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Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled
quantum dots
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Models of carrier dynamics in quantum dots rely strongly on adequate descriptions of the carrier wave
functions. In this work we numerically solve the one-band effective mass Schrödinger equation to calculate the
capture times of phonon-mediated carrier capture into self-assembled quantum dots. Comparing with results
obtained using approximate carrier wave functions, we demonstrate that the capture times are strongly influ-
enced by properties of the wetting layer wave functions not accounted for by earlier theoretical analyses.

DOI: 10.1103/PhysRevB.74.195342 PACS number�s�: 78.67.Hc, 73.63.Kv

I. INTRODUCTION

Size quantization in artificial quantum dots leads to the
possibility of controlling the available states of a material,
thus fundamentally influencing its electronic and optical
properties.1 Today, semiconductor quantum dot materials
have, e.g., been used to improve the properties of semicon-
ductor lasers2 as well as optical amplifiers.3 Stranski-
Krastanow cystal growth is the most common method of
realizing quantum dot materials.1 This method produces so-
called self-assembled quantum dots �QDs� consisting of na-
nometer sized protrusions on a thin wetting layer �WL�. In
optoelectronic applications of quantum dots, e.g., for lasers
and optical amplifiers, carriers are injected into the con-
tinuum �reservoir� states of the wetting layer, and subse-
quently relax into the bound quantum dot states. The time
scale of this so-called carrier capture relaxation process is
very important for the applications; a long capture time thus
limits the modulation response of lasers4 as well as the out-
put power of amplifiers.5 Understanding the dependence of
the capture time on the dot-wetting layer geometry as well as
the material parameters is therefore of significant interest for
describing the dynamics of such devices and suggesting im-
proved designs.

The capture process has been studied experimentally as
well as theoretically and has contributions from carrier-
carrier �Auger� as well as carrier-phonon scattering.6–14 Typi-
cally, capture times in the range of a few to several tens of
picoseconds are measured. Theoretically, the capture rate de-
pends on matrix elements involving wave functions corre-
sponding to initial extended �continuum� states in the wetting
layer and final bound �discrete� states of the quantum dot.
While the discrete bound state wave functions are usually
found by solving the effective mass Schrödinger equation in
the full potential �including the dot�, the continuum wave
functions are constructed using different approximations, in-
cluding simple plane waves.12 The plane wave approxima-
tion, however, does not take into account the influence of the
QD potential on the extended states, thus excluding effects
due to scattering off the dot potential, such as the existence
of quasibound states. To remedy this problem, the use of
so-called orthogonalized plane waves has been suggested.15

This more elaborate approach uses linear combinations of
plane waves and bound states to create wave functions that

are orthogonal to the bound dot states.6,11,14,15 In this paper
we present the results of capture time calculations using nu-
merically computed wave functions that take into account
the full dot and wetting layer potential. By comparing to the
cases of simple approximate wetting layer descriptions, we
show that the detailed form of the wetting layer wave func-
tions strongly affects the absolute value of the capture time
as well as its qualitative variation with dot size. Also we
demonstrate that the orthogonalized plane waves method
need not result in any improvement of the capture times
calculated. We specifically consider a rotationally symmetric
model of a self-assembled QD �Ref. 16� and limit ourselves
to the case of single-phonon-mediated carrier capture. We do
not consider contributions to the capture rate from Auger
processes and many-body effects, as the focus of the paper is
on how the chosen wave functions affect the calculated cap-
ture times. However, a comprehensive many-body approach
would also rely on the use of appropriate single particle
eigenstates;17 so the results may have wider implications
than just for the carrier capture problem considered. Exploit-
ing the rotational symmetry, the problem of solving the
Schrödinger equation is reduced to two dimensions, making
a finite element method �FEM� efficient. In this rotational
symmetry it is convenient to work with a basis set of Bessel
functions �BF�, rather than the usual plane waves represent-
ing free carriers in a WL without any QD. Similarly, the
orthogonalization method of Refs. 14 and 15 here translates
into the use of a set of orthogonalized Bessel functions
�OBF�.

