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The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schroédinger
equation is considered. It is shown that the attractive potential can prevent both singular collapse and disper-
sion that are generic in the cubic Schrodinger equation in the critical dimension 2 and can lead to a stable
oscillating beam. This is observed to involve a splitting of the beam into an inner part that is oscillatory and of
subcritical power and an outer dispersing part. An analysis is given in terms of the rate competition between the
linear and nonlinear focusing effects, radiation losses, and known stable periodic behavior of certain solutions
in the presence of attractive potentials.
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I. INTRODUCTION for attractive quasi-2D Bose-Einstein condensatBgC),

. . - . and magnetic nanostructuref8]. The standard Gross-
_Vanants .Of the no_nlmear_ Sc_hrodlnger equatigil SE) Pitaevskii equation for BEC’s in a confining trap has a qua-
with attractive potentials arise in many models of weakly

. : . . d{atic potential and, usually, also linear and nonlinear dissi-
nonlinear _d|sper3|ve waves and th? nonlinear phenomenon ?)ation terms, but the latter terms are unimportant to the
self-focusingor wave collapseThe simplest NLSE with only current study. Note that, in some of the applicatidnepre-

a cubic nonlinearity has unusual behavior such as the formas-ents the propagation distance rather than time. The cubic

tion t?/\]: self-focusn:jg smgL_JIantltesm finite t'Tet\r']Vhen theret_ nonlinearity represents the intensity-dependent refractive in-
are two or more dimensions transverse 1o the propagaliofy, j, e optical case, exciton-phonon interaction in mo-

variable. The problem is most acute for critical transverse'ecular excitations, and interaction between the Bose par-
dimensionD=2, which is fraught with instabilities: small ticles in BEC: thé last is repulsive in most cases, but
perturbations in initial data or various small additional terms_ ;. - .« t5/7Li atoms for example. The potentiel(x) rep,-
e oo s  sptiall cependen eactve e for asr propa-
g ) ; gation, spatial inhomogeneity for molecular excitations, and
singular collapse and dispersion.

Most such perturbations of the equation are higher—ordetrhe Co.”f'”'f‘g field or trap’ yged in formmg a BEC.'
In situations where the initial beam is wide relative to the

nonlinear effects, but here we consider the effects of an at'otential one convenient model for the potential is a
tractive potential, giving what will be called the nonlinear gaussiaﬁ P
Schrodinger equation with potentiéLSP):

- -r2(2wd)

oY U(r) =-he" 7% (2)
i+ V2 [yf2y - U(x) = 0. (1) , P ,
a of depthh,, and widthw,. This is plausible for egraded

. . . index fiberlaser waveguide and for molecular excitations,
Wf st;all congg:r_wgzaieﬁzon_rthhe tw_o-dlmensmgﬁl])) c?se V\I"th where the potential represents the effect of a small impurity
y=ylt.x.y), V°=d,+d,. This arises in models of cw laser ;, yho ‘molecular lattice. No corresponding results from
propagation in wavegwdes, molecular excitations in a Iatt'c‘?)hysical experiments are known to the authors, but the re-
near an inhomogeneitjl], the Gross-Pitaevskii mod¢R] g jts here can give indications of experimental parameters to
try, for example, indicating that the potentials should be
somewhat narrower than the initial self-induced potential

*Electronic address: lemesurierb@cofc.edu -2
"Electronic address: plc@imm.dtu.dk Recent numerical observatiofid—7] show that such an
*Electronic address: jens.juul.rasmussen@risoe.dk attractive Gaussian potential can have the counterintuitive
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25

