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Escape angles in bulky'® soliton interactions

Steffen Kger Johansen, Ole Bang, and Mads Peter Sgrensen
Department of Informatics and Mathematical Modeling, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
(Received October 13, 2000; revised manuscript received 10 September 2001; published 3 Janjyiary 2002

We develop a theory for nonplanar interaction between two identical type | spatial solitons propagating at
opposite, butarbitrary transverse anglein quadratic nonlineafor so-calledy(®) bulk media. We predict
guantitatively the outwards escape angle, below which the solitons turn around and collide, and above which
they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the
outcome of a collisiorthrough the inwards escape angle, i.e., whether the solitons fuse or cross. We find an
analytical expression determining the inwards escape angle using Gaussian approximations for the solitons.
The theory is verified numerically.
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Stable self-guided laser beams or optical bright spatiatal fields resonantly coupled to a SH. Th€ materials are
solitons are of substantial interest in basic phykidsand for  of significant interest to photonics due to the strong and fast
technical applications, such as inducing fixgd] and dy- nonlinearities they can provide through cascadibg]. Fur-
namically reconfigurable wave guidg3]. Several types of thermore, soliton-induced wave guides in photorefractives
spatial solitons have been demonstrated experimentally, iray have a strong‘® nonlinearity, which may be used for
cluding one-dimensiondfLD) Kerr solitons[4] and 1D and ~Second-harmonic generati¢S8HG) [17].
2D solitons in saturablg5], photorefractive[6], and y(® Fusion and crossinfFigs. 4a) and 1b)] of spatial y*)
media [7]. Even incoherent solitons, excitable by a light Solitons has been demonstrated numeric@lBj and experi-
bulb, have been demonstrated in photorefractive miglia Mentally[19], and fission of 1D type-I solitons was demon-
All solitons exist when diffraction is balanced by the nonlin- Strated analytically and numerically in the large phase-
ear self-focusing effect. In bulk Kerr media, the self-focusingm's’m‘?ltCh limit approxma(tgly descrlbed by the NLS
effect dominates and leads to collapse of both coherent argfu@tion20]. However, they'® system is more general and

incoherent 2D solitonE9], their existence requiring an effec- COMPIex than the saturable NLS equation and so far, varia-
tively saturable nonlinearity. tional theories were only able to predict critical launch

An intriguing feature of solitons is their particlelike be- 2ngles and relative phases separating regimes of collision
havior during collision. In 1D, Kerr media collisions are and no CO||ISI.0I’1[21]. Elegant nonplaqar .effectlve part!cle
fully elastic due to integrability of the 1D nonlinear Schro (heories predicted the absence of spiraling type-I solitons,
dinger (NLS) equation[10]. In contrast, saturable, photore- Put still required weakly overlapping solitori82]. In this
fractive, andy(? media are described by nonintegrable equa’@P€', W€ extend the effective particle approachristrary

tions and soliton collisions are therefore inelastic, displayind;ium_:h anglesand present a theory that is able to co_rrectly
both fusion[Fig. 1(a)], crossing[Fig. 1(b)], repulsion, and redict theoutcome of collisionbetween 2D type-I solitons

annihilation, additional solitons may be generated in a" x® media.
fission-type procesq11], and solitons may even spiral
around each othgd 2]. All processes depend strongly on the ¢
relative phase and have been demonstrated experimentall

(see[1] and references thergin z 4
Complex wave-guide structures may be generated by soli-
ton interaction, such as directional coupl¢is], but their e

efficient implementation requires a detailed understanding of
the nature of soliton collisions. Snyder and Sheppard pre-
dicted the outcome of collisions of 1D solitons in saturable
media by comparing the collision angle with the critical
angle for total internal reflection in an equivalent wave guide 3°
[14]. Except for this paper, most theories are based on the
variational approach, which require the solitons to be far z2°
apart and breaks down at collision.

