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We study the breakpoint region on the outermost branch of the current-voltage characteristics of stacks with
different numbers of intrinsic Josephson junctions. We show that at periodic boundary conditions the break-
point region is absent for stacks with an even number of junctions. For stacks with an odd number of junctions
and for stacks with nonperiodic boundary conditions the breakpoint current increases with the number of
junctions and saturates at a value corresponding to the periodic boundary conditions. The region of saturation
and the saturated value depend on the coupling between the junctions. We explain the results by the parametric
resonance at the breakpoint and excitation of a longitudinal plasma wave by Josephson oscillations. A method
for diagnostics of the junctions in the stack is proposed.
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I. INTRODUCTION

A series of experiments devoted to intrinsic Josephson
junctions1 �IJJs� shows the growing interest in the current-
voltage characteristics �IVC� of a finite stack.2–4 Different
kinds of couplings between intrinsic Josephson junctions de-
termine the variety of the IVC observed in high-temperature
superconductors, and different models are exploited for their
descriptions. Among them are the inductive5 and capacitive
coupling6,7 models, which usually give approximately simi-
lar results. A unified theory for magnetic and electric cou-
pling in multistacked Josephson junctions was developed.8

The capacitively coupled Josephson junction �CCJJ� model
seizes the main dynamical properties of the IJJ system, de-
scribes the multibranch structure in the IVC of a stack of
IJJs6,9 and explains the microwave resonant absorption.10 On
the other hand, the diffusion current �DC� plays an important
role in a stack of IJJs.11 The CCJJ model with diffusion cur-
rent �CCJJ+DC model� was derived in Ref. 12 on the mi-
croscopic level. It gives an equidistant branch structure.13

Close to the hysteresis jump the system of IJJs is unstable
towards switching. A resonance between the Josephson and
plasma oscillations causes the system to switch to another
branch. This mechanism in the case of one Josephson junc-
tion was considered a long time ago.14

A breakpoint region �BPR� on the IVC of a stack of IJJs
was demonstrated in Ref. 15 and is explained as a result of
resonance between Josephson and plasma oscillations. We
consider that simulation of the IVC of IJJs by different
groups using different models shows the BPR on the outer-
most branch as well, but the authors did not mention it �see,
particularly, Fig. 3�a� in Ref. 7 in the CCJJ model; Fig. 1 in
Ref. 11 in the charge imbalance �CIB� model; Fig. 2 �left� in
Ref. 16 in the CIB model�. To our knowledge, no precise
experiment to observe the BPR has been carried out yet.

In this paper we show that a detailed investigation of the
breakpoint current Ibp and BPR width wbp gives us important
information concerning the creation of longitudinal plasma
waves �LPWs� in stacks of IJJs and the peculiarities of stacks

with a finite number of IJJs. We study the IVC of IJJs in the
framework of the CCJJ+DC model and investigate the de-
pendence of Ibp and wbp on the number of junctions N in the
stack. We demonstrate the existence of the BPR on branches
corresponding to a stack with one oscillating �O� junction
and show that such information may allow one to develop a
new method for the diagnostics of the IJJ.

II. MODEL AND METHOD

In the CCJJ model6 the relation between the charge �l and
the generalized scalar potential �l of the lth layer is �l=
−�1/4�rD

2 ��l, where rD is the Debye screening length and �l

is expressed through the scalar potential �l and the derivative
of phase �l of the superconducting condensate by �l�t�=�l

− �� /2e���l /�t.6,11 The last relation reflects the nonequilib-
rium nature of the ac Josephson effect in layered
superconductors.11 The superconducting layers are in a non-
equilibrium state due to the injection of quasiparticles and
Cooper pairs. In the equilibrium state �l�t�=0. In the
CCJJ�DC model13 with diffusion current JD

l =−��l

−�l+1� /R between layers l and l+1 the total external current
through the stack has the form

