orthogonalized basis can, at the end of the calculation,
simply be transformed back into the nonorthogonal basis for
further visualization or projection.

From the previous section, we learned that it is enough to
diagonalize the transmission probability matrix 	Eq. �20�

Tl�l=2���̃l���̄R��̃l� in the abstract basis ���̃l��. To transform

2��̄R into the basis ���̃l��, we first need to calculate the

eigenvectors of ĀL= Ḡ�̄LḠ†,

�
n

	ĀL
mn	U
nl = �l	U
ml, �27�

where U is unitary. We then obtain the transformation matrix
to the ���̃l�� basis,

	Ũ
ml =� �l

2�
	U
ml, �28�

which gives the explicit expression for the matrix we want to
diagonalize

Tl�l = 2���̃l���̄R��̃l� = 2�	Ũ†�̄RŨ
l�l. �29�

The eigenproblem is, therefore,

�
n

2�	Ũ†�̄RŨ
mn	c
n� = T�	c
m�, �30�

where the eigenchannel vectors c� are given in the basis

described by the columns of Ũ, and the eigenvalues T� are
the transmission probabilities of the individual eigenchan-
nels, �. Finally, transforming back to the original nonor-

thogonal basis �from Ũ basis to the Löwdin basis, and from

Löwdin basis to normal nonorthogonal basis�, we find that
the eigenchannels on the device subspace are given by

PD�	�� = �
i,n

	S−1/2Ũ
in	c
n��ei� . �31�

Equations �27�–�31� provide a recipe for calculating the
eigenchannels of a specific scattering problem using only
properties available in standard NEGF calculations. In con-
trast to Ref. 16, these eigenchannels are well-defined scatter-
ing states calculated without approximations on the full de-
vice subspace.

It is interesting to note that the eigenchannels 	Eq. �31�

are eigenvectors to G�LG†�R �can be shown using the for-
malism presented above�. This provides a simple method to
obtain an idea about the eigenchannels. However, it is im-
portant to realize that the eigenchannel wave functions cal-
culated from Eq. �31� are energy normalized; i.e., the ampli-
tudes are well defined and can be compared between
different eigenchannels. In contrast, the eigenvectors to
G�LG†�R may have any normalization and it is, therefore,
not possible to compare amplitudes between different chan-
nels. Moreover, the energy-normalized scattering states Eq.
�31� yield amplitudes which correspond to local density of
states and are useful to plot, as will be shown in the next
section.

III. EIGENCHANNELS FOR ATOMIC AND
MOLECULAR WIRES

To exemplify the method developed in the previous sec-
tion, we will use three different examples of atomic and mo-
lecular wires connected to gold electrodes. Using the TRAN-

SIESTA �Ref. 12� extension of the SIESTA �Ref. 28� density
functional theory �DFT� code, we have previously studied
elastic and inelastic transport properties for the systems un-
der consideration here: �i� atomic gold wires29 and the con-
jugated organic molecules, �ii� oligo-phenylene vinylene30

�OPV�, and �iii� oligo-phenylene ethynylene �OPE�.30 The
TRANSIESTA calculations on these systems were performed
using DFT in the generalized gradient approximation using
the Perdew-Burke-Ernzerhof functional. The semi-infinite
leads connecting the device region was modeled using self-
energies in the NEGF method. A more detailed description of
the calculational method may be found in Ref. 29.

Gold atomic wires have been realized and studied experi-
mentally by several different techniques. The low bias elastic
and inelastic �phonon scattering� transport are well charac-
terized and understood; see Ref. 29, and references therein.
The first eigenchannel �from left� at the Fermi energy is
shown in Fig. 3 for a seven-atom gold chain. Not surpris-
ingly, the majority of the transmission is carried by the first
eigenchannel �T1=0.994�, with only a small transmission for
the other eigenchannels ��10−5�. In addition, it is clear that
the current through the wire is carried by the 6s electrons
forming a half-filled one-dimensional band, where the sign
of the wave function changes by a factor of i �right moving�
along the wire. The only difference with the corresponding
eigenchannel from the right �not shown� is the phase factor,
which corresponds to a left-moving wave.
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For molecular wires, the experimental and theoretical un-
derstanding of electron transport are less well understood.
The calculated transmission through the OPV molecule
shown in Fig. 4 is 0.037, and 100% of the transmission is
carried through the first eigenchannel. Since the wave is al-
most totally reflected, the imaginary part of the wave func-
tion is too small to be seen in the figure. In the calculation,
the thiol bonds to the hollow site on the Au �111� surface,
and clearly shows that the conjugation of the molecule con-
tinues through the sulfur atom and that there is significant
coupling to the gold leads.

