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Numerical study of swirling flow in a cylinder with rotating top and bottom
Wen Zhong Shen,a� Jens Nørkær Sørensen, and Jess A. Michelsen
Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark

�Received 17 November 2005; accepted 11 April 2006; published online 6 June 2006�

A numerical investigation of oscillatory instability is presented for axisymmetric swirling flow in a
closed cylinder with rotating top and bottom. The critical Reynolds number and frequency of the
oscillations are evaluated as function of the ratio of angular velocities of the bottom and the top
��=�bottom/�top�. Earlier linear stability analysis �LSA� using the Galerkin spectral method by
Gelfgat et al. �Phys. Fluids, 8, 2614 �1996�� revealed that the curve of the critical Reynolds number
behaves like an “S” around �=0.54 in the co-rotation branch and around �=−0.63 in the
counter-rotation branch. Additional finite volume computations, however, did not show a clear S
behavior. In order to check the existence of the S shape, computations are performed using an
axisymmetric finite volume Navier-Stokes code at aspect ratios ��=H /R� 1.5 and 2.0. Comparisons
with LSA at �=1.5 show that the S shape does exist. The S shape of the stability diagram predicted
by LSA is thus confirmed by a finite-volume based Navier-Stokes solver. The additional
computations at aspect ratio �=2 show that the curve of critical Reynolds number has a wider S
shape in the co-rotating branch for � about 0.7 whereas a sharp “beak” appears in the
counter-rotating branch for � approximately −0.5. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2204634�

I. INTRODUCTION

The flow in a closed cylindrical container with a rotating
lid has been studied both experimentally and computation-
ally for more than three decades. The first experiments by
Vogel1 and later by Ronnenberg2 and Escudier3 showed the
formation of a concentrated vortex core along the center axis.
Based on their pioneering works, a lot of experimental and
numerical studies have later been carried out. Among those,
Spohn et al.4 used the visualization techniques of electrolytic
precipitation and fluorescent dye and showed that vortex-
breakdown bubbles in the container flow are open and asym-
metric at their downstream end in the regime of axisymmet-
ric bubbles. Recently, Sotiropoulos et al.5 used planar laser-
induced fluorescence technique and showed the existence of
chaotic behavior in the Lagrangian transport within the
bubbles for flows that are steady from the Eulerian stand-
point. In computations, there are numerous investigations of
the container problem, for example, Lopez,6 Brown and
Lopez,7 Daube,8 Lopez and Perry,9 Sørensen and
Christensen,10 Watson and Neitzel,11 Gelfgat et al.,12 Tsitver-
blit and Kit,13 Sotiropoulos and Ventikos,14 Sotiropoulos
et al.,15 Blackburn and Lopez,16 Serre and Bontoux,17 and
Blackburn.18 All these studies were able to capture the flow
evolution observed in the laboratory.

Apart from one side rotation, rotating simultaneously the
other end wall can give the problem more new insights and
parametrically studying stability, bifurcations and flow struc-
tures can give some ideas on how to control vortex break-
down.

The influence of co- and counter-rotation of the other
end wall of the cylinder on vortex breakdown was studied
experimentally by Bar-Yoseph et al.,19 Gautier et al.,20 and
Fujimura et al.21 In computations, Valentine and Jahnke22

and Lopez23 studied the case of co-rotating end walls with
the same angular velocity for steady and unsteady swirl flow.
Nore et al.24 studied the case of counter-rotating end walls
for steady and unsteady swirl flow and determined that onset
of three dimensionality for exactly counter-rotating end walls
takes place at a Reynolds numbers of approximately 350.

a�Author to whom correspondence should be addressed. Fax: �45� 45 93 06
63. Electronic mail: shen@mek.dtu.dk FIG. 1. Schematic representation of the flow geometry.
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Gelfgat et al.25 performed a parametric investigation of the
oscillatory instability for the axisymmetric flow case at an
aspect ratio of 1.5. From their linear stability analysis, they
found, at a ratio of angular velocities � about 0.54 in the
co-rotation branch, the existence of three distinct critical
points with different critical frequencies. The curve of the
critical Reynolds number around �=0.54 looks like an “S.”
In the counter-rotation branch, the same phenomenon was
observed at a ratio of angular velocity � approximately
−0.63. In the same article, finite volume computations were
also performed. From the computations, using three different
meshes, no such S shape of bifurcation could be seen. What
happens here? Is it the linear stability method or the finite
volume method that fails to predict the physics?