J = C
dVl

dt
+ Jc

l sin��l� +
�

2eR
�̇l, �1�

where Vl is the voltage between superconducting layers l
+1 and l �see below�, �l is the gauge-invariant phase differ-
ence �l�t�=�l+1�t�−�l�t�− �2e / � ��l

l+1dz Az�z , t� between lay-
ers l+1 and l, R is the junction resistance, and Az is the
vector potential in the barrier. This total external current dif-
fers from the current in the CCJJ model by the third term in
the right-hand side of Eq. �1�. In the CCJJ model it is equal
to Vl /R. As a result, in the CCJJ�DC model we obtain the
following system of dynamical equations for the phase dif-
ferences �l:
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�2�l/�t2 = �
l�

All��I − sin �l� − 	 � �l�/�t� �2�

with the matrix A

A =�
1 + 
G − 
 0 . . .

− 
 1 + 2
 − 
 0 . . .

0 − 
 1 + 2
 − 
 0 . . .

� � � � � � �
. . . 0 − 
 1 + 
G

	 �3�

where l� runs over all N junctions, the parameter 
 gives the
coupling between junctions, 	 is the dissipation parameter
A�	2=1/	c, where 	c=�p

2R2C2 is the McCumber parameter,
�p is the plasma frequency, and C is the capacity of the
junction�, I is the external current normalized to the
critical current Ic, G=1+�, �=s /s0=s /sN, and s, s0, sN are
the thicknesses of the middle, first, and last S layers,
respectively. In Eq. �2� time is normalized to the plasma

frequency �p.17 According to the proximity effect, we con-
sider that the thicknesses of the first and last layers are
different from that of the layers inside the stack. Nonperiodic
boundary conditions �BCs� are characterized by the
parameter � and the equations for the first and last layers in
the system �2� are different from the equation for the
middle S layer.6,17 For periodic BCs the matrix A has the
form

A =�
1 + 2
 − 
 0 . . . − 


− 
 1 + 2
 − 
 0 . . .

0 − 
 1 + 2
 − 
 0 . . .

� � � � � � �
− 
 . . . 0 − 
 1 + 2


	 . �4�

We solve this system for stacks with different numbers N
of intrinsic junctions. The numerical procedure has been
done as follows. For a given set of model parameters
N ,
 ,	 ,� we simulate the IVC of the system, i.e., Vl�I�, in-
creasing I from zero up and then down. A change in the
parameters N ,
 ,	 ,� changes the branch structure in the
IVC essentially. Their influence on the IVC in the CCJJ and
CCJJ�DC models was discussed in Refs. 9, 13, and 17. To
calculate the voltages Vl�I� in each point of the IVC �for each
value of I�, we simulate the dynamics of the phases �l�t� by
solving the system of equations �2� using the fourth-order
Runge-Kutta method. After simulation of the phase dynam-
ics we calculate the dc voltages on each junction as

��l/�t = �
l�

All�Vl� �5�

where Vl is normalized to V0= ��p / �2e�. The average of the

voltage V̄l is given by

V̄l =
1

Tmax − Tmin



Tmin

Tmax

Vldt , �6�

where Tmin and Tmax determine the interval for the averaging.
After completing the voltage averaging for current I, the cur-
rent I is increased or decreased by a small amount I to
calculate the voltages at the next point of the IVC. We use
the distribution of phases and their derivatives achieved in
the previous point of the IVC as the initial distribution for
the current point.

Numerical stability was checked by doubling and dividing
in half the temporal discretization steps Dt and checking the
influence on the IVC. Finally we can obtain the total dc
voltage V of the stack by

V = �
l=1

N

V̄l. �7�

At some current I some junction �or junctions� switches to
the nonzero-voltage state and gives some branch of the IVC.
We plot the total IVC at different parameters of the problem.
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The details concerning the numerical procedure are given in
Refs. 7 and 17.

To investigate the BPR in detail, we have calculated the
IVC for different boundary conditions for stacks with differ-
ent numbers N of IJJs from N=3 to 30. For clarity, we re-
strict the number of curves in some figures.

