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We discuss a random matrix model of systems with an approximate symmetry and present the spectral
fluctuation statistics and eigenvector characteristics for the model. An acoustic resonator like, e.g., an alumi-
num plate may have an approximate symmetry. We have measured the frequency spectrum and the widths for
acoustic resonances in thin aluminum plates, cut in the shape of the so-called three-leaf clover. Due to the
mirror symmetry through the middle plane of the plate, each resonance of the plate belongs to one of two mode
classes and we show how to separate the modes into these two classes using their measured widths. We
compare the spectral statistics of each mode class with results for the Gaussian orthogonal ensemble. By
cutting a slit of increasing depth on one face of the plate, we gradually break the mirror symmetry and study
the transition that takes place as the two classes are mixed. Presenting the spectral fluctuation statistics and the
distribution of widths for the resonances, we find that this transition is well described by the random matrix
model.

DOI: 10.1103/PhysRevE.63.066204 PACS number~s!: 05.45.Mt, 62.30.1d

I. INTRODUCTION

Random matrix theory has been used with success in a
variety of physical systems for the description of certain ge-
neric features of spectral correlators which are determined by
the underlying symmetries of the Hamiltonian@1#. In Sec. II
of this paper we discuss a random matrix model of systems
with an approximate symmetry. A problem like this is found,
e.g., in nuclear physics where isospin symmetry, character-
istic of the strong interactions, is only approximate due to
Coulomb effects@2#. Isospin mixing was analyzed by Guhr
and Weidenmu¨ller in 1990 using a random matrix approach
@3#. They used a random matrix model to describe the ex-
perimental data and to estimate the average symmetry-
breaking matrix element, i.e., the average Coulomb matrix
element. The random matrix model discussed here differs
from the one considered in@3#, and we comment on this
difference. In addition to the spectral fluctuation statistics for
the model we consider a measure of the asymmetry of the
eigenvectors and describe it using simple analytical argu-
ments.

In Sec. III we present two experimental studies of acous-
tic resonances in thin aluminum plates. The plates have the
shape of the so-called three-leaf clover, see Sec. III B. Fre-
quency spectra of acoustic resonators were first compared
with random matrix results by Weaver in 1989@4#. Further
experimental studies of the fluctuation properties of acoustic
resonance spectra in blocks of aluminum and quartz were
made by Ellegaard and co-workers@5,6#. In Ref.@7# the level
spacing distribution measured in@6# was compared with the
random matrix model of@3#. In this paper we focus on
acoustic plates that in many respects are simpler than the
three-dimensional resonators mentioned before. Acoustic
resonances in plates were investigated by Bertelsenet al. @8#.
We present a short review of the theory of acoustic waves in
thin isotropic plates and discuss the characteristics of the
different types of resonances. We find experimentally that
modes can be separated into two different classes that each

have a characteristic dependence of their widths on the
damping by the air surrounding the plate. One class of modes
has widths that are almost independent of the air pressure,
and the other class has widths with a strong dependence on
the air pressure. We argue that these modes are in-plane and
flexural modes, respectively. In the first experiment, we mea-
sure the spectral fluctuation statistics for both mode types
individually and compare with well-known results for the
Gaussian orthogonal ensemble~GOE!. Then, in a second ex-
periment, we mix the two mode classes by gradually cutting
a slit on one face of the plate. We thus observe the transition
from two separate classes of modes to one class of modes.
This transition is studied by comparing the data to the ran-
dom matrix model for systems with an approximate symme-
try for both the spectral fluctuation statistics and the width
distribution. The latter is described using eigenvector infor-
mation from the model.

II. RANDOM MATRICES AND APPROXIMATE
SYMMETRIES

A. The random matrix model

Let H be a random real symmetricN3N matrix with the
following block structure:

H5S DA1A 0

0 DB1BD 1gS 0 C

CT 0 D , ~1!

whereDA andA are randomN13N1 matrices, andDB andB
are randomN23N2 matrices. The random matrixC is N1
3N2, and the coupling strengthg is a real parameter. Note
that N[N11N2. The elements of the diagonal matricesDA
andDB are drawn uniformly on the interval@20.5,0.5# and
ordered in increasing order for each block. This choice of
probability distribution leads to level spectra forDA andDB
which, except for small end-point corrections, are described
by the Poisson statistics appropriate for a sequence of uncor-
related energy levels. The elements ofA, B, andC are Gauss-
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ian distributed with zero mean. The variances2 of the dis-
tribution of the diagonal elements ofA andB scales as 1/N2.
The variance of the distribution of the off-diagonal elements
of the matricesA andB and the elements ofC is set to half
the value ofs2.