The paper is organized as follows: Section II presents the
theory, including the dot and wetting layer geometry consid-
ered. The various descriptions of the wetting layer states are
presented and the expression for the carrier capture rate is
derived. Numerical results for the capture time are presented
in Sec. III, including its variation with dot radius and a de-
tailed comparison between the different wetting layer de-
scriptions. Finally, Sec. IV summarizes the main findings.

II. THEORY

A. Mathematical model

The rate of capture of an electron from the wetting layer
into a bound QD state depends on the envelope wave func-
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tions of the WL as well as the QD electrons. We shall use a
one-band approximation for the conduction band electrons
and ignore the effects of band mixing as well as the mass
anisotropy caused by strain in the wetting layer and the QD.
The envelope wave functions are therefore assumed to be
solutions to

−
�2

2
� · � 1

m*�r�
� ��r�� + V�r���r� = E��r� �1�

with the potential, V�r�, and the effective mass, m*�r�, being,
in general, functions of the three spatial coordinates, and E
being the eigenenergy. Following the ideas of Ref. 16 we
simplify the QD geometry by considering a single, conical
dot atop a wetting layer of the same material and embedded
in a different bulk material. The model is shown in Fig. 1.
The QD base radius is r0, h is the height of the QD and d is
the wetting layer thickness. R0 and Lz define the radius and
the height of the normalization volume. In this approxima-
tion the potential experienced by carriers in the wetting layer
will be rotationally symmetric, depending only on the radial
distance r and the vertical position z. The reduction of the
effective mass Schrödinger equation to a two-dimensional
problem allows for an efficient solution using numerical
methods. To this end we assume a separable form for the
solutions

��r,z,�� = ��r,z�eimz�, mz � Z �2�

with mz being the magnetic quantum number and the func-
tions ��r ,z� being the solutions to the eigenvalue equation

�−
�2

2r

�

�r
� r

m*

�

�r
� −

�2

2

�

�z
� 1

m*

�

�z
�

+ V�r,z� +
mz

2�2

2m*r2���r,z� = E��r,z� . �3�

B. Descriptions of WL states

Throughout the work, the bound QD states, �dn�, have
been calculated numerically using a finite element approach
on the full potential in Fig. 1 �including the dot�, whereas
three different methods have been used in describing the
continuum of WL states: a direct numerical calculation and
two different approximations that have been used in the lit-
terature so far. Below we discuss the three descriptions.

1. Finite element method

Numerical solution of the problem is carried out using the
commercial FEM package FemLab18 providing efficient
mesh generation and eigensolvers. In numerically solving
Eq. �3� we need to apply appropriate boundary conditions for
the domain in Fig. 1. From Eq. �2� it is evident that any
solution having magnetic quantum number mz�0 must be
zero at r=0, and by demanding differentiability at r=0 one
finds that the solutions corresponding to mz=0 must have
zero slope at r=0. Furthermore, we expect the eigenfunc-
tions to exhibit an exponential decay in the bulk material
away from the wetting layer, tending to zero at large dis-
tances. The application of a boundary condition at r=R0 im-
plies a quantization of the WL continuum. Effectively, this
means that we only perform a discrete sampling of the WL
states. As R0 tends to infinity the energy spacing between the
eigenfunctions tends to zero, and so, without loss of gener-
ality, we can set the eigenfunctions to zero at this boundary
as well, in accordance with the boundary conditions of the
bound state solutions. For the boundary at r=0 we thus have

��0,z� = 0, mz � 0

	 ��

�r
	

r=0
= 0, mz = 0

while for all other boundaries we have

��R0,z� = ��r,Lz/2� = ��r,− Lz/2� = 0. �4�

2. Bessel function approximations

Previous works12 have calculated carrier capture using
wetting layer states described by plane waves, thus ignoring
the influence of the dot potential on the free carriers. With no
dot atop, the problem turns into the familiar problem of a
quantum well with the potential and effective masses given
as