III. IVC FOR STACKS WITH DIFFERENT NUMBERS OF
IJJs

The result of simulation of the total branch structure in the
IVC for a stack of ten IJJs in the CCJJ�DC model by Eq. �2�
is presented in the inset of Fig. 1�a�. As we can see, this IVC
demonstrates the BPR on the outermost branch.

The outermost branch corresponds to the state of the stack
with all junctions in the rotating �R� state,17 and it is the
upper branch in the IVC. The values of the breakpoint cur-
rent Ibp and transition current Ij �the jumping point to the
next branch in the IVC� on the outermost branch are shown
by arrows in Fig. 1�a�. The distance between these two val-
ues we call the width wbp of the BPR. We have found that the
breakpoint current Ibp and BPR width wbp depend on the
parameters 
 and 	, the boundary conditions, and the num-
ber of junctions in the stack.

Let us first describe the main features of the BPR which
follow from the results of the simulation. As we can see in
Fig. 1�a�, at �=0 both Ibp and Ij increase with N, but the
increase of Ibp is monotonic. The IVC of the stacks with even
N has larger wbp at small N. The IVC in the BPR shows a
chaotic behavior, and its width is decreased with N. There is
a saturation of N dependence of the Ibp at large N.

At �=1 �Fig. 1�b�� these features remain unchanged but
the value of wbp is decreased for all stacks, especially for
N=4, and it is equal to zero for N=3. This change in the
boundary conditions leads to a relative change of the BPR
width in different stacks as well.

The IVC with periodic boundary conditions �Fig. 2�
shows the same behavior for the Ibp and BPR width wbp for
the stacks with odd N as in the nonperiodic case, but for the
stacks with even N the value of Ibp does not depend on N and
the BPR for these stacks is absent.

In Fig. 3�a� the Ibp as a function of N for �=0 �squares,
curve 1� and periodic �circles, curve 2� boundary conditions
at different values of the coupling parameter 
 is presented.
We stress the coincidence of the N dependencies of Ibp for
stacks with odd numbers of IJJs for the periodic and �=0
cases. The increase in 
 leads to the saturation of the N
dependence at larger N. The value of the saturated Ibp de-
creases with decreasing coupling and is 0.576 at 
=1, 0.454
at 
=0.5, and 0.304 at 
=0.1. At 
=0 the breakpoint coin-
cides with the return current, so Ibp has the same value for
stacks with different numbers of junctions.

The N dependence of the BPR width wbp for stacks with
even and odd numbers of junctions at �=0 �curves 1even and
1odd� and periodic �curve 2odd� boundary conditions is shown
in Fig. 3�b�. The main feature here is a decrease of the BPR
width wbp with increasing N at large N. At small N in the
interval �3,6� we observe an increase of wbp with N.

IV. THE ORIGIN OF THE BREAKPOINT ON THE
OUTERMOST BRANCH

To explain the observed features of the finite-stack IVC
let us discuss the origin of the breakpoint on the outermost
branch. The hysteresis jump in the IVC is associated with a
change of the distribution pattern of rotating phase

FIG. 1. �Color online� IVC of the outermost branch for stacks
with different numbers N of IJJs at �= �a� 0 and �b�1.

FIG. 2. �Color online� IVC of the outermost branch for stacks
with different numbers of junctions at periodic BCs.
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motions.17 But the question of why a change in the current
leads to a change in the distribution pattern of the rotating
phase motions is still open. We consider the case that all
junctions are in the rotating state, i.e., the time average of �̄l

��̄l= �1/ �Tmax−Tmin���Tmin

Tmax�ldt� is constant and that of sin �l

is zero for these junctions. For oscillating junctions the situ-
ation is opposite: the time average of �̄l is zero and that of
sin �l is constant.

As we mentioned above, the outermost branch in the IVC
corresponds to the state of the stack with all junctions in the
rotating state. Let us write an equation for the difference of
the phase differences l=�l+1−�l for the outermost branch.