The diagonal contributionsDA andDB in H are intended
to mimic the effects of the kinetic energy operator, and the
Gaussian distributed elements ofA andB simulate ‘‘interac-
tions’’ due to boundary conditions. Since the elements ofDA
andDB are ‘‘sufficiently’’ small compared with the Gaussian
distributed elements, the short-range spectral fluctuation sta-
tistics are identical to the statistics obtained for two superim-
posed GOE spectra~2 GOE! wheng50 and to GOE statis-
tics wheng51. ~See Sec. II B for a more detailed discussion
of the spectral fluctuation statistics.! The average distance
between neighboring levels scales as 1/N because of the
presence of the diagonal matrix elements. With a finite value
of g both the root mean square~RMS! symmetry-preserving
matrix element and the RMS symmetry-breaking matrix el-
ement also scale like 1/N, and the transition from 2 GOE
statistics to GOE statistics takes place as a function ofg
independent of the value ofN.

This is not the case if the kinetic energy terms are not
present as in a random matrix model, like the one used in
Refs. @3,7#, with two GOE-like diagonal blocks coupled by
Gaussian-distributed matrix elements. For such a model the
ratio between the RMS symmetry-breaking matrix element
and the average distance between neighboring levels for the
unperturbed problem scales likegAN. The transition from 2
GOE to GOE spectral fluctuation statistics takes place as a
function of this ratio. Ifg is independent ofN, it follows that

the ratio scales likeAN, and in particular that it goes to
infinity in the large-N limit for any finite value ofg. To
observe a smooth transition from 2 GOE statistics to GOE
statistics independent ofN, it is thus necessary that the ratio
between the RMS symmetry-breaking matrix element and
the RMS symmetry-preserving matrix element scales like
1/AN in a random matrix model without kinetic energy
terms.

B. Spectral fluctuation statistics

To describe the short-range spectral fluctuation statistics
we consider the standard level spacing distribution, and as a
measure of the long-range spectral fluctuation statistics we
choose to look at theD3 statistic@9#. Numerical calculations
of the level spacing distribution and theD3 statistic forN2
52N15200 with s2516/N2 are shown in Figs. 1 and 2
together with the exact results for the GOE and two super-
imposed GOE spectra with fractional densities 1/3 and 2/3,
respectively. The ensembles in the simulations consisted of
500 matrices, and 150 eigenvalues from the ‘‘middle’’ of the
spectrum for each matrix were considered. Figures 1~a! and
1~d! show that the level spacing distribution for the random
matrix model is identical to the 2 GOE result wheng50 and
to the GOE result wheng51. Similarly Fig. 2 shows that
this is also the case forD3(L) for L<20. It is clear from Fig.
1 that the level spacing distribution looks very much like the
level spacing distribution for the GOE even wheng50.1. It

is well known thatD3(L) for a model with diagonal terms
like DA andDB deviates from the corresponding GOE result
for large values ofL @10#. The value ofL where this transi-
tion to more Poisson-like behavior sets in is referred to as the
Thouless energy. Forg51 ands2516/N2 we find a Thou-
less energy of about 35. A different choice of the variance,
s2, leads to a picture for the spectral fluctuation statistics
similar to the one shown in Figs. 1 and 2 as long asL is less
than the Thouless energy.

C. Eigenvector information

As a measure of the asymmetry of the eigenvectors ofH
we define a quantitya that we denote the asymmetry num-
ber. Consider a N5N11N2 dimensional vector
(v1 ,v2 , . . . ,vN) of unit length, and leta be defined by

FIG. 1. The level spacing distribution for different values ofg.
The two diagonal blocks are uncoupled wheng50, and when
g51 all the basis states are coupled.

FIG. 2. TheD3 statistics for different values ofg. The numerical
simulations forg50 andg51 agree with the 2 GOE and the GOE
result, respectively.
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a[(
i 51

N1

v i
22 (

i 5N111

N

v i
2 . ~2!

For two decoupled systems described by the subspaces
spanned by the firstN1 and the lastN2 basis vectors, respec-
tively, the distribution PA(a) has a d-function peak at
a521 and one ata51. For the GOE it has a single peak at
a5(N12N2)/N. These features are obvious in Fig. 3, which
showsPA calculated numerically for the ensembles consid-
ered in Sec. II B. Notice that the smaller of the two peaks
present wheng50 has almost vanished wheng50.1,
whereas the strength of the largest peak is reduced to half of
its original value.

