
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Escape angles  in bulk chi((2)) soliton interactions

Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter

Published in:
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics

Link to article, DOI:
10.1103/PhysRevE.65.026601

Publication date:
2002

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Johansen, S. K., Bang, O., & Sørensen, M. P. (2002). Escape angles  in bulk chi((2)) soliton interactions.
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 65(2), 026601. DOI:
10.1103/PhysRevE.65.026601

http://dx.doi.org/10.1103/PhysRevE.65.026601
http://orbit.dtu.dk/en/publications/escape-angles-in-bulk-chi2-soliton-interactions(83a6fd88-fc3c-477b-a8ca-c52b7846be94).html


Escape angles in bulkx„2… soliton interactions
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We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at
opposite, butarbitrary transverse anglesin quadratic nonlinear~or so-calledx (2)! bulk media. We predict
quantitatively the outwards escape angle, below which the solitons turn around and collide, and above which
they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the
outcome of a collisionthrough the inwards escape angle, i.e., whether the solitons fuse or cross. We find an
analytical expression determining the inwards escape angle using Gaussian approximations for the solitons.
The theory is verified numerically.
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Stable self-guided laser beams or optical bright spatial
solitons are of substantial interest in basic physics@1# and for
technical applications, such as inducing fixed@2# and dy-
namically reconfigurable wave guides@3#. Several types of
spatial solitons have been demonstrated experimentally, in-
cluding one-dimensional~1D! Kerr solitons@4# and 1D and
2D solitons in saturable@5#, photorefractive@6#, and x (2)

media @7#. Even incoherent solitons, excitable by a light
bulb, have been demonstrated in photorefractive media@8#.
All solitons exist when diffraction is balanced by the nonlin-
ear self-focusing effect. In bulk Kerr media, the self-focusing
effect dominates and leads to collapse of both coherent and
incoherent 2D solitons@9#, their existence requiring an effec-
tively saturable nonlinearity.

An intriguing feature of solitons is their particlelike be-
havior during collision. In 1D, Kerr media collisions are
fully elastic due to integrability of the 1D nonlinear Schro¨-
dinger ~NLS! equation@10#. In contrast, saturable, photore-
fractive, andx (2) media are described by nonintegrable equa-
tions and soliton collisions are therefore inelastic, displaying
both fusion@Fig. 1~a!#, crossing@Fig. 1~b!#, repulsion, and
annihilation, additional solitons may be generated in a
fission-type process@11#, and solitons may even spiral
around each other@12#. All processes depend strongly on the
relative phase and have been demonstrated experimentally
~see@1# and references therein!.

Complex wave-guide structures may be generated by soli-
ton interaction, such as directional couplers@13#, but their
efficient implementation requires a detailed understanding of
the nature of soliton collisions. Snyder and Sheppard pre-
dicted the outcome of collisions of 1D solitons in saturable
media by comparing the collision angle with the critical
angle for total internal reflection in an equivalent wave guide
@14#. Except for this paper, most theories are based on the
variational approach, which require the solitons to be far
apart and breaks down at collision.

Here, we focus onx (2) materials@15#, which are more
general than the simpler cubic Kerr and saturable media in
the sense that, dependent on the phase mismatch between the
fundamental and second-harmonic~SH! waves, the nonlin-
earity may be both purely quadratic~close to phase match-
ing! and effectively cubic~for a large phase mismatch!. Spa-
tial solitons in x (2) materials do not modify the refractive
index, and consist of one~type-I! or two ~type-II! fundamen-

tal fields resonantly coupled to a SH. Thex (2) materials are
of significant interest to photonics due to the strong and fast
nonlinearities they can provide through cascading@16#. Fur-
thermore, soliton-induced wave guides in photorefractives
may have a strongx (2) nonlinearity, which may be used for
second-harmonic generation~SHG! @17#.

Fusion and crossing@Figs. 1~a! and 1~b!# of spatialx (2)

solitons has been demonstrated numerically@18# and experi-
mentally @19#, and fission of 1D type-I solitons was demon-
strated analytically and numerically in the large phase-
mismatch limit approximately described by the NLS
equation@20#. However, thex (2) system is more general and
complex than the saturable NLS equation and so far, varia-
tional theories were only able to predict critical launch
angles and relative phases separating regimes of collision
and no collision@21#. Elegant nonplanar effective particle
theories predicted the absence of spiraling type-I solitons,
but still required weakly overlapping solitons@22#. In this
paper, we extend the effective particle approach toarbitrary
launch anglesand present a theory that is able to correctly
predict theoutcome of collisionsbetween 2D type-I solitons
in x (2) media.

