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The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schrödinger
equation is considered. It is shown that the attractive potential can prevent both singular collapse and disper-
sion that are generic in the cubic Schrödinger equation in the critical dimension 2 and can lead to a stable
oscillating beam. This is observed to involve a splitting of the beam into an inner part that is oscillatory and of
subcritical power and an outer dispersing part. An analysis is given in terms of the rate competition between the
linear and nonlinear focusing effects, radiation losses, and known stable periodic behavior of certain solutions
in the presence of attractive potentials.
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I. INTRODUCTION

Variants of the nonlinear Schrödinger equation(NLSE)
with attractive potentials arise in many models of weakly
nonlinear dispersive waves and the nonlinear phenomenon of
self-focusingor wave collapse. The simplest NLSE with only
a cubic nonlinearity has unusual behavior such as the forma-
tion of self-focusing singularitiesin finite time when there
are two or more dimensions transverse to the propagation
variable. The problem is most acute for critical transverse
dimensionD=2, which is fraught with instabilities: small
perturbations in initial data or various small additional terms
modeling physical features ignored in the basic cubic
Schrödinger equation(CSE) can change solutions between
singular collapse and dispersion.

Most such perturbations of the equation are higher-order
nonlinear effects, but here we consider the effects of an at-
tractive potential, giving what will be called the nonlinear
Schrödinger equation with potential(NLSP):

i
]c

]t
+ ¹2c + ucu2c − Usxdc = 0. s1d

We shall concentrate on the two-dimensional(2D) case with
c=cst ,x,yd, ¹2=]x

2+]y
2. This arises in models of cw laser

propagation in waveguides, molecular excitations in a lattice
near an inhomogeneity[1], the Gross-Pitaevskii model[2]

for attractive quasi-2D Bose-Einstein condensates(BEC),
and magnetic nanostructures[3]. The standard Gross-
Pitaevskii equation for BEC’s in a confining trap has a qua-
dratic potential and, usually, also linear and nonlinear dissi-
pation terms, but the latter terms are unimportant to the
current study. Note that, in some of the applications,t repre-
sents the propagation distance rather than time. The cubic
nonlinearity represents the intensity-dependent refractive in-
dex in the optical case, exciton-phonon interaction in mo-
lecular excitations, and interaction between the Bose par-
ticles in BEC: the last is repulsive in most cases, but
attractive for7Li atoms for example. The potentialUsxd rep-
resents a spatially dependent refractive index for laser propa-
gation, spatial inhomogeneity for molecular excitations, and
the confining field or “trap” used in forming a BEC.

In situations where the initial beam is wide relative to the
potential, one convenient model for the potential is a
Gaussian

Usrd = − hpe
−r2/s2wp

2d s2d

of depth hp, and widthwp. This is plausible for agraded
index fiber laser waveguide and for molecular excitations,
where the potential represents the effect of a small impurity
in the molecular lattice. No corresponding results from
physical experiments are known to the authors, but the re-
sults here can give indications of experimental parameters to
try, for example, indicating that the potentials should be
somewhat narrower than the initial self-induced potential
−uc2u.

Recent numerical observations[4–7] show that such an
attractive Gaussian potential can have the counterintuitive
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effect of inhibiting or limiting collapse, while also prevent-
ing dispersion, leading instead to oscillatory beams that
avoid both the extremes of singular collapse and dispersion
that are the only generic outcomes in the focusing 2D CSE.
This happens for various potentials narrower than the initial
beam but sufficiently deep, with an initial focusing followed
by a train of focusing and defocusing oscillations. For ex-
ample, Fig. 1 shows the amplitude evolution for a case in
which the CSE develops a singularity att<5.73, and Table I
gives the shallowest potentials needed to inhibit singularity
formation for various combinations of potential width and
initial data. In that table,TCSE is the observed time of singu-
larity formation for the CSE with the same initial data and
Ttp is the time of the firstturning pointof the intensity, when
the beam first starts spreading again.