By subtracting Eq. �2� for the �l�th from that for the �l
+1�th junction we get

��̈l+1 − �̈l� + �1 − 
��2���sin��l+1� − sin��l� + 	��̇l+1 − �̇l��

= 0. �8�

Here ��2�f l= f l+1+ f l−1−2f l is the discrete Laplacian. Con-
sider the linear approximation sin��l+1�−sin��l�l cos���,
where ���t= �1/N�Vt, � is the Josephson frequency, and V
is the total voltage of the stack, we obtain

̈l + �1 − 
��2���cos���l + 	̇l� = 0. �9�

Expanding l�t� in the Fourier series

l�t� = �
k

ke
ikl, �10�

the linearized equation for the Fourier component of the dif-
ference of the phase differences k between neighbor junc-
tions can be written in the form15

k̈ + 	�k�k̇ + cos���k���k = 0, �11�

where �=�p�k�t, �p�k�=�pC
, 	�k�=	C
, ��k�=� /C
, and
C
=�1+2
�1−cos�k��.

The important fact for us is that this linearized equation
manifests a parametric resonance in the system of IJJs. In
Fig. 4�a� we plot the resonance region for this equation on
the 	�k�−��k� diagram. The dark stripe on this figure is
actually the distribution of the dots, corresponding to the
positions of the breakpoints of the outermost branch. Using
the breakpoint values of the voltage in the equation ��k�
=� /C
=V /NC
, we obtain this distribution of the break-
points by the variation of the coupling parameter 
 in the
interval �1,2� with a step 0.1 and the dissipation parameter 	
in the interval �0.01,0.34� with the step 0.01 at each value of

. In contrast to the results presented in Ref. 15 where the
positions of the dots on the 	�k�−��k� diagram were ob-
tained by crude estimation, here we have done precise nu-

FIG. 3. �Color online� �a� N dependence of Ibp for �=0 �curve
1� and periodic �curve 2� boundary conditions at different 
; �b� N
dependence of the BPR width wbp for stacks with even and odd
numbers of junctions at �=0 �1� and periodic �2� boundary
conditions.

FIG. 4. �Color online� �a� Parametric resonance region in ��k�
−	�k� diagram. Black dots �stripe� correspond to the breakpoint
current Ibp in the IVC for k=� at different values of parameters 

and 	. �b� Charge on the S layers in the stacks with 10 �b1� and 11
�b2� IJJs at periodic BCs and with 10 IJJs at �=1 �b3�.
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merical calculations. These calculations show closer posi-
tions of the breakpoints to the boundary of the resonance
region in the chosen intervals of 
 and 	. The reason that the
positions of the breakpoints are shifted from the boundary of
the resonance region in Fig. 4�a�, is the linear approximation
used to obtain Eq. �9�.

The breakpoints are inside the resonance region, i.e., the
resonance between the Josephson and plasma oscillations is
approached at the breakpoint Ibp. As a result, the plasma
mode is excited by the Josephson oscillations. We can prove
this statement directly. By the Maxwell equation div�E /d�
=4��, we express the charge �l on the superconducting �S�
layer l by the voltages Vl,l−1 and Vl,l+1 in the neighboring
insulating layers �l= ��0 /4�d0d��Vl,l+1−Vl−1,l�. The time de-
pendence of �l, presented in Fig. 4�b1�, demonstrates that
with periodic BCs in the stacks with 10 IJJs a LPW with k
=� is realized. Really, the charge on the nearest-neighbor
layers has the same value and opposite sign. Figure 4�b2�
shows the distribution of the charge on the S layers in the
stacks with 11 IJJs with periodic BCs. In this case we ob-
serve the creation of a LPW with k=10� /11. To determine
the mode of the LPW with nonperiodic BCs, we need more
detail investigation. Figure 4�b3� demonstrates the charge
distribution in the stack with 10 IJJs at �=1 near the break-
point.