V�z� = 
0, �z� � d/2,

V , �z� � d/2,
�

m*�z� = 
mw
* , �z� � d/2,

mb
*, �z� � d/2,

�
where mw

* and mb
* denote the effective masses in the wetting

layer and bulk region, respectively. We shall generally de-
note the solutions to Eq. �1� with the above potential as �BF�,
defined as

�r�BF� = �r�kr,mz� = Jmz
�krr�eimz�Z�z� �5�

with Jmz
being the Bessel function of order mz, and

Z�z� = Ae−kbz, z � d/2,

B cos�kwz� + C sin�kwz� , �z� � d/2,

Dekbz, z � − d/2
�

with the WL and bulk wave vectors being in general non-
trivial functions of the effective masses as shown in the Ap-

FIG. 1. Schematic of a quantum dot in the form of a cone on top
of a wetting layer. The rotationally symmetric model allows for an
efficient two-dimensional numerical solution.
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pendix. For small values of kw and kb, corresponding to the
energies considered in the present work, the variations are
small and we have used a constant effective mass. Also, at
these energies, it suffices to include only the first subband
having no nodes in the z direction.

C. Orthogonalized Bessel functions

The orthogonalized plane wave �OPW� method used in
Ref. 14 is based on the assumption that there is a dense and
random distribution of QDs with wave functions �dn� which
are spatially nonoverlapping when they belong to different
QDs. From these localized wave functions one may construct
a set of functions

�k�o � ��k� − �
n

�dn��dn�k���Nk, �6�

where �k� is the WL state with momentum k in the absence
of QDs. The sum is over all QD states �dn� within the nor-
malization volume, and Nk is a normalization factor. It was
shown in Ref. 14 that the functions in Eq. �6� are mutually
orthogonal and also orthogonal to the QD wave functions,
i.e., properties that are fulfilled by the exact WL wave func-
tions. The set of functions in Eq. �6� are therefore called
OPW functions. They can be expanded as

�k�o = �
m

�− i�me−im��kr,m�o �7�

where �kr ,m�o is the orthogonalized Bessel function

�kr,m�o � ��kr,m� − �
n

�dn��dn�kr,m���Nk. �8�

The discussion in this paper shows that the capture rate ob-
tained by using OPW instead of the exact solutions is only a
good approximation for small QDs.

D. Rate expression

The rate of carrier capture from an initial wetting layer
state �w� to an empty QD state �d� by emission of a LO
phonon can be approximated by Fermi’s golden rule as12

R =
2	

�
�n̄ + 1��
0�2�

w
���Ed + ��LO − Ew�f�Ew�

 �
�

��d���
*�r��w��2

qr
2 + qz

2 � , �9�

with

�
0�2 = e2��LO

2�0�* . �10�

The expression is based on the Fröhlich Hamiltonian for the
electron LO-phonon interaction. The sums in Eq. �9� run
over w= �kr ,mw� and �= �qr ,qz ,mph�, where mw ,mph are the
magnetic quantum numbers for the WL electron and phonon,
and qr ,qz are the radial and transverse momenta of the pho-
non. The LO phonon is assumed to be dispersionless with
energy ��LO. The average number of phonons is given by

n̄= �exp���LO/kBT�−1�−1. In Eq. �10� �0 is the vacuum per-
mitivity constant and ��*�−1=��

−1−�r
−1, �r ���� being the static

�high frequency� dielectric constant. The wave function of
the emitted phonon is given as

���r� = bJm�qrr�eiqzzeim�, �11�

where b is a constant which normalizes ���r� in the normal-
ization volume. Using the general form for the solutions in
Eq. �2�, it is evident that the matrix element in Eq. �9� fulfills
the identity

�d���
*�r��w� = bMd,w�md+mph,mw

�12�

with md being the magnetic quantum number of the QD state
and

Md,w = 2	� �d
*�r,z�Jmw−md

�qrr�e−iqzz�w�r,z�rdrdz .

The sums in Eq. �9� can be converted into integrals by intro-
ducing the corresponding densities of states. Using b2

=qr / �2R0Lz�, the expression �9� reduces to

R =
�n̄ + 1��
0�2R0

	2�
f�Ẽ�

1

2kr

dkr
2

dE
 �

mw

� �
0

�

dqrdqz

qr�Md,w�2

qr
2 + qz

2 ,

�13�

where Md,w and dkr
2 /dE are derived for Ew= Ẽ�Ed+��LO.