All simulations here are performed with Gaussian initial
data centered at the origin, normalized to heighth and width
1: cs0,rd=he−r2/2, r = uxu, and one can achieve this collapse
inhibition with h up to 2.5, whereas without the potential,
singularity formation is observed for allh.hc<1.93. The
numerical methods used are described in[4,8].

In the present paper we present additional numerical stud-
ies of the beam dynamics in the presence of an external
potential. Particularly, we have invoked more detailed diag-
nostics to reveal the structure of the solution and the associ-
ated radiation. The main point of this paper is to present a
detailed analysis explaining the beam dynamics in the poten-
tial. The analysis is based on a scaling argument and a col-
lective coordinate calculation. For this, some background is
needed; sources for results stated without citation are the
articles of Rasmussen and Rypdal[9,10] and the book of

Sulem and Sulem[11], as well as[1,12,13] for more recent
results involving also the influence of quadratic potentials.

Note that since our initial data are of the formhe−r2/2, the
conserved quantities of the CSE are the “power”N
=eucu2dx=ph2 and the Hamiltonian “energy”H=H0

ªefu¹cu2− 1
2ucu4gdx=Ns1−N /4pd. Thus the sufficient

condition for global existence holds forh,hcrªÎNcr /p
<1.927, and singular collapse is guaranteed forH,0 for
N.4p, or h.2. HereNcr is the critical power, which is
given as the norm of the stationary ground state solution of
the CSE. Also, the varianceV=er2ucu2dx can be related to
the beam width r̄defined throughV=Nr̄2.

When a potential is added, exact results on singular col-
lapse in(NLSP) are only known for the case of an attractive
quadratic potential, which, however, is also a relevant ap-
proximation for a beam concentrated near the bottom of an
attractive radially symmetric potential. The Gaussian poten-
tial (2) can be shifted by a harmless constant and then ap-
proximated near the origin byUsrd=V0

2r2/4, V0
2=2hp/wp

2, so
we will discuss quadratic potentials in this form. The power
N is conserved with the same form as before, the conserved
energy takes the formH=H0+sV0/2d2V, and the variance
satisfies

Vstd = SVs0d −
2H
V0

2 Dcos 2V0t +
2H
V0

2 , s3d

as shown by several authors[12–15], so collapse is guaran-
teed if H0s0d=H−V0

2Vs0d /4ø0. The only change from the
CSE is extending the singularity formation sufficient condi-
tion H0s0d,0 on the initial data to also include the case of
equality. Note that if no singularity forms, the variance is
bounded and in fact periodic.

Another kind of periodic solutions has been established
by Rose and Weinstein[16]: orbitally stable steady-state
solutions eiltcsrd with N,Nc. These always exist in the
present situation, since that paper guarantees existence if the
corresponding linear Schrödinger equation has a bound state,
and in two dimensions this is true for any weak attractive
potential, such as the attractive Gaussians used here.

II. COLLAPSE INHIBITION: COMPETING COLLAPSE
LENGTH SCALES AND RADIATION FROM

SOLITON-LIKE SOLUTIONS

A. Argument for inhibition with approximate threshold, based
on competing length scales

We first discuss the inhibition of the collapse by a narrow
potential using a simple scaling argument. The basic idea is

TABLE I. Minimum potential depthhp
* for collapse inhibition for various initial data and potential widths, withTCSE the observed

collapse time in the absence of potential, andTtp the first turning time of intensity with potential.

h 1.95 2 2.1 2.2 2.5

TCSE 5.732 1.648 0.9173 0.6775 0.4063

wp 0.4 0.35 0.2 0.1 0.01 0.3 0.05 0.02 0.2 0.05 0.15

hp
* 0.15 1.3 1.75 4.5 230 3.46 30 100 7 70 20

Ttp 3.077 0.953 0.999 0.971 1.077 0.550 0.553 0.654 0.403 0.312 0.221

FIG. 1. h=1.95,wp=0.5: oscillations in the place of collapse.
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comparing the numerically observed time scaleTCSE for the
self-focusing of the beam in the unmodified CSE with esti-
mates of the time scaleTpot of the linear focusing and pos-
sible beam width oscillations in the case with potential,
through approximations by the quadratic potential case.

