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Polygons on a Rotating Fluid Surface
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We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by
rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface
can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a
speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has
been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal
surface shapes have never been observed. The creation of rotating internal waves in a similar setup was
observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez et al.,
J. Fluid Mech. 502, 99 (2004).]. We speculate that the instability is caused by the strong azimuthal shear
due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

DOI: 10.1103/PhysRevLett.96.174502 PACS numbers: 47.20.Ky, 47.32.C�, 47.32.Ef

Rotating flows are an important part of classical fluid
dynamics well known to give rise to interesting structures
and instabilities [1]. Since we live on a rotating earth,
rotating flows are extremely important in geophysics—in
the oceans or the atmosphere. In an engineering context,
rotating flows are also abundant, e.g., in hydraulic turbo
machinery. Experimentally, rotating containers offer pos-
sibilities for studying vortex motion cleanly and obtaining
insight into phenomena such as tornados or bathtub vorti-
ces and their instabilities in the form of surface waves, sec-
ondary vortices, or vortex breakdown. Isaac Newton con-
sidered an important rotating flow: a cylindrical container
with a free surface, the so-called ‘‘Newton’s bucket.’’ The
fact that the fluid at rest in the rotating system has a
parabolic surface was for Newton proof that inertial sys-
tems are special, being free of ‘‘fictitious forces.’’ In the
following, we shall describe a slight modification of
Newton’s bucket, where we allow only the bottom plate
of the container to rotate. Although there now can be no
coordinate frame where the fluid is at rest, one would still
expect the surface to be curved in an axially symmetric
way. What we find instead is that a class of new stable
states exist, where the surface loses axial symmetry and
deforms into the shape of a uniformly rotating polygon.

Our experiment consists of a stationary cylindrical con-
tainer of radius R in which a circular plate is rotated by a
motor. Both cylinder and plate are made of Plexiglas.
Water is filled to the level H above the rotating plate
[Fig. 1 (top left) and Fig. 2 (left)]. When the plate is set
into rotation, the centrifugal force presses the fluid out-
ward, deforming the free surface. When the rotation rate �
becomes sufficiently large, the axial symmetry of the free
surface is spontaneously broken and large, time dependent
deformations appear. This can result in stable, rigidly ro-
tating surface shapes in the form of regular polygons with
N corners. Typical examples of polygons in water with N
between 3 and 5 are shown below in Fig. 1 (bottom). For
these polygons, the rotation is so large that the bottom of

the surface depression touches the rotating plate and the
central region becomes free of fluid, except for a thin layer
of fluid in the parts that are periodically wetted [as can be
seen in Fig. 1(c)]. The surprising and dramatic nature of the
transition to the polygon states is best appreciated by
looking at the time evolution provided in the video in
Ref. [2]. As seen in the video, for the case of an ellipsoidial
deformation (N � 2), it is possible to get polygons without
a dry central region for small N. In our phase diagram, we
have not distinguished between these two cases.

For a given fluid and cylinder, the two control parame-
ters defining the state of the system are the rotation fre-
quency f � �=2� of the plate and the height H of the
undisturbed fluid layer. The phase diagram [Fig. 1 (top
right)] shows the state, i.e., the number of corners N in the
polygon state as a function of the two control parameters.
We have used two different setups. In the smaller one, the
radius of the cylinder is R � 13:1 cm and the rotating plate
is driven by a vertical shaft coming from above. The states
for this setup are marked by gray scales. In the larger setup,
the radius is R � 19:4 cm and the shaft comes from below.
Here the borders between various polygon states are
marked by dashed lines. Aside from water, the experiments
have been carried out with ethylene glycol with a viscosity
of around 15 times larger than water and the solid lines
mark transitions between polygon states for ethylene gly-
col. It is seen that the polygon states basically fill out a
whole region of the phase diagram where the transition
lines take the system directly from one kind of polygon to
another [3].

The phase diagram [Fig. 1 (top right)] is surprisingly
simple: The higher the rotation frequency (at fixed H), the
more corners, and the larger the height (at fixed f), the
fewer corners. In fact, the transition lines fN�H� between
various polygon states are roughly straight lines, i.e., of the
form fN � �NH � �N . A surprising feature is the close
correspondence between the two setups, although they
differ markedly in radius (roughly by a factor of 1.5).
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With ethylene glycol, we only observe polygons with N �
3, but for these polygons the effect of viscosity on the
transition lines is surprisingly small. We also tested the
dependence on surface tension by injecting a surfactant
(detergent) into the flow, and the variations were very
slight.

A triangle state on an ethylene glycol surface is shown in
Fig. 2 (center), and we clearly see a pattern of spiraling
vortices on top of the polygon structure. These vortices are

indicative of the secondary flow shown in Fig. 2 (left), and
we interpret these vortices as Görtler vortices along the
curved streamlines of the flow [4]. Their width should be
determined by the viscous boundary layer, which is pro-
portional to

���

�
p

and, thus, around 4 times larger in ethylene
glycol than in water.