Note that the expression above gives the rate of capture into
a bound state with a given spin. The apparent dependence on
the radius of the normalization volume R0 vanishes since the
wetting layer electron states �w� are normalized. Finally, the
capture times, �, are calculated from the capture rate as �
=1/R.

If we use the OPW functions Eq. �6� for the WL states �w�
in Eq. �9� it is only the OBF states that contribute since

�d���
*�r��k�o = �d���

*�r��kr,md + mph�o. �14�

Furthermore, since the QDs are assumed to be nonoverlap-
ping it is only the sum over states of the considered QD that
needs to be included in Eq. �8�. The energy Ew of the state
�k�o is taken to be that of the plane wave as in the OPW
method.

The use of Fermi’s golden rule implies a perturbative ap-
proach for evaluating the effects of electron-phonon cou-
pling, thus assuming weak coupling and a continuum of in-
teracting states. However, it has been pointed out that these
assumptions may be invalidated when considering the inter-
action of discrete electronic states in quantum dots with
phonons,10,19 in which case one should rather describe the
excitations in terms of polarons. This is particularly impor-
tant when both the initial and final electronic states are
discrete10 or have a resonant characteristic, as in the case of
capture from a quasibound state in the wetting layer.20 Re-
cent numerical results of a quantum kinetic description of
carrier-phonon interactions also indicate an important role of
polarons on the process of carrier capture from continuum
wetting layer states.21 Still, those simulations use wetting
layer wave functions described by orthogonalized plane
wave states, which is an underlying assumption that needs to
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be investigated. The combination of the many-body approach
with the use of correct wetting layer wave functions is, how-
ever, outside the scope of this paper.

III. RESULTS

A. Capture time calculations

Throughout the work, unless otherwise noticed, param-
eters are assigned the following values: V=697 meV, corre-
sponding to the energy difference in the conduction bands of
an InAs wetting layer in a GaAs bulk as used in Ref. 16.
Effective masses have the values mw

* =0.027m0 and mb
*

=0.0665m0 �m0 being the free electron mass� and correspond
to those listed in Ref. 1. The phonons are assumed to be
nondispersive, having the energy ��LO=35 meV in accor-
dance with the value used by Ref. 12. In calculating the
Fermi function in Eq. �13� we have assumed a constant WL
carrier density n=1011 cm−2. The parameters characterizing
the geometry are R0=400 nm, Lz=60 nm and the ratio of dot
base radius to height is kept constant at r0 /h=4.62 as in Ref.
16. We have carried out calculations for WL thicknesses of
d=2 nm and d=4 nm, corresponding to Refs. 14 and 16. For
small values of kw, corresponding to the energies in the
present work, the variations in the effective mass, as dis-
cussed in the Appendix, are small and we have used a con-
stant effective mass. The values used in the calculations are
m*=0.0343m0 �d=2 nm� and m*=0.0295m0 �d=4 nm�.

Using Femlab, the bound dot state is found as well as the
relevant continuum wetting layer state having an energy

closest to Ẽ=Ed+��LO. Note that the finite value of R0 re-
sults in a discrete sampling of wetting layer energies, in gen-

eral not including Ẽ. However, the large value of R0 used in
calculations minimizes the error made in choosing the nu-

merical solution closest to Ẽ. The value of Lz used in calcu-
lations is large enough that the error made when invoking the
Dirichlet boundary conditions at z= ±Lz /2 is negligible. In
general it has been tested that the numerical solutions have
converged for the chosen values of the numerical parameters.
In practical calculations, the contribution to the capture rate
from WL states of different mz converges rapidly to zero, so
that it suffices to calculate rates from WL states having
�mz��10. This demonstrates the efficiency of fully utilizing
the rotational symmetry in the calculations.