FIG. 1. ~a!,~b! Planar collision between two Gaussians,
P548.3 and b50. ~c!,~d! Outwards-launched exact solitons,
P5122.4 andb55. The launch angles areax558° ~a!, ax562°
~b!, ax55.4° ~c!, andax55.7° ~d!.
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We consider beam propagation under type-I SHG condi-
tions in lossless bulkx (2) materials. Neglecting walk off, the
system of normalized dynamical equations for the slowly
varying envelope of the fundamental wave,E15E1(rW), and
its SH,E25E2(rW), are@23#

i ]zE11
1

2
¹'

2 E11E1* E250, ~1a!

i ]zE21
1

4
¹'

2 E22bE21E1
250. ~1b!

Here, rW5(x,y,z), z is the propagation variable, and¹'
2

5]x
21]y

2 accounts for diffraction in the transverserW'

5(x,y) plane. The normalized phase mismatch isb
5 l d(2k12k2), wherel d is the diffraction length of the fun-
damental andk1 andk2 are the wave numbers of the funda-
mental and SH, respectively. The system~1! may be derived
from the Lagrangian density

L52 Im~E1]zE1* !1Im~E2]zE2* !1buE2u21u¹'E1u2

1
1

4
u¹'E2u22Re~E2* E1

2!, ~2!

and conserves the powerP5*(uE1u21uE2u2)drW' and mo-
mentum MW 5* Im$E1*¹'E11(1/2)E2* ¹'E2%drW' , where we
have defined* drW'[**2`

` dx dy.
The system~1! is known@24,25# to have aone-parameter

family of radially symmetric bright 2D solitons of the form
E1(rW)5V(r ;l)exp(ilz) andE2(rW)5W(r ;l)exp(i2lz) where
l.max(0;2b/2) is the internal soliton parameter andr
5Ax21y2. We have found this family numerically, using a
standard relaxation method, and approximately, using the
variational approach@25# with Gaussians profiles (V,W)
5(Vg ,Wg),

Vg5a1 exp~2r 2/b!, Wg5a2 exp~2r 2/b!. ~3!

Here, a15a2@2(lb21)#21/2, a25(3/2)(l1b21), and b
5@11(12l218lb1b2)1/2/(2l1b)#/2l. Because the sys-
tem is Galilean invariant, we can apply a gauge transforma-
tion to find moving solitons. Thus, thegeneral three param-

eter soliton family(Ṽ,W̃) is given by

Ṽ~x2nxz,y2nyz;l,nx ,ny!5VS r ;l2
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3exp@2 i ~nxx1nyy!#,

~4a!

W̃~x2nxz,y2nyz;l,nx ,ny!5WS r ;l2
1
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2D
3exp@22i ~nxx1nyy!#,

~4b!

where ~V, W! are either the exact soliton profiles (Vs ,Ws)
found numerically or (Vg ,Wg) given by ~3!. nx,y5tan(ax,y)

are the initial transverse velocities corresponding to the
launch anglesax,y with respect to thez axis.

We substitute a field composed of two weakly overlap-
ping solitons (Ṽ( i ),W̃( i )) into the Lagrangian density~2!. We
then follow the procedure outlined in@22# and allow the
solitons to vary adiabatically through a slow variation of the
soliton parameters withZ5ez being the slow propagation
variable. To first order ine!1 the result is a set of dynami-
cal equations governing the collective coordinatesx( i ), y( i ),
and f ( i ), being the center positions along thex and y axis
and accumulated phase of solitoni 51,2, respectively. We
can express the coordinates asx( i )(z)5*0

znx
( i )(Z8)dZ8

1x0
( i ) , y( i )(z)5*0

zny
( i )(Z8)dZ81y0

( i ) , and f ( i )(z)
5*0

zl ( i )(Z8)dZ81f0
( i ) , where subscript 0 denotes initial

values.
At this point, one traditionally simplifies the system by

assuming the velocities to be small (]zx
( i );e,]zy

( i );e),
i.e., the solitons propagate almost in parallel. However, we
are interested in velocities that may be considerable, so in-
stead, we assume symmetric interaction between in-phase
solitons with initially identical profiles,l5l ( i ) and P
5P( i ), and equal but opposite velocities,nx,y5nx,y