Here, we focus ony(® materials[15], which are more
general than the simpler cubic Kerr and saturable media ir
the sense that, dependent on the phase mismatch between t
fundamental and second-harmori®&H) waves, the nonlin-
earity may be both purely quadraiclose to phase match-  FIG. 1. (a),(b) Planar collision between two Gaussians,
ing) and effectively cubicfor a large phase mismatctSpa-  p=48.3 and 8=0. (c),(d) Outwards-launched exact solitons,
tial solitons in x(2 materials do not modify the refractive P=122.4 andg=5. The launch angles aw@,=58° (), a,=62°
index, and consist of on@ype-I) or two (type-Il) fundamen-  (b), a,=5.4° (c), and a,=5.7° (d).
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We consider beam propagation under type-l SHG condiare the initial transverse velocities corresponding to the
tions in lossless bullg(?) materials. Neglecting walk off, the launch anglesy, , with respect to the axis.
system of normalized dynamical equations for the slowly We substitute a field composed of two weakly overlap-

varying envelope of the fundamental wa¥g,=E; (), and  ping solitons ¥, W) into the Lagrangian densit{2). We

its SH, E,=E,(r), are[23] then follow the procedure outlined if22] and allow the
1 solitons to vary adiabatically through a slow variation of the
i9,E,+ _ViElJr EXE,=0, (18 soliton parameters witlZz= ez being the slow propagation
2 variable. To first order ire<<1 the result is a set of dynami-

L cal equations governing the collective coordinatgs y(,
- (), being the center positions along thkeandy axis
i0,E,+ > V2E,— BE,+E2=0. 1y ~and¢™, being positio g theandy
Zm2l g4t BE2+EL (1b) and accumulated phase of solitdos 1,2, respectively. We

) _ , _ , can express the coordinates a$)(z)=/5v{(2")dZ’
Her2e, r;(x,y,z), z is the propagation variable, and? +X8) y(i)(z)=f(z)v(y”(z’)dz’+y8) and  ¢0(2)
=gy +d; accounts for diffraction in the transverse WYy ) i ' 7
:(; y)yplane The normalized phase mismatchs%s =Ji\0(z')dZ' + ¢, where subscript 0 denotes initial
=14(2k;—k5), wherely is the diffraction length of the fun-
damental andk;, andk, are the wave numbers of the funda-
mental and SH, respectively. The systéthmay be derived
from the Lagrangian density

values.

At this point, one traditionally simplifies the system by
assuming the velocities to be smalb,x)~¢,d,y1~¢),
i.e., the solitons propagate almost in parallel. However, we
are interested in velocities that may be considerable, so in-
L=2 IM(E10,EX) + IM(E,0,E5 ) + B|E,|2+|V , E, | ste_ad, we assume syr_nmet_ric intere_lction beE/)veen in-phase

solitons with initially identical profiles,A=\"") and P

=P, and equal but opposite velocities; ,=»{)=
— ). Without loss of generality, we sef=x§"=—x{)
=0 andy,=y{"=—y{?=0. Symmetry is conserved and
the two sets of collective coordinates degenerate to ¥ne,

EVEZ—R EX*E? 2
+4|lzl 8o E>EY), 2

and conserves the powé= [(|E,|?+|E,|?)dF, and mo-

mentum |\7| :f Im{EIVLEl"F(l/Z)E; VL Ez}d FL y Where we :X(l): _X(z), Y:y(l): _y(z) |n Cy”ndrica' Coordinates
have defined dr, =[[Z.dxdy. with R= X%+ Y? we may then reduce the dynamical equa-

The systentl) is known[24,23 to have aone-parameter  tions to the Euler-Lagrange equation of the effective La-
family of radially symmetric bright 2D solitons of the form grangian

E.(F)=V(r;\)exp(r2) andE,(F)=W(r;\)exp(2\2) where
A>max(0;—pB/2) is the internal soliton parameter amd

= x?+y2. We have found this family numerically, using a
standard relaxation method, and approximately, using the
variational approach25] with Gaussians profiles\{,W) for the single coordinat®. The effective potential
= (Vg ng)a

L(R,R)z%PRZ—Ueﬁ(R,R), (5)

. Co 1.
Vg=a; exp(—r?/b), Wy=a,exp—r?/b).  (3) Ue(RR)= 502 P+ S U(RR) (6)