Imagine that two uncoupled classes of resonances have
width distributionsPF and PI , respectively. The width dis-
tribution of all the resonances,P(G), is the sum ofPF and
PI when the two classes are uncoupled. The width distribu-
tion P(G) changes if the two classes are coupled, and in our
random matrix approach we modelP(G) using the asymme-
try distribution:

P~G!5E
0

1

dxE
2`

`

dGFE
2`

`

dG Id~G2xGF2@12x#G I !

32PA~122x!PF~GF!PI~G I !

5E
0

1

dx
2PA~122x!

12x E
2`

`

dGFPF~GF!PI S G2xGF

12x D .

~3!

Notice that the integral reduces to the weighted sum ofPF
and PI if PA is the sum of twod functions as in the case
g50 shown in Fig. 3~a!, and thatP is expressed in terms of
PA if PF andPI ared functions.

We now consider the caseN15N2 and describe the char-
acteristic properties of the asymmetry distribution using a

simple analytical model and arguments from perturbation
theory. Figure 4 shows numerical calculations of the distri-
bution of the asymmetry numbers forN15N25150 for three
values ofg. We considered ensembles of 500 random matri-
ces, and, as in the numerical simulations described in Sec.
II B, we focused on the 150 eigenvalues in the ‘‘middle’’ of
the spectrum. The distributionPA(a) increases linearly as a
function of g close toa50 as shown in Fig. 4~d!.

The small fraction of the eigenvectors for which the
asymmetry number is close to zero are most likely superpo-
sitions of an eigenvector ofDA1A and an eigenvector of
DB1B with eigenvalues lying close in the unperturbed spec-
trum whereg50. Let the unperturbed spacing between the
two eigenvalues be denotedD and consider the matrix that
connects the two states when the symmetry-breaking pertur-
bation is introduced:

Hc5S 0 c

c D
D . ~4!

The distributionPC of the matrix elementsc is Gaussian
with zero mean and variance (gs)2/2. In the numerical
simulation shown in Fig. 4 the eigenvectors come from the
‘‘middle’’ of the eigenvalue spectrum where the level den-
sity is almost constant, and we thus assume that the level
density for each diagonal block is equal to a constant that we
denoteR1. In this case the spacingD comes from the distri-
bution

PD~D!5
1

A2pD0

expS 2
D2

2D0
2D , ~5!

where the varianceD0
251/(2pR1

2). In the two-dimensional
approximation the eigenvectors have the asymmetry num-
bers

FIG. 3. The asymmetry distributionPA for the eigenvectors.
Wheng50 each eigenvector belongs to one of the two parts of the
vector space. Asg increases the eigenvectors get components in
both of the two parts of the vector space.

FIG. 4. The asymmetry distributionPA(a) obtained numerically
for random matrix ensembles withN15N2. The valuePA(0) grows
linearly with g, see the blow-up on~d!, as predicted in the simple
analytical model of the eigenvector mixing, see Eq.~8!.
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a56
1

A114c2/D2
, ~6!

and thus the distribution of the asymmetry numbers becomes

PA~a!5
1

2E2`

`

dcE
2`

`

dD PC~c!PD~D!

3FdS a2
1

A114c2/D2D 1dS a1
1

A114c2/D2D G
5

A2sg

pD0A12a2@12a21~A2asg/D0!2#
. ~7!

Whena50 the expression reduces to

PA~0!5
2sR1

Ap
g, ~8!

which is in perfect agreement with the numerical simulation
shown in Fig. 4 for whichs54/300 andR15140.

The majority of the eigenvectors, which have values of
uau'1, can be described using perturbation theory. The shift
in the position of the peak of the distribution away froma
51 is to the first order proportional tog2, since the average
correction to a given state from a state from the other block
is proportional tog.

III. THE ACOUSTIC EXPERIMENT

A. Acoustic resonances in thin plates

In a homogeneous and isotropic three-dimensional me-
dium, sound waves obey the elastomechanical wave equation
for the vectorial displacement fieldu:

r
]2u

]t2
5~l1m!“~“•u!1m“

2u, ~9!

wherel and m are the Lame´ coefficients,r is the density,
and we have assumed no external forces. Equation~9! allows
for two types of wave motion: longitudinal and transverse.
~In the literature the transverse modes have names likeshear
or secondary, and the longitudinal modes are often called
pressure or primary.! Longitudinal waves always travel
faster than transverse waves. For aluminum, which we con-
sider in this paper, the difference is approximately a factor of
2. In the bulk, the two types of waves propagate indepen-
dently. However, upon reflection at a boundary, mode con-
version takes place: an incident wave that is purely longitu-
dinal or transverse will, in general, give rise totwo reflected
waves, one longitudinal and one transverse. Moreover, their
angles of reflection will be different due to their different
velocities, as dictated by Snell’s law.