When the potential is narrower than the initial beam
swp,1d) and Tpot,TCSE, the beam may be split into inner
and outer parts before a singularity can develop, with the
faster focusing within the central part of the potential draw-
ing part of the beam power and leaving behind a part focus-
ing mostly under the slower nonlinear effect. If the inner part
separates substantially from the outer and the power in the
inner part is less than the critical powerNcr needed for for-
mation of a focusing singularity, the initially fast focusing of
the inner part driven by the potential would not be capable of
continuing to singularity formation: instead its width could
be expected to follow roughly the sinusoidal form in Eq.(3).
Also the outer part can be expected to radiate outwards, par-
ticularly if it also has a subcritical share of total beam power,
leaving an inner part of the beam of permanently subcritical
power isolated in the central well of the potential, incapable
of singular collapse and constrained from dispersion by the
potential. This could leading to continued oscillation of this
part’s width and intensity, similar to that known to occur for
a subcritical beam in a quadratic potential.

The singularity timeTCSE is determined from simulations.
Two approximate time scales for the focusing within the cen-
tral part of the potential are suggested heuristically by com-
paring to quadratic potentials.

For the same initial data with the quadratic potential fitted
at the origin to the Gaussian potential, the sinusoidal vari-
ance evolution(3) gives a first minimum of variance at
Tpotªpwp/Î8hp, so by this time either a singularity forms or
the beam starts spreading again. Note that this time depends
only on the linear potential, once the nonlinearity has initi-
ated focusing of the initial plane wave, and so for suitable
potentials it can be far smaller thanTCSE.

However, the quadratic potential approximation only ap-
plies when a significant part of the beam’s power lies within
the concave part of the Gaussian potential, so this estimate
should only apply whenwp is not much smaller than 1. Since
this time scale relates to the width scalewp on which focus-
ing occurs, a heuristic modification is to replace this by the
actual, larger width scalew of the beam, giving a slower time
scaleTpot8 : =pw/Î8hp.

Either form of the time scale estimate suggests that for
given initial data and potential width, collapse is likely to be
inhibited for potential depthhp greater than some threshold
hp

* . This threshold behavior is observed in many cases, and
Table II lists approximate values for various combination of
beam heighth and potential widthwp, with the three esti-
mates of potential focusing time scale and the observed time
Ttp of the first turning point(maximum intensity).

The second estimateTpot8 is quite close to the observed
turning point time, even when the potential width is signifi-
cantly narrower than the initial beam. Also, the minimum
potential depth needed for collapse inhibition is approxi-
mated by

TCSE< 2Tpot8 = pw/Î2hp,

where the latter is the period of beam width oscillations for
the quadratic potential approximation based on well depthhp
but initial beam widthw. As is to be expected,Tpot is of the
right order of magnitude, but a consistent underestimate.

As seen in the next section, numerical results do show this
spatial splitting with inner part having power just belowNcr.
So we observe that this condition for splitting and thereby
collapse arrest is in qualitative agreement with the numerical
results.

This mechanism for an initial inhibition of singularity for-
mation does not rule out the possibility that self-focusing
could bring the power of the inner part above the critical
threshold on its slower time scale, after the initial inner fo-
cusing has produced one or more inner oscillations; this
would lead to the pattern of one or more oscillations fol-
lowed by singularity formation that is also observed above
for potential just large enough to inhibit singularity forma-
tion in the initial beam collapse. Thus, to determine whether
singularity formation can be permanently prevented, radia-
tion needs to be considered, and a more detailed model of the
radiation mechanism removing power from the region of the
potential is needed.

B. Radiation model for relaxation to subcritical inner bound
states

The collective coordinates method used for example to
derive the form of the singular solutions of the CSE[17] and
collapse inhibition by an attractive potential with moving
off-center beam[6] can be used to study the evolution of
beam width, describing the inner, focusing, part of the beam
and its interaction with radiation to the outer, dispersing part.
The approach is modified here to use a more accurate hyper-
bolic secant approximation of the ground state instead of the
traditional Gaussian, for reasons explained below.