_ -1 — - . . . .
Here, <311—6212[2()\b—12)]1/21 % @=(32)A+b™"), andb i composed of the classical centrifugal barrier, whege
(o is Galioan invarian, e can Apply a gauge tansiomag U<~ Y )"~ (Xory+Yon,)? is constant because of con-
) ; : ! pply a gaug servation of angular momentum, and of the interaction inte-
tion to find moving solitons. Thus, thgeneral three param-

~ ~ ral
eter soliton family(V,W) is given by 9

- 1 1 U=- f VAOIVOW? cog2¢) + 2WHVA cog ¢)]dF,
V(x—vxz,y—vyz;)\,vx,vy)=v(r;)\—Evi—Evf,) -

Xexpl —i(vx+wy)], where$=2v,x+2v,yy. We note that, strictly speaking) is

(4a) only a quasiclassical potential since it depends on the veloci-
ties (in contrast to the potential used [ia2]).
- 1, 1, We have now established a picture of an effective particle
W(X= 1,2,y = yZ) N, vy, vy) =W| TN — SV oy moving in a potential,U.s, with the kinetic energyEy;,
_ =(1/2)P R?=0. For small velocities, the potentigd) has the
X ex —2i(vx+wy)], shape of a well, and hence, represents an attractive force. In

(4b) the general case of nonplanar interact@@y 0, the centrifu-
gal barrier is always repulsive and goes to infinityRat O.

where (V, W) are either the exact soliton profile¥{, Ws) This does not necessarily rule out fusion since also the ve-
found numerically or ¥4, W,) given by (3). v, ,=tan(ay,) locities go to infinity because of conservation ©f. The
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Now, considering solitons launched towards each other,
we first elaborate on the effective particle picture. If we as-
sume the solitons to be initially far apart this corresponds to
the effective particle experiencing essentially no potential.
Even a small launch angle should then result in a positive
total energy and enable the effective particle to cross the
bottom of the potential and escape towards infinity, corre-
sponding to soliton crossing. This is of course not the correct
physical picture, since our system is not integrable, and thus,
in reality, the collision is not elastic. There is transfer of
energy into internal soliton modes and shedding of energy as
radiation.

In a different picture, we assume that the soliton profiles
do not change before the point of collision. This seems rea-
sonable when comparing the characteristic length of slow
centrifugal barrier also creates a local minimum in the effec2diabatic change with the relatively short interaction distance
tive potential (still assuming small velocitigs which sug- occurring for con5|dere_1ble velo_cmes. In this case, we may
gests that spiraling configurations may exist. In general?reat the interaction as if the SO!ItOﬂS were Iaunched on t.op of
however, we cannot expect our model to yield correct physi€ach other X,=0) corresponding to the effective particle
cal results in the vicinity oR=0 since it violates the as- P€ing launched in the bottom of the potential, where it expe-
sumption of weakly overlapping solitons. In fact, fusion has/€nces the maximum barrier. Then the relation determining
been observed numerically, but stable spiraling configurath® escape velocity become$P=2U(0,v,) rather than Eq.
tions have not been fourf@2]. (8). The interaction integral no longer depends on the

Here, we shall not discuss the qualitatively different re-2symptotic tales but on the entire profiles, and hence, we
gimes. Rather, we are interestedqnantitativepredictions ~ May apply the Gaussian approximati@). The general tran-
of escape velocities. For solitons launched with outward$cendental equation for the inwards escape angle is then
velocities, we will always be able to theoretically predict the 9iven by
escape velocity. On the other hand, a consistent theory for
the determination of the inwards escape velocity only exists , 2 \b+1
for in-plane interaction, when the classical centrifugal barrier YeTh 2ab—1
vanishes, i.e.Cy=0.