(1)5

2nx,y
(2) . Without loss of generality, we setx05x0

(1)52x0
(2)

>0 and y05y0
(1)52y0

(2)>0. Symmetry is conserved and
the two sets of collective coordinates degenerate to one,X
5x(1)52x(2), Y5y(1)52y(2). In cylindrical coordinates
with R5AX21Y2 we may then reduce the dynamical equa-
tions to the Euler-Lagrange equation of the effective La-
grangian

L~R,Ṙ!5
1

2
PṘ22Ueff~R,Ṙ!, ~5!

for the single coordinateR. The effective potential

Ueff~R,Ṙ!5
C0

2R2 P1
1

2
U~R,Ṙ! ~6!

is composed of the classical centrifugal barrier, whereC0

5(XẎ2YẊ)25(x0ny1y0nx)
2 is constant because of con-

servation of angular momentum, and of the interaction inte-
gral

U52E V~1!@V~1!W~2! cos~2f!12W~1!V~2! cos~f!#drW' ,

~7!

wheref52nxx12nyy. We note that, strictly speaking,U is
only a quasiclassical potential since it depends on the veloci-
ties ~in contrast to the potential used in@22#!.

We have now established a picture of an effective particle
moving in a potential,Ueff , with the kinetic energyEkin

5(1/2)PṘ2>0. For small velocities, the potential~7! has the
shape of a well, and hence, represents an attractive force. In
the general case of nonplanar interactionC0Þ0, the centrifu-
gal barrier is always repulsive and goes to infinity atR50.
This does not necessarily rule out fusion since also the ve-
locities go to infinity because of conservation ofC0 . The
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centrifugal barrier also creates a local minimum in the effec-
tive potential ~still assuming small velocities!, which sug-
gests that spiraling configurations may exist. In general,
however, we cannot expect our model to yield correct physi-
cal results in the vicinity ofR50 since it violates the as-
sumption of weakly overlapping solitons. In fact, fusion has
been observed numerically, but stable spiraling configura-
tions have not been found@22#.

Here, we shall not discuss the qualitatively different re-
gimes. Rather, we are interested inquantitativepredictions
of escape velocities. For solitons launched with outwards
velocities, we will always be able to theoretically predict the
escape velocity. On the other hand, a consistent theory for
the determination of the inwards escape velocity only exists
for in-plane interaction, when the classical centrifugal barrier
vanishes, i.e.,C050.

We first determine the outwards escape angle. For sim-
plicity, we focus on in-plane interaction withy05ny5C0

50, soR5uXu andṘ5nx . In this case, the effective particle
either escapes the potential,Etot5Ekin 1Epot.0, or is
trapped by it,Etot,0, and the escape velocitync is given by
the relation

nc
2P5U~x0 ,nc!. ~8!

Unfortunately, we are not able to express the interaction in-
tegralU(x0 ,nx) in terms of analytical functions and we can-
not use Gaussians, since the Gaussian tale asymptotic is dif-
ferent from that of the exact soliton. It is however trivial to
solve Eq.~8! numerically and in Fig. 2, we have plotted the
outwards escape angle, given byac5Arctan(nc), versus the
phase mismatch. The initial beam width and separation are
kept constant to ensure a weak overlap of the soliton tails at
all phase mismatches.

The simulations were performed with numerically found
exact solitons as initial conditions. They confirm the accu-
racy of the escape angle predicted by Eq.~8!. We found the
minimum of about 3° aroundb527 to be global. Note that
the angles are expected to be small, since the initial overlap,
and hence, the attractive force between the solitons is weak.
As an example of the dynamics, we show in Figs. 1~c! and
1~d! the outcome of the experiments withb55 from Fig. 2.
Only the fundamental waves are shown, the evolution of the
SH waves being qualitatively the same.