We now briefly present some facts about elastic waves in
thin infinite plates, see, e.g.,@11# and the recent studies in
Refs.@8,12#. Three types of modes exist in an infinite isotro-
pic plate, when considered at frequencies below the first

critical frequency, i.e., when one half of a transverse wave-
length is larger than the thickness of the plate. Theflexural
modes have displacement mainly normal to the plane of the
plate, but they also have a small in-plane component. These
modes are antisymmetric with respect to reflection through
the middle plane of the plate.~In the literature the flexural
modes are sometimes calledbendingmodes.! The in-plane
modes are symmetric with respect to reflection through the
middle plane of the plate and consist of two mode types. The
in-planetransversemodes have displacement exactly in the
plane of the plate, and the in-planelongitudinal modes have
displacement mainly in the plane of the plate, but they also
have a small out-of-plane component.

Now consider a finite plate. As mentioned above, the
boundaries introduce mode conversion. For a finite plate
there is thus the possibility of a coupling between the differ-
ent mode classes. In Ref.@8# it was concluded, first, that the
flexural modes are uncoupled from the in-plane modes and,
second, that the in-plane longitudinal modes couple to the
in-plane transverse modes. The densities of flexural modes
and in-plane modes were calculated theoretically and found
to be of the same order@8#. These results explain the spectral
fluctuation statistics measured in Ref.@8# where resonances,
i.e., both flexural and in-plane modes, of a quarter of a thin
Sinai stadium plate were investigated. In Sec. III C we ex-
plain how to separate the flexural and in-plane modes experi-
mentally using their measured widths. This technique allows
us to measure the number of modes of the two types sepa-
rately and to compare these numbers to the theoretical pre-
dictions of Ref.@8#. It also enables us to study the spectral
statistics and the width distributions for the two classes of
modes independently and to find out if the flexural modes are
in fact uncoupled from the other modes.

B. Acoustic systems and experimental technique

For the experiments, we use two aluminum plates of dif-
ferent thickness cut in the shape of the three-leaf clover
shown in Fig. 5. This billiard, which was first considered in

FIG. 5. Sketch of the three-leaf clover~not to scale!. ~a! The
construction of the three-leaf clover~thick solid line! with mirror
symmetries indicated by dashed lines. The geometry is defined by
the two radii,r andR. ~b! The plates used in the experiments were
one sixth of the three-leaf clover.
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Ref. @13#, was chosen because it is known to be classically
chaotic and, whenR>r , it has no continuous families of
periodic orbits@14#. Thus, we have chosenr 570 mm and
R580 mm. The area of the plates was 82506100 mm2, and
the circumference was 39063 mm. The plates were 1.5 mm
and 2 mm thick.

The choices ofr andR and the thickness are important for
the experiment in so far as they determine the relative den-
sities of the two mode classes and also the total number of
modes. In our case, these parameters were chosen to give
many modes for the purpose of producing significant statis-
tics while keeping the density of in-plane modes approxi-
mately equal to the density of flexural modes in the fre-
quency range~300 kHz–600 kHz! where our transducers are
most effective.

Aluminum was chosen for the plates because it is isotro-
pic and very easy to machine, while maintaining a highQ
value; at 500 kHz theQ value measured in vacuum is around
104. There are isotropic materials with much higherQ val-
ues, such as fused quartz. However, fused quartz is more
difficult to machine and thus not suitable for the symmetry-
breaking experiment, where one must remove material from
the plate many times in a controlled way.

The elastic constants for the two plates cannot be found in
standard tables of material properties, since they are not pure
aluminum but a special alloy. However, the elastic constants
for this alloy were determined by experiment in Ref.@15#.
We shall use the values from Ref.@15# for Young’s modulus
E57061 GPa and Poisson’s ration50.33060.005. The
density is 2.698 g/cm3 @16#. The corresponding bulk sound
velocities are 3123 m/s for transverse waves and 6200 m/s
for longitudinal waves.

The experimental setup is in many ways the same as that
used for previous experiments as reported in@17#. We use an
HP 3589A spectrum/network analyzer to measure transmis-
sion spectra of acoustic resonators via piezoelectric transduc-
ers. The plate rests horizontally, supported by three gramo-
phone diamond styli. This ensures a very small contact area
between the plate and the rest of the world, thus making the
vibrations of the plate as close to free as possible. The dia-
mond styli are glued to cylindrical piezo ceramics that are
polarized along the symmetry axis (z axis!. One such com-
bination functions as transmitter, the two others as receivers.