We first determine the outwards escape angle. For si
plicity, we focus on in-plane interaction withy,=»,=C,

FIG. 2. Outwards escape angle in degréssid curve for full
width at half maximure1 and Xxo=1.5. Numerical experiments
where exact solitons fuse@®) and where they escapd®). The
dashed line shows the initial soliton power

[e—(4/3)bu§+ 2e—(l/3)b1/§], 9)

Mwhich for B=0 simplifies to

=0, soR=|X| andR=,. In this case, the effective particle _

either escapes the potentiak,=E + Epo>0, or is V°_0'23\/E’ (10

trapped by itE;;<0, and the escape velocity, is given by ) )

the relation in terms of the power. In the large phase mismatch cascading
limit, where 8>\ and the nonlinearity is effectively cubic,

v2P=U(Xq, 7). (8  Eg.(9) simplifies to

Unfortunately, we are not able to express the interaction in- 37 p
tegralU(xq,vy) in terms of analytical functions and we can- V= _(__ ) (12)
not use Gaussians, since the Gaussian tale asymptotic is dif- 4
ferent from that of the exact soliton. It is however trivial to
solve EqQ.(8) numerically and in Fig. 2, we have plotted the
outwards escape angle, given by= Arctan(v;), versus the
phase mismatch. The initial beam width and separation are
kept constant to ensure a weak overlap of the soliton tails at
all phase mismatches.

The simulations were performed with numerically found
exact solitons as initial conditions. They confirm the accu-
racy of the escape angle predicted by E). We found the

minimum of about 3° aroun@= —7 to be global. Note that 0

the angles are expected to be small, since the initial overlap, 20 40 60

and hence, the attractive force between the solitons is weak. P

As an example of the dynamics, we show in Fig&) and FIG. 3. Inwards escape angle in degrees versus soliton power

1(d) the outcome of the experiments wigh=5 from Fig. 2. calculated analytically with Gaussiafsolid) and with exact soli-
Only the fundamental waves are shown, the evolution of theons (dashedl for 8=0 andx,=5. Numerical experiments where

SH waves being qualitatively the same. Gaussians crossd®) and fused ®).

026601-3
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Close to the escape angle, all the power is shed as radiation,
and thus Eq(10) serves as aaccurate prediction of soliton
annihilation[Fig. 4(b)].

We also investigated the cases of nonzero mismatches,
focusing on 8= *3. In these regimes, there is a power
threshold for soliton excitation and the collisions are of a
much more complex nature than for perfect phase matching,
where solitons exist at all powers. For relatively low powers
not far above the threshold the collisions mostly resulted in
destruction of the solitorg=ig. 4(a)]. The explanation of this

FIG. 4. (a) Crossing followed by diffractios=—-3 andP  phenomenon is that too much power is shed as radiation in
=45.3. (b) Annihilation (=0 andP=48.3. the collision, and hence, the resulting beams diffract because

they do not carry sufficient power to form solitons. For
We remark that this approach is equivalent to finding thehigher powers, the predicted escape angles were reasonably
critical angle of total internal reflection for a wave guide close to the observations.
[14]. However, since beam propagation in quadratic media In conclusion, we have developed a theoretical descrip-
does not induce changes in the refractive index, the methoon that should hold for systems with all types of local non-
used in[14] is not applicable to this case. linearities. In particular, we have studied byl media and

In Fig. 3, we have summarized the results for exact phas@etermined analytical expressions for the escape angles when

matching, 3=0, and plotted the predicted inwards escapethe centrifugal barrier vanishe_s. This happens in the two in-
angle, a,=Arctan(v,), versus soliton power, both for, plane cases of outwards- and inwards-launched solitons. The

given by Eq.(10) and for; found with exact soltons. The ¢ JF8 SR SEE00 o Tt 2o S e
curves are close and the simple square-root dependency 55 yh P ified th tical X icall
the power excellently predict the escape angle. In the expers-lo.n' We have verified the analytical expressions numerically

. L 2 hsmg Gaussian approximations and observed excellent
ments, we used Gaussians as initial conditions. These we

launched with a distance ofg= 10 between them, ensuring Eaegreement.

practically zero initial overlap. In Figs.(8 and ib), we We acknowledge support from the Danish Technical Re-
show examples of experiments wig=0 and a power of search Council under Talent Grant No. 26-00-0355. Much of
P=48.3. We note that for the exact soliton initial conditions, the numerical work was carried out at Centre de Computacio
we observed even better agreement than with GaussiansComunicacions de Catalunya.
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