The focus of the present article is to investigate numeri-
cally the previous phenomenon using a code based on an
axisymmetric finite volume method. We here present com-
parative results for the studied case of �=1.5 as well as new
results for �=2.0. This article is organized as follows. In Sec.
II, the numerical method is described. The validation of the
code is shown in Sec. III. Numerical results and discussions
are presented in Secs. IV–VI.

II. FORMULATION OF THE PROBLEM AND
NUMERICAL METHOD

Consider a circular cylinder of radius R and height H
filled with an incompressible Newtonian fluid of constant

density � and kinematic viscosity �. The top and the bottom
of the cylinder are rotating with angular velocities �top and
�bottom, respectively �see Fig. 1�. The various flow regimes
are determined by the Reynolds number, Re=�topR

2 /�, the
aspect ratio, �=H /R, and the ratio of angular velocities, �

=�bottom/�top.
The flow is governed by the unsteady incompressible

Navier-Stokes equations. Because of the simple geometry of
the cylinder, it is natural to formulate the equations in cylin-
drical coordinates. The resulting Navier-Stokes equations are
solved by a predictor-corrector method based on a cell-
centered finite-volume/multiblock strategy.26,27 In the predic-
tor step, the momentum equations are discretized using a
second-order backward differentiation scheme in time and
second-order central differences in space, except for the con-
vective terms that are discretized by the QUICK upwind
scheme. As all variables are defined at cell centers, no special
treatment is needed for the singularity problem at the center
axis. In the corrector step, the new Rhie-Chow interpolation
developed by Shen et al.28 and the new SIMPLE-C scheme on
collocated grids29 are used in order to avoid numerical oscil-
lations from pressure decoupling. The obtained pressure
Poisson equation is solved by a five-level multigrid tech-
nique. For more details about the numerical technique, the
reader is referred to Refs. 26–29.

FIG. 2. Streamline plot of swirling
flow in a cylinder with co-rotating top
and bottom at �=2, �=0.7, and Re
=4000 on �a� a medium mesh consist-
ing of 96�128 cells and �b� a fine
mesh consisting of 192�256 cells.

FIG. 3. Plot of velocity amplitudes
and square amplitudes for swirl flow
in a closed cylinder with counter-
rotating top and bottom ��=−0.5�. �a�
Same velocity component at two dif-
ferent positions and �b� three velocity
components.
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III. VALIDATION OF THE NUMERICAL CODE

To validate the code, swirling flows in a cylinder with
co- and counter-rotating end walls are computed and ana-
lyzed at an aspect ratio of �=2. As parameter studies at
various ratios of angular velocities, �, and Reynolds numbers
are needed, a standard mesh of medium size is used in most
of the computations. Based on experience gained from pre-
vious numerical studies10 a standard mesh �s� is defined that
consists of 96 cells in radial direction and 128 cells in axial
direction with stretching toward the walls and the center
axis. In order to demonstrate mesh independence, a finer
mesh �f� in which the number of cells is doubled in each
direction, i.e., 192�256 cells, is also used. To evaluate the
influence of the grid, the code is validated for the case
of co-rotation at a ratio of angular velocities �=0.7 and a
Reynolds number of 4000.

After a long transient, a steady state is reached. In Fig. 2
streamlines are plotted on the standard mesh and on the fine
mesh. From the figure, only small differences can be seen.
Defining the difference of maximum and minimum values of
the stream function � as D=�max−�min and the relative error

between two meshes as Er= �Ds−Df� /Df, the relative error is
found to be 0.896%. Therefore the standard mesh of medium
size is deemed adequate for the present investigations.