One may wonder if our experimental technique can really
measure all modes. In particular, one could question if the
in-plane modes, for which the displacement is mainly~or
exactly! in the plane of the plate, are detected by our trans-
ducers. This question was answered in Ref.@8#, where the
same experimental technique was used. The authors found
that all modes were detected. To explain this, one must un-
derstand what happens microscopically when strain is passed
from the plate to the piezoelectric component through the
diamond stylus. Obviously, there can be no slip between the
tip of the stylus and the plate. If there were indeed slip, there
would also be friction. The diamond would then quickly drill
a hole in the plate, and this is not observed in the experi-
ments. In fact, after many days of oscillations at frequencies
of several hundred kilohertz, the plate is completely intact.
Since the base of the diamond stylus is fixed to the piezo-

electric component, the diamond stylus undergoes a wiggling
motion that deforms the piezoelectric component in a com-
plicated way, including compression along thez axis. There-
fore both in-plane and flexural modes are detected. This ex-
planation does, however, not exclude that modes with small
out-of-plane components could be harder to detect than
modes with large out-of-plane components.

In both of the experiments the temperature was room tem-
perature, i.e., it was not kept constant but could fluctuate by
a few degrees. Obviously, the temperature is important in
these measurements, since both the size of the plate and the
elastic constants depend on the temperature, and changes in
these parameters affect the eigenfrequencies. In this paper
we consider spectral fluctuation statistics that involve a num-
ber of consecutive eigenfrequencies no higher than 40. It
takes only a few minutes for the analyzer to sweep through a
frequency range that contains 40 resonances. When the plate
is in vacuum its temperature changes very slowly and the
resulting shifts in the eigenfrequencies within a few minutes
are negligible.

The plate is placed in a vacuum chamber, which allows
control of the pressure of the air surrounding the plate. At
pressures lower than 1022 Torr air damping is insignificant
compared to intrinsic losses and losses to the supports.
Therefore, we shall refer to such low pressure as ‘‘vacuum.’’
When the pressure is increased, the flexural modes, that have
large out-of-plane oscillations, are strongly affected, since
the plate then functions like a loudspeaker generating sound
waves in the air. As a result, the amplitudes of the flexural
modes decrease with increasing pressure, and the widths of
the resonance peaks increase. This is demonstrated in Fig. 6,
which shows a section of the transmission spectrum mea-
sured for the three-leaf clover in vacuum, at a pressure of 0.5
atm, and at atmospheric pressure. Note that one can label
most of the modes into flexural and in-plane by eye.

C. The separation experiment

The first experiment was designed to separate the modes
into flexural and in-plane types so that the spectral statistics
could be studied separately for each class. To get a statisti-
cally significant result, many eigenfrequencies are needed,
and it is crucial to find all the levels so that the results are
free from missing level effects. For this reason we performed
the following measurement sequence. The acoustic transmis-
sion spectrum for the plate of thickness 2 mm was measured
in the range 300 kHz–540 kHz. The measurement was car-
ried out first in vacuum, then at a pressure of 0.5 atm, and
finally at 1 atm, see Fig. 6. In each case, the measurement
was performed twice, using two independent receivers. This
procedure gave six resonance spectra. Then, the system was
subject to a perturbation, when a mass of 14 mg, correspond-
ing to 314 ppm, was removed from one face of the plate
using a piece of fine sandpaper. After this, the above proce-
dure was repeated, giving another six resonance spectra.
Then, in the same way, another perturbation was made, this
time removing 43 mg of material, corresponding to 965 ppm.
Again, the measurement sequence was carried out, giving a
total of 18 resonance spectra. The perturbations done to the
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system are small enough that it is possible to follow every
resonance peak through all 18 spectra, but large enough that
near-degeneracies in one set of spectra are destroyed by the
perturbations, giving well-resolved peaks in the next set of
spectra. This technique allows us to find all resonances.
There are no missing levels.

We would like to establish a simple and reliable criterion
that permits us to separate the spectrum into flexural and
in-plane modes. To this end, each resonance peak is fitted
using the so-called ‘‘skew Lorentzian’’ approach@18#. This
fit yields a number of parameters of which only the reso-
nance frequency and the widthG are of interest. In Fig. 7 we
show the distribution of widths obtained from this fitting
procedure for increasing values of the air pressure. It is evi-
dent that the widths of one group of modes increases with
increasing pressure while the widths of the remaining modes
is largely unaffected. We interpret these groups as flexural
and in-plane modes, respectively. However, even at atmo-
spheric pressure, it is not possible to separate the modes on
the basis of resonance width alone.