"CSE Sulem and Sulenill], as well ag1,12,13 for more recent
ﬂpfg'li ---------- results involving also the influence of quadratic p(zjtentials.
P Note that since our initial data are of the fotre™ 72, the
conserved quantities of the CSE are the “poweX’
=[|yj?dx==7h? and the Hamiltonian “energy”H="H,
= [L|V ¢f2-3|¢|*ldx=N(1-N74m). Thus the sufficient
‘ condition for global existence holds fdr<hg,:= JN/m
~1.927, and singular collapse is guaranteed 76« 0 for
“' N>4m, or h>2. Here N, is the critical power, which is
given as the norm of the stationary ground state solution of
the CSE. Also, the variancé=[r?|y{?dx can be related to
the beam width rdefined through/=Ar2.
0 . : : : . . . When a potential is added, exact results on singular col-
lapse in(NLSP) are only known for the case of an attractive
quadratic potential, which, however, is also a relevant ap-
proximation for a beam concentrated near the bottom of an
attractive radially symmetric potential. The Gaussian poten-
effect of inhibiting or limiting collapse, while also prevent- tial (2) can be shifted by a harmless constant and then ap-
ing dispersion, leading instead to oscillatory beams thaProximated near the origin by (r)=Qgr?/4, O3=2hy,/w2, so
avoid both the extremes of singular collapse and dispersiowe Will discuss quadratic potentials in this form. The power
that are the only generic outcomes in the focusing 2D CSEV is conserved with the same form as before, the conserved
This happens for various potentials narrower than the initiaenergy takes the forrft="H,+(€/2)?V, and the variance
beam but sufficiently deep, with an initial focusing followed satisfies
by a train of focusing and defocusing oscillations. For ex- oy oy
ample, Fig. 1 shows the amplitude evolution for a case in V(t) = (V(O) - —2>cos Dt + —, (3)
which the CSE develops a singularitytat5.73, and Table | 0 0

gives the shallowest potentials needed to inhibit singularity, . ; )
formation for various combinations of potential width and as shown by several authdk2-19, so collapse is guaran

H — 2
initial data. In that tableT s is the observed time of singu- tggg 'fsioige);(ﬁ] %ﬁ\e/(gi) r{ 4ja?i'tT?grr%’;go%hgﬂgiiigﬁm g;%l
larity formation for the CSE with the same initial data andtion Hy(0)<0 ongthe initie?l datayto also include the case of
Tip is the time of the firsturning pointof the intensity, when R I'? Note that if inqularity f th . )
the beam first starts spreading again. quality. Note that if no singularity forms, the variance is

All simulations here are performed with Gaussian initial bounded and in fact periodic.

—_ : : Another kind of periodic solutions has been established
data centered at the origin, normalized to heiglaind width . . .
by Rose and Weinste . orbitally stable steady-state
1: $(0,r)=he"2, r=|x|, and one can achieve this collapse y insteipLo] ray y

AN ) ) 2°% solutions €My(r) with '<N.. These always exist in the
inhibition with h up to 2.5, whereas without the potential,

. . o - present situation, since that paper guarantees existence if the
smgule_lrlty formation is observed fpr alﬂ_> he=~1.93. The corresponding linear Schrédinger equation has a bound state,
numerical methods used are describediyg].

in th dditional ical nd in two dimensions this is true for any weak attractive
__Inthe present paper we present additional numerica Stu(ﬁotential, such as the attractive Gaussians used here.
ies of the beam dynamics in the presence of an extern

potential. Particularly, we have invoked more detailed diag- 1I. COLLAPSE INHIBITION: COMPETING COLLAPSE

nostics to reveal the structure of the solution and the associ- LENGTH SCALES AND RADIATION FROM

ated radiation. The main point of this paper is to present a SOLITON-LIKE SOLUTIONS

detailed analysis explaining the beam dynamics in the poten- N . :

tial. The analysis is based on a scaling argument and a coﬁ' Argument for inhibition W|.th approximate threshold, based
lective coordinate calculation. For this, some background is on competing length scales

needed; sources for results stated without citation are the We first discuss the inhibition of the collapse by a narrow
articles of Rasmussen and Rypd8l10 and the book of potential using a simple scaling argument. The basic idea is

20

15

[wi(t,0)|

10

FIG. 1. h=1.95,w,=0.5: oscillations in the place of collapse.