The related method of modulation analysis has been ap-
plied to other similar perturbation of the CSE, such as the
addition of normal dispersion[18–20]. Its application in the
current situation could be considered, but it would be a chal-
lenge beyound the scope of the present work, if it is possible
at all. This is due to factors like the lack of spatial homoge-
neity and the resulting change in the solutions about which
one perturbs.

TABLE II. Shallowest potentials for collapse inhibition for vari-
ous initial data, with the observed time of the first turning point of
intensityTtp and several versions of an estimateTpot for this.

h 1.95 2 2.1 2.2 2.5

wp 0.4 0.35 0.3 0.2 0.15

hp
* 0.15 1.3 3.46 7 20

TCSE 5.732 1.648 0.917 0.678 0.406

Ttp 3.077 0.953 0.550 0.403 0.221

Tpot 1.147 0.341 0.179 0.084 0.037

Tpot8 2.87 0.974 0.597 0.420 0.248
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Omitting details, which are similar to these cited prece-
dents, one describes the behavior in terms of a beam width
scale variableL and an excess of power over critical in the
inner region,D, related to the original equation through

cst,xd =
1

Lstd
Fst,jWdexpSit + i

L̇

Lstd
r2

4
D ,

jW =
xW

Lstd
,

]t

]t
=

1

L2std
, r = uxu, s4d

and

D =
Ns − Ncr

M
. s5d

Here, the width scale is determined by the condition that the
transformed profileF is almost stationary and in the inner
regions is approximated by the Townes solitonR, the station-
ary state profile for the CSE given by the positive radially
symmetric solution of

− ¹2R+ R− R3 = 0, s6d

Ns represents the power within some inner region relative to
the width scale,

Ns =E
uxuøjsLstd

ucst,xdu2dx =E
ujWuøjs

uFst,jWdu2djW , s7d

Ncr<11.67 is the power of the Townes solition, the critical
power needed for singularity formation, and

M =
1

4
E ujWu2F2djW < 3.4. s8d

By considering the radiation rate for the core power we
eventually get the equations

L̈ = −
D

L3 −
1

2M

]

]L
VsLd, s9d

Ḋ = −
g

L2SNc

M
+ DD , s10d

with the effective potential

VsLd =E UsLxdR2suxuddx, s11d

g = Hsbdexph− p/Îbj, b = D +
L3

2M

]V
]L

, s12d

and Hsbd is the Heaviside function. These equations show
that the width dynamics controls the tunneling rate and in
this way modifies the core power kinetics.

If one now approximatesRsrd with a Gaussian of the form

Rsrd < Rgsrd =ÎNcr

pB2 expS−
r2

2B2D, B2 < 0.8, s13d

one can evaluate the integral in Eq.(11), getting the closed
form

1

M
VsLd = −

Nc

M

hpwp
2

2wp
2 + B2L2 = −

4.3hpwp
2

2.5wp
2 + L2 . s14d

However, as the resulting system can still only be studied
numerically, it is better in this case to solve numerically us-
ing a more accurate model, at the cost of having numerical
quadratures at each time step. Using a numerical approxima-
tion of Rsrd would be the most accurate, but it is observed
that the intermediate approximation with a hyperbolic secant,

Rsrd < Rssrd = Ks sechsr/Bd, s15d

does not significantly reduce accuracy beyond what is al-
ready inherent in the ordinary differential equation(ODE)
model. In comparisons, use of the hyperbolic secant consis-
tently gives somewhat better fits to the NLSP than the Gauss-
ian, so only this is used here.

We compared to the caseh=1.95,wp=0.5 where inhibi-
tion occurred forhp above 0.12, and compared to that for
hp=0.14 as shown in Fig. 1. The equivalent initial conditions
for ODE’s are

Ls0d = 1.4, L̇s0d = 0, Ds0d = 0.07,

but collapse inhibition does not occur until abouthp=2.3,
and to match more closely the partial differential equation
(PDE) behavior forhp=0.14,hp=5 is used in the ODE. For
comparison to the ODE amplitude data, 1/L is plotted in Fig.
2 as well as the power surplusD. This shows fairly good
qualitative agreement with the full solution of the PDE, with
the major discrepancy being an underestimation of the radia-
tion rate, requiring the deeper potential. In particular the re-
duction of power in the inner region below the critical
threshold is observed to be sharply the criterion for collapse

FIG. 2. Collective coordinates
approximations with the sech ap-
proximation of the Townes soli-
ton, Ls0d=1.4, L8s0d=0, Ds0d
=0.07,wp=0.5, andhp=5.
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inhibition in both the NLSP and the collective coordinates
model.