Since the width distribution does not allow us to separate
the flexural modes from the in-plane modes with certainty,
we must find a more reliable criterion. Therefore, we con-

sider the individual resonance widths as function of pressure,
see Fig. 8.

The curves for the two resonances in Fig. 8 are typical for
the measured modes and show that the curves are well ap-
proximated by straight lines. Consequently, it makes sense to
label them by the slope of the best straight line fit. We then
consider the distribution of these slopes, see Fig. 9. The dis-
tribution has two well-separated peaks. Large slopes corre-
spond to flexural modes; small slopes correspond to in-plane
modes. Based on this information, we choose the ‘‘separa-
tion’’ slope to be 11 Hz/atm.

In the range 300 kHz–540 kHz, we find 1537 levels for
the 2-mm plate, of which 781 are flexural and 756 are in-
plane, judging from the separation criterion discussed above.
Reference@8# presents an expansion of the exact dispersion
relations for an infinite isotropic plate and also gives the
corresponding expansion for the number of modes, i.e., the
staircase function, for a finite, thin plate. Using this theoret-
ical expansion, we expect 782 flexural modes and 753 in-

FIG. 6. A segment of the resonance spectrum for the 2-mm-
thick three-leaf clover at three different pressures: vacuum, 0.5 atm,
and 1 atm. Most resonances are easily recognized to be either in-
plane~I! or flexural ~F!.

FIG. 7. The distribution of widths for the acoustic resonances
for the three-leaf clover plate of thickness 2 mm, at the same values
of the air pressure as in Fig. 6. One class of modes~in-plane! have
widths that are almost independent of the pressure and the widths
for the other class of modes~flexural! increase with increasing pres-
sure.
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plane modes. This is in perfect agreement with the measured
numbers, given the uncertainty in the elastic constants of the
aluminum alloy and in the dimensions of the plate.

Since we can identify the character of individual modes, it
is possible to consider the level spacing distribution and the
D3 statistic separately for each of the two classes. Figures 10
and 11 show the level spacing distribution and theD3 statis-
tic for each of the two mode classes compared with the GOE
statistics. We find that both the level spacing distribution and
the D3 statistic for the flexural modes agree with the GOE
statistics. This result confirms numerical calculations by
Bogomolny and Hugues showing that the flexural modes of a
chaotic billiard have GOE fluctuation statistics, see Ref.@12#.
The D3 statistic for the in-plane modes lies above the GOE
curve. This is a bit surprising, because mode conversion is
expected to be a strong effect, see, e.g., Ref.@19#, which
should guarantee that all in-plane modes are strongly
coupled and obey GOE statistics. We note that the deviation

from the GOE curve seen in theD3 statistic does not appear
in the level spacing distribution; the level spacing distribu-
tion for the in-plane modes looks much like the level spacing
distribution for the GOE. The same feature is seen for the
random matrix model for systems with an approximate sym-
metry, see the results forg50.2 on Figs. 1~c! and 2. If we
think of mode conversion as a mechanism that breaks the
longitudinal-transverse ‘‘symmetry’’ for in-plane modes, our
results could indicate that this symmetry is not completely
broken.

An issue to consider in this context is the value of the
wavelengthl compared to the sizel of the system. The ratio
l /l is a measure of how ‘‘semiclassical’’ our system is.
Roughly, l 5100 mm. Random matrix results are only ex-
pected to apply whenl /l@1. For flexural modes, the typical
wavelength is 5 mm, sol /l520. For traveling in-plane
waves, the typical transverse wavelength is 7 mm and the
typical longitudinal wavelength is 13 mm. Roughly, this

FIG. 8. The width of a flexural mode and an in-plane mode for
the three-leaf clover as function of the pressure of the air in the
vacuum chamber. Six curves appear for each resonance peak, be-
cause six different measurements were made for each of the pres-
sure values: vacuum, 0.5 atm, and 1 atm.

FIG. 9. The distribution of slopesdG/dp has two well-separated
peaks, which makes it possible to separate the flexural and in-plane
modes. We choose a ‘‘separation’’ slope of 11 Hz/atm. A few in-
accurate fits give rise to the small number of negative slopes.