TABLE |. Minimum potential depthh;J for collapse inhibition for various initial data and potential widths, witkse the observed
collapse time in the absence of potential, diythe first turning time of intensity with potential.

h 1.95 2 2.1 2.2 25
Tese 5732 1.648 0.9173 0.6775 0.4063
W 0.4 0.35 0.2 0.1 0.01 0.3 0.05 0.02 0.2 0.05 0.15

h; 0.15 1.3 1.75 45 230 3.46 30 100 7 70 20

Tip 3.077 0.953  0.999  0.971 1.077 0550 0.553 0.654  0.403 0.312 0.221
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comparing the numerically observed time scajgg for the TABLE Il. Shallowest potentials for collapse inhibition for vari-
self-focusing of the beam in the unmodified CSE with esti-ous initial data, with the observed time of the first turning point of
mates of the time scal€, of the linear focusing and pos- intensity T, and several versions of an estimdig, for this.

sible beam width oscillations in the case with potential,

through approximations by the quadratic potential case. h 1.95 2 2.1 2.2 25
When the potential is narrower than the initial beam w, 04 0.35 03 0.2 0.15
(Wp<1)) and Ty < Tcsg the beam may be split into inner b 0.15 13 3.46 7 20

and outer parts pefore a singularity can develop,. with the TCF;E 5732 1648 0.917 0.678 0.406
faster focusing within the central part of the potential draw- 3.077 0.953 0550 0.403 0.221
ing part of the beam power and leaving behind a part focus- _" ' ' ' ' ’
ing mostly under the slower nonlinear effect. If the inner part _P°* 1.147 0.341 0.179 0.084 0.037
separates substantially from the outer and the power in the Thot 287 0.974 0.597 0.420 0.248
inner part is less than the critical powaf,, needed for for-
mation of a focusing singularity, the initially fast focusing of , —
the inner part driven by the potential would not be capable of Tese™ 2Tpo= mWiN2hy,

continuing to singularity formation: instead its width could where the latter is the period of beam width oscillations for
be expected to follow roughly the sinusoidal form in €8).  the quadratic potential approximation based on well dégth
Also the outer part can be expected to radiate outwards, paput initial beam widthw. As is to be expected], is of the
ticularly if it also has a subcritical share of total beam power right order of magnitude, but a consistent underestimate.
leaving an inner part of the beam of permanently subcritical As seen in the next section, numerical results do show this
power isolated in the central well of the potential, incapablespatial splitting with inner part having power just belgvy,.

of singular collapse and constrained from dispersion by thé&o we observe that this condition for splitting and thereby
potential. This could leading to continued oscillation of this collapse arrest is in qualitative agreement with the numerical
part’s width and intensity, similar to that known to occur for results.

a subcritical beam in a quadratic potential. This mechanism for an initial inhibition of singularity for-

The singularity timeTcsgis determined from simulations. mation does not rule out the possibility that self-focusing
Two approximate time scales for the focusing within the cen-could bring the power of the inner part above the critical
tral part of the potential are suggested heuristically by comihreshold on its slower time scale, after the initial inner fo-
paring to quadratic potentials. cusing has produced one or more inner osm.llatl_ons; this

For the same initial data with the quadratic potential fittegWould lead to the pattern of one or more oscillations fol-
at the origin to the Gaussian potential, the sinusoidal varilowed by singularity formation that is also observed above
ance evolution(3) gives a first minimum of variance at fpr p_otentrc_ll _J_ust large enough to inhibit smgula_rlty forma-
Toor= pr/\f"Shp, so by this time either a singularity forms or t|pn in the initial b.eam collapse. Thus, to determine wheth_er
the beam starts spreading again. Note that this time depend¥'gularity formation can be permanently prevented, radia-
only on the linear potential, once the nonlinearity has initi-tion needs to be considered, and a more detailed model of the
ated focusing of the initial plane wave, and so for suitablg@diation mechanism removing power from the region of the
potentials it can be far smaller thaizse potential is needed.

However, the quadratic potential approximation only ap-
plies when a significant part of the beam’s power lies within
the concave part of the Gaussian potential, so this estimat
should only apply whem,, is not much smaller than 1. Since
this time scale relates to the width scalg on which focus- The collective coordinates method used for example to
ing occurs, a heuristic modification is to replace this by thederive the form of the singular solutions of the CHE] and
actual, larger width scale of the beam, giving a slower time collapse inhibition by an attractive potential with moving
scaleT),: =7w/8hy,. off-center beani6] can be used to study the evolution of

Either form of the time scale estimate suggests that fobeam width, describing the inner, focusing, part of the beam
given initial data and potential width, collapse is likely to be and its interaction with radiation to the outer, dispersing part.
inhibited for potential depttn, greater than some threshold The approach is modified here to use a more accurate hyper-
h'. This threshold behavior is observed in many cases, andolic secant approximation of the ground state instead of the
Table 1l lists approximate values for various combination oftraditional Gaussian, for reasons explained below.