Now, considering solitons launched towards each other,
we first elaborate on the effective particle picture. If we as-
sume the solitons to be initially far apart this corresponds to
the effective particle experiencing essentially no potential.
Even a small launch angle should then result in a positive
total energy and enable the effective particle to cross the
bottom of the potential and escape towards infinity, corre-
sponding to soliton crossing. This is of course not the correct
physical picture, since our system is not integrable, and thus,
in reality, the collision is not elastic. There is transfer of
energy into internal soliton modes and shedding of energy as
radiation.

In a different picture, we assume that the soliton profiles
do not change before the point of collision. This seems rea-
sonable when comparing the characteristic length of slow
adiabatic change with the relatively short interaction distance
occurring for considerable velocities. In this case, we may
treat the interaction as if the solitons were launched on top of
each other (x050) corresponding to the effective particle
being launched in the bottom of the potential, where it expe-
riences the maximum barrier. Then the relation determining
the escape velocity becomesnc

2P52U(0,nc) rather than Eq.
~8!. The interaction integral no longer depends on the
asymptotic tales but on the entire profiles, and hence, we
may apply the Gaussian approximation~3!. The general tran-
scendental equation for the inwards escape angle is then
given by

nc
25

2

b

lb11

2lb21
@e2~4/3!bnc

2
12e2~1/3!bnc

2
#, ~9!

which for b50 simplifies to

nc50.23AP, ~10!

in terms of the power. In the large phase mismatch cascading
limit, where b@l and the nonlinearity is effectively cubic,
Eq. ~9! simplifies to

nc5A3

4 S P

2p
2b D . ~11!

FIG. 2. Outwards escape angle in degrees~solid curve! for full
width at half maximum51 and x051.5. Numerical experiments
where exact solitons fused~d! and where they escaped~s!. The
dashed line shows the initial soliton powerP.

FIG. 3. Inwards escape angle in degrees versus soliton power
calculated analytically with Gaussians~solid! and with exact soli-
tons ~dashed! for b50 andx055. Numerical experiments where
Gaussians crossed~s! and fused~d!.
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We remark that this approach is equivalent to finding the
critical angle of total internal reflection for a wave guide
@14#. However, since beam propagation in quadratic media
does not induce changes in the refractive index, the method
used in@14# is not applicable to this case.

In Fig. 3, we have summarized the results for exact phase
matching,b50, and plotted the predicted inwards escape
angle, ac5Arctan(nc), versus soliton power, both fornc
given by Eq.~10! and fornc found with exact solitons. The
curves are close and the simple square-root dependency on
the power excellently predict the escape angle. In the experi-
ments, we used Gaussians as initial conditions. These were
launched with a distance of 2x0510 between them, ensuring
practically zero initial overlap. In Figs. 1~a! and 1~b!, we
show examples of experiments withb50 and a power of
P548.3. We note that for the exact soliton initial conditions,
we observed even better agreement than with Gaussians.

Close to the escape angle, all the power is shed as radiation,
and thus Eq.~10! serves as anaccurate prediction of soliton
annihilation @Fig. 4~b!#.

We also investigated the cases of nonzero mismatches,
focusing on b563. In these regimes, there is a power
threshold for soliton excitation and the collisions are of a
much more complex nature than for perfect phase matching,
where solitons exist at all powers. For relatively low powers
not far above the threshold the collisions mostly resulted in
destruction of the solitons@Fig. 4~a!#. The explanation of this
phenomenon is that too much power is shed as radiation in
the collision, and hence, the resulting beams diffract because
they do not carry sufficient power to form solitons. For
higher powers, the predicted escape angles were reasonably
close to the observations.

In conclusion, we have developed a theoretical descrip-
tion that should hold for systems with all types of local non-
linearities. In particular, we have studied bulkx (2) media and
determined analytical expressions for the escape angles when
the centrifugal barrier vanishes. This happens in the two in-
plane cases of outwards- and inwards-launched solitons. The
simple expression for the inwards escape angle represents the
first analytical prediction of theoutcomeof a soliton colli-
sion. We have verified the analytical expressions numerically
using Gaussian approximations and observed excellent
agreement.

We acknowledge support from the Danish Technical Re-
search Council under Talent Grant No. 26-00-0355. Much of
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i Comunicacions de Catalunya.
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