The wavelengths of the standing LPWs that can be real-
ized in a stack with N junctions are N /n lattice units in the z
direction, where n changes from 1 to N /2 for stacks with an
even number of junctions and from 1 to �N−1� /2 for odd N.
The voltage of the stack at the breakpoint is related to the
wave number k of the LPW by the formula V
=N��k��1+2
�1−cos�k��, so the largest breakpoint voltage
V in the current-decreasing process corresponds to the cre-
ation of a LPW with k equal to � �� mode� for stacks with
even numbers of IJJs and modes with k= �N−1�� /N for
stacks with odd N.

V. DISCUSSION OF THE MAIN RESULTS

Let us now return to the results presented in Figs. 1 and 3
and demonstrate that they are in agreement with the ideas
stated in the previous section.

According to these ideas, in the stack with ten IJJs a LPW
with k= �N−1�� /N is created and it leads to an increase of
Ibp with N and its saturation to a value corresponding to the
� mode. The same modes are created in the stacks with �
=1 for which the outermost branches of the IVC are pre-
sented in Fig. 1�b�. They demonstrate the saturation of Ibp at
the same value.

As Fig. 2 shows, with periodic BCs we observe the same
value of Ibp in all the stacks with even N. This is in agree-
ment with our suggestion that in this case a LPW with k
=� is created. We check it directly as well, by the time
dependence of �l. We find that at periodic BCs in the stacks
with even N the charge on the nearest-neighbor layers has
the same value and opposite sign, which means that a LPW
with k=� is realized.

In the stacks with odd N the � mode cannot exist, so as
we mentioned in the previous section, a LPW with the largest

k equal to �N−1�� /N is created. The creation of different
modes of the LPW leads to different Ibp, and this fact ex-
plains the difference in the IVC with periodic BCs of the
stacks with even and odd numbers of IJJs. With increase in N
the wave number k reaches the limiting value �, and it leads
to the increase in Ibp that we observe in Fig. 2.

It explains as well the saturation of Ibp to the value cor-
responding to the Ibp for stacks with even N that is demon-
strated in Fig. 3�a�.

The difference between the charge distribution on the S
layers at the breakpoint current at fixed time for stacks with
even and odd numbers of IJJs �10 and 11� with periodic BCs
is demonstrated in Fig. 4�b�. In the stack with odd N the
charges on the first and last layers oscillate in phase and the
oscillations on the neighbor S layers are different from the
oscillations in the � mode. Because at �=0 the charge on the
first and last layers is screened due to the proximity effect, a
LPW with k= �N−1�� /N, as with periodic BCs for stacks
with odd N, is also created for stacks with both odd and even
N. This is the reason the values of Ibp for stacks with odd N
coincide for both these BCs as shown in Fig. 3�a�.

At �=1 the same modes are created, but the character of
the charge distribution among the S layers is different �as we
can see in Fig. 4�b3��. As a result, in this case the N depen-
dence of Ibp is stronger than at �=0, but at N→� it is satu-
rated as well and the saturation value is the Ibp for even
junctions with periodic BCs.

The influence of the coupling parameter on the value of
the breakpoint current Ibp and its N dependence, which is
demonstrated in Fig. 3�a�, has a clear explanation. It consists
in the 
 dependence of the voltage as mentioned in the pre-
vious section, and correspondingly the breakpoint current
Ibp. They are proportional to the term �1+2
�1−cos�k��. An
increase in k leads to a term proportional to �1+4
. The
decrease in 
 makes this influence weaker.