FIG. 10. The level spacing distribution~a! and theD3 statistic
~b! for the flexural modes compared with the GOE statistics. Both
the level spacing distribution and theD3 statistic agree very well
with the GOE results.
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leads tol /l510. Thus, in our experiments we have the two
length scales separated by at least an order of magnitude.
Nevertheless, the factor of 2 betweenl /l for flexural and
in-plane modes shows that the flexural modes are more
‘‘semiclassical’’ than the in-plane modes, which is another
possible explanation for the slight difference observed in the
fluctuation properties.

We emphasize that the main results of this section are,
first, that the flexural and the in-plane modes can be sepa-
rated and, second, that each of the two mode classes behave
as one class of strongly coupled modes. The fact that theD3
statistic lies slightly above the GOE curve for the in-plane
modes is a small correction to this picture. In the following
section, we regard the in-plane modes as one class of
strongly coupled modes.

D. The symmetry-breaking experiment

The second experiment was designed for a detailed study
of the transition from two independent mode classes to one

mode class. The transition takes place as the mirror symme-
try through the middle plane of the plate is broken. For this
experiment, we used the three-leaf clover plate of thickness
1.5 mm and gradually cut a slit on one side of the plate, as
shown in Fig. 12.

For the cutting of the slit in the plate we used a computer-
controlled milling machine and chose steps in the thickness
of 1/40 mm. In our case, this amounted to about 18 mg of
material for each increment of the depth of the slit. The mass
of the intact plate was 32.8870 g. First, the frequency spec-
trum was measured for the intact plate in vacuum and at
atmospheric pressure. The procedure of cutting and measur-
ing the frequency spectrum at atmospheric pressure was then
repeated nine times. In all measurements the frequency range
was 456 kHz–533 kHz and only one receiver was used. The
justification for using just one receiver for this experiment is
as follows: removal of material from the plate corresponds to
a small perturbation. One can, therefore, easily follow each
resonance peak through the entire scenario, and although a
resonance peak can sometimes disappear in one spectrum
because the receiver is accidentally placed on a nodal line, it
always reappears in subsequent spectra. Thus, the results of
this symmetry-breaking experiment are protected against
missing level effects.

As in the previous experiment, the resonance peaks are
fitted and we calculate the distribution of widths, focusing
first on the intact plate. In the plot for atmospheric pressure,
the modes are separated into two classes: those that have
widths smaller than 22 Hz and those that have widths larger
than 22 Hz, see Fig. 15. This sets the criterion for separation
of the flexural modes from the in-plane modes. We note that
for the 1.5-mm plate it is possible to perform the separation
purely on the basis of the widths measured at atmospheric
pressure. This was not the case for the 2-mm plate.

In general, we expect that the widths of the flexural
modes at some value of the pressure will depend on many
parameters. Among these, the thickness of the plate and the
typical wavelength play important roles. However, compar-
ing our two experiments, all of the parameters are the same
except for the thickness. The average width for the in-plane
modes is almost the same in the two cases. At a pressure of
1 atm, the mean width for the flexural modes for the 2-mm
plate is around 35 Hz and for the 1.5-mm plate the mean
width is 42 Hz. This indicates that damping from the air is
larger for thinner plates.

We consider first the plate before any material has been
removed and find 600 levels in the frequency range 456
kHz–533 kHz. According to our separation rule, this time
based solely on the width distribution measured at atmo-
spheric pressure, 310 modes are flexural and 290 are in-

FIG. 11. The level spacing distribution~a! and theD3 statistic
~b! for the in-plane modes compared with the GOE statistics. The
D3 statistic shows that the spectrum of the in-plane modes is
slightly less rigid than the GOE.

FIG. 12. ~a! A sixth of the three-leaf clover with a 2-mm-wide
cut indicated~not to scale!. ~b! Sketch of the plate profile showing
how the cut breaks the mirror symmetry through the middle plane
of the plate.
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plane. Using again the expansion for the number of modes
given in Ref.@8#, there should be 311 flexural modes and 285
in plane modes, in perfect agreement with our results. As in
Sec. III C we have obtained the level spacing distribution
and theD3 statistic for the two mode classes separately. We
find the same spectral statistics for the 1.5-mm plate as for
the 2-mm plate.

Figures 13 and 14 show the level spacing distributions
and theD3 statistics for all the modes for increasing depth of
the symmetry-breaking slit. The experimental data are fitted
with results for the random matrix model of Sec. II. We have
usedN15N25150 ands2564/N2. Table I summarizes the
results for the theoretical fits to the spectral statistics for the
symmetry breaking experiment. The spectral statistics are
well described by the model, and the best fits to the level
spacing distribution and to theD3 statistic yield consistent
values for the coupling strengthg.