Figure 2 shows the calculated energies of the bound states
as function of QD radius, r0. The zero point of the energy is
taken as the bottom of the InAs conduction band. The solid
lines are for a wetting layer thickness d=2 nm while the
dashed lines correspond to d=4 nm. Squares and circles in-
dicate mz=0 and mz=1, respectively. The uppermost hori-
zontal, dashed line indicates the lowest possible energy Ez of
a wetting layer state �d=2 nm�. The next line, displaced by
��LO defines the energy range from which carriers can be
captured into the dot by phonon interaction. The two lowest
horizontal lines correspond to d=4 nm.

In Fig. 3 we show the radial probability, P�r�=r���r ,z��2,
for the bound state in a dot of radius r0=6.25 nm and WL
thickness d=2 nm. It is evident that a substantial part of the
electron is located outside the dot area. For decreasing dot

sizes the electron is gradually squeezed out of the dot and
eventually becomes unbound.

Figure 4 shows calculated capture times for dot radii r0
� �3.5;16�. The wetting layer wave functions are determined
numerically using Femlab. It is seen that there exist bands of
dot radii where capture is energetically allowed, in accor-
dance with previous results.12 Generally the capture times
increase at both ends of these bands. For small radii the
reason is that the QD states extend more and more into the
wetting layer, as mentioned above, and the matrix element in
Eq. �13� tends to zero.

Enlarging the dot radius results in a lowering of the en-
ergy of the bound state, and thus a lowering of the energy of
the relevant WL states. As the energy approaches the WL
band edge, the WL state is expelled from the dot volume. It
can be shown that the product R0��w�r ,z��2 /kr decreases as
�ln�krr0��−2 in the dot region for kr→0. The overlap between
the WL state and the bound state becomes small, causing the

FIG. 2. �Color online� Energies of the bound states as function
of QD radius, r0. Solid lines denote wetting layer thickness d
=2 nm while the dashed lines correspond to d=4 nm. The upper-
most pair of horizontal, dashed lines define the interval in which
capture can take place when d=2 nm, while the two lower lines
correspond to d=4 nm.

FIG. 3. �Color online� Radial probability density of the bound
state at r0=6.25 nm and d=2 nm. The state has energy E
=370 meV.
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capture times to increase. We note that the increase is not due
to depletion of the density of states as for a quantum dot in
bulk material.12 The degree to which the wetting layer states
are displaced from the QD area depends on the specific ge-
ometry and on the nature of the relevant wetting layer states.

B. Comparison of WL descriptions

In Fig. 5 we compare capture times from the WL into the
QD ground state �mz=0� calculated using the three different
descriptions �FEM, BF, and OBF�. For small radii, r0
�4.5 nm, the calculated capture times are identical for the
three WL descriptions, while for larger radii significant dif-
ferences are observed. In the interval 4.5 nm�r0�6.5 nm
the capture times for the FEM solutions are almost constant.
The OBF solutions give, on the other hand, capture times
that increase with dot size in this range, whereas the capture
times of the BF solutions decrease. For larger radii the FEM
times increase due to the expulsion of the wetting layer
states, as mentioned above. This expulsion effect is not ac-
counted for by the BF approximation and only to some ex-
tent by the OBF approximation.

Figure 6 shows radial probability densities �at r0
=6.25 nm and z=0 nm� for the QD state and the three WL
states corresponding to magnetic quantum number mz=0 and

energy Ẽ=Ed+��LO. The figure illustrates how the larger
overlap between the BF and the QD state can explain the
smaller capture times as compared to the OBF. Also, it illus-
trates that neither of the two approximations resembles the
FEM solution. Although the mz=0 wetting layer states con-
tribute the most to the capture rate for this geometry, care
should be taken since there are also contributions to the rate
from wetting layer states with mz�0, cf. Eq. �13�.