éB. Radiation model for relaxation to subcritical inner bound
states

beam heighth and potential widthw,, with the three esti- The related method of modulation analysis has been ap-
mates of potential focusing time scale and the observed timplied to other similar perturbation of the CSE, such as the
Typ Of the first turning poin{maximum intensity. addition of normal dispersiofil8—2(. Its application in the

The second estimat&,, is quite close to the observed current situation could be considered, but it would be a chal-
turning point time, even when the potential width is signifi- lenge beyound the scope of the present work, if it is possible
cantly narrower than the initial beam. Also, the minimum at all. This is due to factors like the lack of spatial homoge-
potential depth needed for collapse inhibition is approxi-neity and the resulting change in the solutions about which
mated by one perturbs.

046614-3
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FIG. 2. Collective coordinates
approximations with the sech ap-
proximation of the Townes soli-
ton, L(0)=1.4, L'(0)=0, A(0)
=0.07,w,=0.5, andh,=5.

' U\JL/MJ\

0

0 10 20 30 40 % 10 %o 30 40
Omitting details, which are similar to these cited prece- — L3 gV
dents, one describes the behavior in terms of a beam width y=H(Bexp{- n/\NB}, B=A+ ML’ (12

scale variabld. and an excess of power over critical in the
inner region,A, related to the original equation through and H(B) is the Heaviside function. These equations show
1 [ 2 that the width dynamics controls the tunneling rate and in
. r ) o L
Wt x) = —d(r, §)exp( _>, this way modifies the core power kinetics.

L
L(t) i L(t) 4 If one now approximateR(r) with a Gaussian of the form
. | N, r?
R X ar 1 R(r) =~ (r) = o exp(— —) B2~ 0.8 (13)
= — —_=— = 4 Rg 2 2/ T
Sl a2y " X[, (4) B 2B
and one can evaluate the integral in §41), getting the closed
form
Ns=N,
A= % (5) =N howe _ 43hw) "
MTTT M2wi+ B2 2502+ L2

Here, the width scale is determined by the condition that the ) ) )
transformed profiled is almost stationary and in the inner ~ HOWever, as the resulting system can still only be studied
regions is approximated by the Townes solirthe station- numerically, it is better in this case to solve numerically us-

ary state profile for the CSE given by the positive radiallyid & more accurate model, at the cost of having numerical
symmetric solution of quadratures at each time step. Using a numerical approxima-

) tion of R(r) would be the most accurate, but it is observed
-V’ R+R-R*=0, (6)  that the intermediate approximation with a hyperbolic secant,

N; represents the power within some inner region relative to R(r) = Ry(r) = K, seclir/B), (15)

the width scale, o )
does not significantly reduce accuracy beyond what is al-

ready inherent in the ordinary differential equati@@DE)
model. In comparisons, use of the hyperbolic secant consis-
tently gives somewhat better fits to the NLSP than the Gauss-
N =11.67 is the power of the Townes solition, the critical jan, so only this is used here.

Ne= |yt x)[2dx = f _ |@(ndPdé, (D)

IXI<&gL(0) |¢[<és

power needed for singularity formation, and We compared to the cade=1.95,w,=0.5 where inhibi-
10 - R tion occurred forh, above 0.12, and compared to that for
M=- f |&2D%dé ~ 3.4. (8)  hp=0.14 as shown in Fig. 1. The equivalent initial conditions
4 for ODE’s are