To investigate an asymmetric case, we carried out calcu-
lations on an OPE molecule bound by a thiol to the left lead
and with a tunneling barrier �hydrogen termination� to the
right hand lead; see Fig. 5. The calculational details are the
same as for the OPE molecule in Ref. 30. Because of the
tunneling barrier, the transmission, Ttot=0.0026, is lower
than for the OPV molecule, and the left and right eigenchan-
nels are considerably different. This can easily be understood
by the large reflection at the right junction.

In the three examples described here, we find that the
symmetry of the eigenchannels can be intuitively understood
from the band structure of the corresponding infinite wires.
For the gold wire, the 5d band is below the Fermi energy,
which is situated approximately at half filling of the 6s band.
The corresponding infinite wires �polymers� for the molecu-
lar wires have energy gaps at the Fermi energy. The eigen-
channels, therefore, show the exponentially decaying solu-
tions of the �-electron state in the complex band structure at
the Fermi energy.21

IV. SUMMARY

We have, in this paper, developed a method to calculate
the scattering states corresponding to elastic eigenchannels.

The method is summarized in Eqs. �27�–�31�, where the
eigenchannels are found from quantities normally available
in transport calculations using the NEGF technique. In addi-
tion, we show three brief examples of elastic scattering states
calculated for molecular and atomic wires connected to
three-dimensional contacts. The eigenchannels for these sys-
tems can be understood from the band structure of the infi-
nite wires, providing an intuitive understanding.

The eigenchannels are useful in interpreting elastic elec-
tron transport through junctions. We believe that they will be
especially useful in investigating the effect of the contacts
between device and leads, e.g., binding site of the thiol bond
on Au surfaces. In addition, the method gives a useful basis
to understand the effects of phonon scattering on the conduc-
tance and their propensity rules.25,26
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APPENDIX: ORTHOGONALITY OF SCATTERING
STATES

Viewing the Bloch states in the infinite, periodic leads,
�ul�, as a starting point for perturbation theory, we can obtain
the totally reflected solutions �ũl� of a semi-infinite lead. In
this case, the perturbation is the removal of the coupling
between the periodic cells at the surface. Furthermore, the
totally reflected states may again be used as the starting point
in a perturbation calculation to obtain the full scattering
states ��l,r�. In this case, the perturbation is the device region
and its coupling to the leads. Here, we will show that the
perturbation expansion gives solutions that are orthogonal
and normalized. To do this, we focus on the perturbation
expansion of ��l� from �ũl� and note that the same derivation
may be used to obtain the �ũl� from �ul�.

1 ii −1−1 −i−i

FIG. 3. �Color online� Left eigenchannel for a seven-atom Au
atomic chain connected by four atom pyramids to Au �100� sur-
faces. The complex phase of the eigenchannel, indicated and shown
in color, is similar that of a Bloch wave at the Fermi level in the
infinite atomic gold chain �half-filled 6s band�.

FIG. 4. �Color online� Left eigenchannel for an OPV molecule
bound by thiols to the hollow sites on Au �111� surfaces. The colors
correspond to the two different signs of the almost real-valued wave
function.

b)

a)

FIG. 5. �Color online� �a� Left and �b� right eigenchannels for an
OPE molecule strongly bound by a thiol to the left surface and
weakly interacting with the right lead.
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Starting with a set of orthogonal and energy-normalized
eigenfunctions �ũn�E�� of the isolated leads �n� l ,r�, we gen-
erate the full scattering states ��n�E��,

��n�E�� = G�E�V�ũn�E�� + �ũn�E�� , �A1�

where V=VL+VR. The response given by the retarded
Green’s function only contains waves traveling outward from
the device region. To show that the solutions generated in
this way are normalized, we use the Lippmann-Schwinger
equation

��n�E�� = G0�E�V��n�E�� + �ũn�E�� , �A2�

where the unperturbed Green’s function is G0�E�= �E−HL

−HR−HD+ i��−1. Together with Eq. �A1�, we obtain

��n�E���n��E���

= �ũn�E���n��E��� + �ũn�E��V†G†�E���n��E��� �A3a�

=�ũn�E��ũn��E��� + �ũn�E��G0�E��V��n��E���

+ �ũn�E��V†G†�E���n��E��� �A3b�

=�n,n���E − E�� + �ũn�E��V��n��E���

�� 1

E� − E + i�
+

1

E − E� − i�
� �A3c�

=�n,n���E − E�� , �A3d�

which show that the final scattering states ��n� are orthogo-
nal and normalized.
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