III. NUMERICAL RESULTS ON RADIATION FROM
OSCILLATING BEAMS

The main results here are a study of the observed trans-
verse structure of solutions, which are seen to conform quali-
tatively to the above theoretical model.

Several observations can be made.

A. Width oscillation in trapped beams with near ground-state
form

As shown in Fig. 3 for our “standard case”h=1.95, hp
=0.14, andwp=0.5 (and for other cases in[4,5]), when a
potential prevents collapse or dispersal, the beam instead has
oscillations in width and height, and width amplitude profiles
following roughly a dilation pattern at small radii of the form

ucst,rdu <
1

Lstd
R̃S r

L
D

for an asymptically oscillatory width scaleLstd and spatial

profile R̃ somewhat close to the ground stateR but with
power slightly below the critical value and, therefore, poten-
tially close to stable bound statesusr ,Ld of NLSP, at least
when L is small. This supports the approximation used for
the inner region part of the collective coordinate model.

B. Near null of intensity separating inner and outer
parts

At each minimum of beam width in an oscillatory solu-
tion, the intensity drops very close to zero at a “separation
point” at approximately the potential’s width, as shown for
our standard case in Fig. 4, where the three curves at lower
left are at the first three minima of beam width while the
other two are at intervening width maxima. Figure 5 shows

the same for a beam with higher initial power, leading to
considerably more power outside this separation point. In
each case the intensity at the separation point is less than one
thousandth of its maximum.

C. Radiation

Beyond the central oscillating spike and this separation
point, one observes waves radiating outwards(see Fig. 6),
carrying power well beyond the potential and spreading to
such low intensities that nonlinearities are unimportant; thus
the self-focusing effect will not refocus this power. Accord-
ingly we find that the radiation is well described by the linear
dispersion relation of the CSE, which at large radii reduces
to v=k2.

IV. CONCLUSIONS

The previously observed inhibition of self focusing col-
lapse by the addition of a small attractive Gaussian potential
to the focusing cubic Schrödinger equation in critical

FIG. 3. h=1.95,hp=0.14, andwp=0.5 ucst , .du profiles showing
oscillations in Townes soliton form.

FIG. 4. h=1.95, hp=0.14, andwp=0.5 ucst , .du profiles: inner-
outer separation.

FIG. 5. h=2.1, hp=3.48, andwp=0.3, ucst , .du with extreme
splitting of beam power; near maximumfucs0.553,0du=115g and
minimum fucs1.602,0du=11g of focusing oscillations.
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dimension 2 has been qualitatively explained by the fact that
linear focusing due to the potential occurs faster than the
self-focusing collapse, leading to the amount of beam power
entering the inner region where focusing occurs being less
than the critical power needed for singular collapse, while
the rest is left outside the potential well, at intensities too low
for self-focusing to draw it into the inner region, so that it is
instead dispersed radiatively.

Further from the potential, radiation is seen at each in-
ward cycle of such oscillations, particularly the first.

This mechanism has been modeled via the lens transfor-
mation and a collective coordinate reduction, successfully
predicting the main quantitative feature of beam width oscil-
lations that decay somewhat, the power within the potential
well becoming subcritical and hence preventing singularity
formation, and power loss form the central focus through
radiation at each oscillation.

Singularity inhibition is observed to occur with extremely
narrow potentials, where the initial power outside the poten-
tial region is itself above critical, and so initial focusing in-
volves a supercritical amount of beam power. This has been
explained by a mechanism in which initially, self-focusing
occurs with little affect from the potential, until a substantial
proportion of the beam power has come into the potential
region, after which the above pattern of splitting to a sub-
critical focusing core and a radiative outer part occurs.
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