By considering the radiation rate for the core power we _ N _
eventually get the equations L(0)=1.4, L(0)=0, A(0)=0.07,
) but collapse inhibition does not occur until abdy=2.3,
L=-=--——VL), (9) and to match more closely the partial differential equation
L* 2MdL (PDE) behavior forh,=0.14,h,=5 is used in the ODE. For
comparison to the ODE amplitude datal 1 plotted in Fig.
A=— l(&; +A> (10) 2 as well as the power surplus. This shows fairly good
' qualitative agreement with the full solution of the PDE, with
, . ) the major discrepancy being an underestimation of the radia-
with the effective potential tion rate, requiring the deeper potential. In particular the re-
duction of power in the inner region below the critical
V(L) :f U(Lx)R?(|x|)dx, (11)  threshold is observed to be sharply the criterion for collapse
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FIG. 3. h=1.95,h,=0.14, andv,=0.5yt, .)| profiles showing FIG. 4. h=1.95,h,=0.14, andw,=0.5|y(t, .)| profiles: inner-
oscillations in Townes soliton form. outer separation.

inhibition in both the NLSP and the collective coordinatesthe same for a beam with higher initial power, leading to
model. considerably more power outside this separation point. In
each case the intensity at the separation point is less than one

thousandth of its maximum.
I1l. NUMERICAL RESULTS ON RADIATION FROM

OSCILLATING BEAMS

i C. Radiati
The main results here are a study of the observed trans- adiation

verse structure of solutions, which are seen to conform quali- Beyond the central oscillating spike and this separation
tatively to the above theoretical model. point, one observes waves radiating outwa(sise Fig. ,
Several observations can be made. carrying power well beyond the potential and spreading to
such low intensities that nonlinearities are unimportant; thus
the self-focusing effect will not refocus this power. Accord-
ingly we find that the radiation is well described by the linear
dispersion relation of the CSE, which at large radii reduces

As shown in Fig. 3 for our “standard casé=1.95, h, t0 w=K.
=0.14, andw,=0.5 (and for other cases if,5]), when a
potential prevents collapse or dispersal, the beam instead has
oscillations in width and height, and width amplitude profiles IV. CONCLUSIONS
following roughly a dilation pattern at small radii of the form

A. Width oscillation in trapped beams with near ground-state
form

The previously observed inhibition of self focusing col-
lapse by the addition of a small attractive Gaussian potential
L) to the focusing cubic Schrédinger equation in critical

1 ~
lp(t,r)] = —R<L

L(t)

for an asymptically oscillatory width scale(t) and spatial

profile R somewhat close to the ground sta®ebut with
power slightly below the critical value and, therefore, poten-
tially close to stable bound state$r,L) of NLSP, at least
whenL is small. This supports the approximation used for
the inner region part of the collective coordinate model.

(el

B. Near null of intensity separating inner and outer
parts

At each minimum of beam width in an oscillatory solu-
tion, the intensity drops very close to zero at a “separation
point” at approximately the potential’s width, as shown for
our standard case in Fig. 4, where the three curves at lower FIG. 5. h=2.1, h,=3.48, andw,=0.3, [y(t,.)| with extreme
left are at the first three minima of beam width while the splitting of beam power; near maximufy(0.553,0|=115] and
other two are at intervening width maxima. Figure 5 showsminimum [|(1.602,0|=11] of focusing oscillations.
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FIG. 6. h=1.95,h,=0.14, andw,=0.5%(¢) vsr att=4, 9, 14, showing radiation.

dimension 2 has been qualitatively explained by the fact that Singularity inhibition is observed to occur with extremely
linear focusing due to the potential occurs faster than th@arrow potentials, where the initial power outside the poten-
self-focusing collapse, leading to the amount of beam powetial region is itself above critical, and so initial focusing in-
entering the inner region where focusing occurs being lesgolves a supercritical amount of beam power. This has been
than the critical power needed for singular collapse, whileexplained by a mechanism in which initially, self-focusing
the rest is left outside the potential well, at intensities too lowoccurs with little affect from the potential, until a substantial
for self-focusing to draw it into the inner region, so that it is proportion of the beam power has come into the potential
instead dispersed radiatively. region, after which the above pattern of splitting to a sub-
Further from the potential, radiation is seen at each in<ritical focusing core and a radiative outer part occurs.
ward cycle of such oscillations, particularly the first.
This mechanism has been modeled via the lens transfor- ACKNOWLEDGMENTS
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