In Fig. 15 the measured width distributions are compared
with the distributions calculated numerically using Eq.~3!.
To model the width distributionP(G) for all modes, we use
the asymmetry distribution for the eigenvectors and assume
that the in-plane modes and the flexural modes have Gauss-
ian width distributionsPI andPF . For each of the different
cases we fix the value of the coupling strength,g, to the

value obtained from the spectral statistics. For the intact
plate, see Fig. 15~a!, we fitted the width distribution by mini-
mizing x2, and found the mean valuesG I

0512.2 Hz and
GF

0542.0 Hz, and the standard deviationss I52.8 Hz and
sF55.8 Hz. The mean values for the fit agree with the mea-

TABLE I. The first column shows the size of the cut and the
fourth columns the average width. The second and third column
show estimates ofg obtained by fitting the level spacing distribution
and theD3 statistic, respectively.

Cut ~mg! g from level spacing g from D3 Mean width~Hz!

0.0 0.01 0.00 27.1
10.3 0.02 0.00 27.9
23.1 0.02 0.005 28.6
37.4 0.02 0.02 29.2
55.7 0.05 0.04 29.1
71.3 0.055 0.055 29.7
92.5 0.06 0.05 30.0

108.5 0.06 0.06 30.8
128.8 0.09 0.08 30.3
146.1 0.06 0.07 29.9

FIG. 13. The level spacing distribution for all the modes compared to the result of the random matrix model.~a! The plate is intact.~b!
A total of 37.4 mg has been removed.~c! A total of 71.3 mg has been removed.~d! A total of 128.8 mg has been removed.
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sured average width of 27.1 Hz, see Table I. The average
width depends on the slit depth as shown in Table I, and
increases, e.g., by 2.1 Hz when the cut increases from 0 mg
to 37.4 mg. To take effects like this into account we have
fitted the width distributions by varying the four parameters
G I

0 , GF
0 , s I , andsF . The only parameter that changed sig-

nificantly from case to case was the average width of the
flexural resonances,GF

0 . This seems reasonable since we ex-
pect that the damping by the air, which mainly affects the
modes with large out-of-plane components, increases as the
surface is perturbed by the cut whereas the intrinsic damping
is almost unaltered. For the width distributions shown in
Figs. 15~b!–~d! we therefore heldG I

0 , s I , and sF fixed,
whereasGF

0 was varied so that the average width equalled
the measured average shown in Table I. The overall features
of the width distribution as function of slit depth are de-
scribed by the random matrix model. As the slit depth in-
creases, the strength of the width distribution between the
two peaks increases while the strength of the peaks de-
creases. Notice that the value ofP(G) aroundG527.5 Hz
increases linearly withg in agreement with Eq.~8!.

IV. DISCUSSION AND CONCLUSIONS

We have presented experimental results for acoustic reso-
nances in two thin aluminum plates of three-leaf clover
shape. For both plates we found that the measured number of
flexural and in-plane resonances were in very good agree-
ment with the theoretical Weyl formula. The two classes of
modes were separated using their width or the dependence of
the width on the pressure of the air surrounding the plate.
The spectral statistics for the flexural modes were in perfect
agreement with the GOE result in both cases whereas the
spectra of the in-plane modes seemed to be slightly less rigid
than the GOE.

The random matrix model of systems with an approxi-
mate symmetry modeled the experimental data on the spec-
tral statistics and wave function information from the mixing
experiment well. Both the level spacing distribution, theD3
statistic, and the distribution of widths were fitted consis-
tently by the numerical random matrix results. The qualita-
tive changes in the width distribution as the depth of the cut
was increased could thus be ascribed to the complex mixed
nature of the acoustic wave functions.

FIG. 14. TheD3 statistic for all the modes is fitted by minimizing the sum of the squared deviations between the data and the random
matrix result.~a! The plate is intact.~b! A total of 37.4 mg has been removed.~c! A total of 71.3 mg has been removed.~d! A total of 128.8
mg has been removed.
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The successful description of the statistics of the fre-
quency spectrum and the widths of the thin acoustic plates
may be extended to include other features. The presence of
both a kinetic energy term and an interaction term in the
random matrix model is natural not only in the modeling of
the mixing process but also to describe the Thouless energy
of acoustic resonators due to the localization of wave func-
tions. In this way the model represents an extension of the

simplest random matrix models, like the GOE, to include
several important features present in real physical systems.
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