The rotation rate of the polygons is considerably lower
than that of the plate and varies with the latter in a com-
plicated way. On the background of a slow, powerlike

FIG. 1 (color online). Top (left): Setup consisting of a stationary Plexiglas cylinder of radius 19.4 cm with a circular plate that is
rotated by a motor. Water or ethylene glycol is filled to the level H above the plate. At sufficiently large rotation frequencies f, the
axially symmetric surface becomes unstable and assumes the shape of a regular, rigidly rotating polygon, in this case a triangle. Top
(right): Phase diagram for ‘‘polygons’’ on the surface of a fluid on a rotating plate. The different gray scales correspond to different
polygon states as explained in the legend, observed in the smaller setup (with radius 13.1 cm). The dashed lines are similarly transition
lines for transitions between various polygon states, observed for the larger setup (with radius 19.4 cm). The first line (from the bottom)
marks the transition 0! 2 corners; the second is the 2! 3 transition; etc. The bottom (top) solid line is the transitions 0! 2 (2! 3)
in the smaller setup using ethylene glycol. We do not see polygons with N > 3 in ethylene glycol. For most polygons with N > 2, the
center is dry [as in (a)–(c)]. For most of the ellipses (N � 2) and some of the triangles (N � 3), the surface deformation is milder and
there is no dry center. We do not distinguish between states with or without a dry center in the phase diagram. In the white region of the
diagram (or below the lowest dashed and red line), the states are circular. In the upper white region (large f), the shapes become very
noisy and rigidly rotating polygons cannot be resolved. The phase diagram has been obtained by slowly increasing the frequency at a
given height. When the frequency is reversed, some hysteresis is observed, which moves the lines on the order of 0.25 Hz downward.
Bottom: Typical examples of polygons in water, as seen from above: (a) ‘‘triangle,’’ (b) ‘‘square,’’ and (c) ‘‘pentagon.’’ For more
pictures and a video of the transition, see Ref. [2].
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variation, there is a tendency for mode locking such that
the polygons rotate by one corner for every complete
rotation of the plate. In the case of ellipses (N � 2), we
have even observed mode locking in the ratio 2=3. This
must be related to the slight wobbling of the plate, which,
although minute, breaks the axial symmetry [5].

The flow structure in the axially symmetric basis state is
sketched in Fig. 2 (left). The flow over an infinite rotating
plate (the von Kármán flow) has an outward radial compo-
nent. The fixed cylinder wall modifies this flow and in-
troduces a region of strong shear in the azimuthal velocity
as well as upwelling near the walls with a subsequent re-
injection inward along the free surface [4,6,7]. Qualitative
properties of such flows have been analyzed in Ref. [8],
and they are very important in the context of vortex break-
down [9] and the general spin-up problem [10]. The details
of the flow are very complicated due to the singular cor-
ners, where the rotating plate meets the fixed wall and
which play an important part in the generation of the
secondary flow [11]. The Reynolds number Re � �R2=�
is in the range between 105 and 1:5� 106 for our experi-
ments in water, and these large values mean that the flow is
actually turbulent and hard to visualize. In earlier work
[12–14], the symmetry breaking of similar flows has been
studied at much lower Reynolds numbers (a few thousand),
where the free surface remains essentially undeformed. In
Ref. [14], detailed numerical simulations were performed
for this case (i.e., neglecting the variation of the free
surface shape) and a transition to a state with a rotating
wave with N � 3 was observed. In this work, the depen-
dence on viscosity was strong and the Reynolds number
was a relevant control parameter.

We believe that our polygon states are interesting new
members of a fascinating class of systems, where sponta-
neous breaking of the axial symmetry leads to simple
stationary or rigidly rotating shapes. Earlier examples are

hydraulic jumps in an axially symmetric setting [15], wavy
vortex flow in the Couette-Taylor system [16], and insta-
bilities of a shear flow in a thin layer of fluid with differ-
ential rotation [17]. For large rotation rates, the inner part
of the free surface in our experiment becomes almost
vertical and resembles the Couette-Taylor system with
the outer cylinder at rest and where azimuthally deformed
Taylor vortices can be observed [18]. In the shear flow
experiment, a circular shear layer is generated in a thin
rotating fluid layer by letting the inner part of the container
rotate at a different rate. Here visualization with dye
showed strings of vortices along the edge of the inner
part and the shapes of the inner boundary of the dye have
the form of polygons. In our experiment, a shear layer
indeed exists due to the no-slip condition on the stationary
cylinder wall and could indeed lead to instability of the
classical Kelvin-Helmholtz–Rayleigh type [17,19]. In
some cases, we actually observe vortices close to the
corners of the polygons. This is shown very clearly in
Fig. 2 (right), where vortices are seen outside each of the
four corners. We therefore believe that vortex formation
and interaction are very important for the development and
stability of the final state.

We thank Christophe Clanet, Randy Tagg, and Jens Juul
Rasmussen for helpful discussions and Poul Erik Andersen
and Erik Hansen for construction of the setup.
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