We may explain the increase in wbp at small N, which is
shown in Fig. 3�b�, by a commensurability effect on the
width of the BPR. With periodic BCs wbp=0, if the wave-
length � of the LPW is �=n, where n=2,3 ,4 , . . . lattice units
in the z direction. As we can see in Fig. 2, at �=3 �for stacks
with N=3� and �=2 �� mode�, the IVC do not show the
BPR. The creation of the LPW with wavelength in the
middle of the interval �2,3� should correspond to some maxi-
mum of the BPR width wbp. In a stack with five IJJs, the
LPW with �=2.5 �k=4� /5� is created. It does not coincide
exactly with the result obtained by the simulation, because
we use for the explanation the linearized equation for the
difference of phase differences and Fourier expansion in the
finite stacks. The wave number k is not well defined in this
case. With increase in N the wave numberk of the LPW
limits to � and this explains the increase in Ibp and the de-
crease in wbp at large N, which is demonstrated in Fig. 3�b�.
The change in the boundary conditions changes the character
of the charge oscillations on the S layers. In particular, at �
=1 we observe a decrease in wbp for all stacks. Our analysis
shows that in stacks with even N at nonperiodic BCs the
charges on the second and N−1 layers oscillate in phase, but
antiphase in the stacks with odd N. We consider that the
value of the BPR width wbp depends on the character of the
charge oscillations in the S layers.
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Finally, we note that in the case of coupling between junc-
tions the parameter 	 cannot be determined in the usual way
by the return current, because it depends now on two param-
eters 	 and 
. The dependence of Ibp and the BPR width wbp
on the dissipation and coupling parameters opens an oppor-
tunity to develop a new method for determination of these
parameters for stacks of IJJs. This question will be discussed
in detail elsewhere.

VI. ONE OSCILLATING JUNCTION

Let us now discuss briefly the breakpoints on the other
branches of the IVC.

As we mentioned above, the resistive state in the system
of IJJs is realized as a state with different numbers of R and
O junctions.9,17 The different positions of R and O junctions
in the stack �different configurations� correspond to different
states of the IJJ system. Equidistant positions of the O junc-
tion from the ends of the stack �for example, stacks with a
first or tenth O junction� lead to the same state. So there are
five different states in the stack with one O junction corre-
sponding to the different position of this junction. Figure 5
shows the BPR on the branches of the IVC of stacks with
one O junction in the case of ten IJJs at 
=1, 	=0.2, and
�=0.

Equidistant positions of the O junction from the ends of
the stack lead to the same value of Ibp and the same width of
the BPR. The shift of the O junction from the end of the
stack to its center decreases the Ibp of the corresponding
state. So we may establish a delay of LPW creation in the

current-decreasing process when the position of the O junc-
tion is shifted to the center of the stack.

We consider that the origin of such behavior is as follows.
This one oscillating junction separates the stack into two
parts with different numbers of R junctions which are weakly
coupled through it. With a decrease in current the first LPW
is created in the part with the largest Ibp �with the largest
number of junctions�. The shift of the O junction and the
decrease in the number of R junctions in this part lead to a
decrease of Ibp as Fig. 1 demonstrates. The increase of the
number of junctions in the second part might manifest a
second breakpoint which is related to the creation of a LPW
in this second part of the stack. This situation is observed for
N=10 when the O junction occupies the fifth or sixth site in
the stack. The width of the BPR in the other branches of the
IVC depends essentially on the state of the stack.

For the other branches the increase in the number of O
junctions in the stack decreases the number of effective junc-
tions for creation of the LPW and leads to a decrease of the
return current. This fact explains why we can obtain a total
branch structure in the hysteresis region, because in the other
case we would not be able to observe it in the simulation.
The correspondence between the position of the O junction
in the stack and the value of Ibp opens the possibility for
junction diagnostics, i.e., by measuring the value of Ibp we
can answer the question of which junction in the stack goes
into the R or O state. From the other side, the monitoring of
the transitions between branches is useful for understanding
the phase dynamics in a system of IJJs.

VII. CONCLUSIONS

In conclusion, we stress that the BPR in the IVC naturally
follows from the solution of the system of dynamical equa-
tions for the phase difference for a stack of IJJs. In the break-
point region the plasma mode is a stationary solution of the
system and this fact might be used in some applications,
particularly in high-frequency devices such as terahertz os-
cillators and mixers. The detailed study of the breakpoint
current and breakpoint region width gives a new opportunity
for the investigation of the properties of IJJs and for devel-
opment of new methods for determination of the parameters
of IJJs and diagnostics of IJJs in stacks.
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