The reason for the intermediate decrease in capture times,
seen for the FEM WL states �for d=4 nm� in Fig. 4, is evi-
dent from Fig. 2, showing the formation of a second band of
bound QD states at r0�14 nm �d=4 nm�. At r0�14 nm the
increase in QD size affects the WL states by drawing them
closer to the dot as r0 is increased, eventually resulting in the
second bound state. These nearly, or quasi, bound states have
wave functions partially confined in space to the volume of
the dot, resulting in larger matrix elements and smaller cap-
ture times. This may indeed be a situation in which Fermis
golden rule may be violated due to strong coupling between
the QD bound state and the quasibound state.20 The actual
capture times in this range of dot radii may therefore be
inaccurate, but the effect of the quasibound states is clear.
Both the BF and the OBF approximations fail to show this
effect, since multiple scattering off the dot potential is ne-
glected.

We emphasize that the OBF approximation in general
does not seem to result in more accurate capture times than
the BF approximation for larger radii. Nor is there any rea-
son why it should, as the OBF wave functions are no closer
to the true eigenstates of the Hamiltonian than are the BF
wave functions.

IV. CONCLUSION

Calculations of phonon mediated carrier capture in self-
assembled quantum dots have been carried out using the fi-
nite element method to obtain the electronic wave functions
involved in the transitions. In this way capture times have

FIG. 4. �Color online� Capture times calculated with numeri-
cally determined wetting layer wave functions �FEM�. Circles indi-
cate capture to a bound state with mz=0 and crosses to a state with
mz=1.

FIG. 5. �Color online� Capture times for WL thickness d
=2 nm into the QD ground state �mz=0�, calculated with the three
wetting layer descriptions �FEM, BF, and OBF�

FIG. 6. �Color online� Radial probability densities �at r0

=6.25 nm and z=0 nm� for the QD state and the three WL states
corresponding to magnetic quantum number mz=0 and energies
Ew=Edot+��LO.
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been calculated as a function of dot radius for two wetting
layer thicknesses. These capture times have been compared
to the results obtained using Bessel function solutions for the
wetting layer without quantum dot as well as orthogonalized
Bessel functions, corresponding to approaches taken in the
literature so far.

The comparison has shown that neither of the two ap-
proximations lead to an accurate description valid in the full
range of radii, each yielding approximately the same abso-
lute error. The capture times for the finite element method
solutions are found to increase rapidly at large radii. This
reflects that wetting layer states with energies close to the
band edge are squeezed out of the quantum dot area, a fea-
ture accounted for by neither the Bessel function nor the
orthogonalized Bessel function approximations. We conclude
that in general the calculations of the characteristic capture
times for phonon mediated carrier capture from a wetting
layer into a quantum dot depend critically on the approxima-
tions used for the wetting layer wave functions.
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APPENDIX

The WL and bulk wave vectors are in general given as

�kw = �2mw
* E − �2kr

2,

�kb = �2mb
*�V − E� + �2kr

2. �A1�

From the symmetry of the problem it follows that two sets
of solutions exist corresponding to symmetric �in the z direc-
tion� and antisymmetric modes, respectively. Demanding

continuity and differentiability at the z= ±d /2 boundary
leads to the conditions

mw
* kb

mb
*kw

= tan �, symmetric modes �C = 0� ,

−
mw

* kb

mb
*kw

= cot �, antisymmetric modes �B = 0� ,

where �=
kwd
2 . In calculations of the rate of carrier capture the

density-of-states factor dE /dkr
2 enters. From the above equa-

tions and Eqs. �A1� it follows that

dE

dkr
2 =

�2

2mw
* mb

*

�mw
* �2 cos2 � + �mb

*�2�sin2 � + � tan ��
mw

* cos2 � + mb
*�sin2 � + � tan ��

.

�A2�

This can be written in the form

dE

dkr
2 =

�2

2m*�kw�
�A3�

which defines the effective mass m*=m*�kw� as a nontrivial
function of the wave number in the wetting layer, kw. For the
special case of mb

*=mw
* =m* we recover the well-known rela-

tion dE /dkr
2=�2 /2m*.

By Eq. �A1�,

�2�kw
2 + kb

2� = 2mb
*V − 2�mb

* − mw
* �E , �A4�

i.e., there are no WL subbands for

E �
mb

*V

mb
* − mw

* . �A5�

This causes an effective mass dispersion, which becomes
stronger for smaller WL thickness.
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