IV. DETERMINATION OF CRITICAL REYNOLDS
NUMBER

Assuming that the transition from a steady to an un-
steady regime sets in as a supercritical Hopf bifurcation, the
critical Reynolds number can be determined from the ampli-
tude of the velocity components that decreases linearly with
the Reynolds number in the unsteady regime. Thus, the criti-
cal Reynolds number can be determined from

Recr = Re1 −
A1

2

A2
2 − A1

2 �Re2 − Re1� , �1�

where subscripts 1 and 2 refer to two different points in the
unsteady region that are located close to the critical Reynolds
number. In Fig. 3 the development is shown of the amplitude
and the square of the amplitude of velocity components close

FIG. 4. Plot of velocity amplitudes
and square velocity amplitudes for co-
rotating top and bottom. �a� �=0.5 and
�b� �=0.8.

FIG. 5. Plot of velocity amplitudes and square velocity amplitudes for co-
rotating top and bottom at �=0.7.

FIG. 6. Stability diagram of oscillatory instability in a cylinder of aspect
ratio of 1.5 with rotating top and counter-rotating bottom.
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to the critical point at �=2 and �=−0.5. The left-hand panel
of Fig. 3 shows the distribution of amplitudes and square
amplitudes for the u component at two different positions,
�r ,z�= �0.25,0.5� and �r ,z�= �0.5,0.5�, and the right-hand
panel of Fig. 3 shows the distribution of amplitudes and

square amplitudes for all three velocity components at
�r ,z�= �0.5,0.5�. From Fig. 3, it is seen that the square of the
velocity amplitude decreases almost linearly with the
Reynolds number �Re�. Within numerical accuracy, the dif-
ferent curves predict almost the same critical Reynolds
number.

In the co-rotating branch, the first bifurcation from a
steady to an unsteady flow regime is also governed by a
supercritical Hopf bifurcation. This Hopf bifurcation stops at
the left-top end of the S ���0.663� and appears again after
the S shape ��	0.74� �see also Fig. 13�. Figure 4 shows the
development of the amplitude and the square of the ampli-
tude of velocity components close to the critical point. From
Fig. 4, we can see that the square amplitude decreases mo-
notonously with the Reynolds number. In the top region of
the S shape �0.663���0.73� the bifurcation, however, ap-
pears to differ from a supercritical Hopf bifurcation. The
velocity amplitude and the square velocity amplitude are
shown in Fig. 5. From Fig. 5, it is seen that both the velocity
amplitude and the square velocity amplitude suddenly drops
and exhibits a discontinuous behavior at the critical Rey-
nolds number. Although we do not study the phenomenon
further, it is most likely a subcritical Hopf bifurcation that
sets in. In order to determine the critical Reynolds number
for this bifurcation, a lot of computations at Reynolds num-
bers close to the critical Reynolds number were carried out.

FIG. 7. Stability diagram of oscillatory instability in a cylinder of aspect
ratio of 1.5 with rotating top and co-rotating bottom.

FIG. 8. Velocity signals at �r ,z�
= �0.25,0.375� for swirl flow in a
closed cylinder with an aspect ratio
1.5 and co-rotating end walls of �
=0.58. �a� Re=4403; �b� Re=4405; �c�
Re=4410; and �d� Re=4415.
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V. COMPARISON WITH LINEAR STABILITY ANALYSIS

In order to check the existence of the S shape, computa-
tions are first performed at an aspect ratio �=1.5, corre-
sponding to the case considered by Gelfgat et al.25 Our at-
tention, however, is mainly focused on the ratio of angular
velocities � in the regions where the S shape appears. Figure
6 shows stability diagrams of the critical Reynolds number in
the counter-rotating region computed by the present finite
volume code and the linear stability analysis �LSA� of
Gelfgat et al.25 From Fig. 6, excellent agreement between the
present method and linear stability analysis of Gelfgat is
found and the S shape is very well captured by our finite
volume method.

Figure 7 shows stability diagrams of the critical
Reynolds number in the co-rotating region. From Fig. 7, the
S shape is seen to be captured by our finite volume code, but
the width of the S shape is smaller than that of LSA. Before
reaching the S, the two stability curves are in good agree-
ment. After the S shape, the critical Reynolds number com-
puted by the present code is smaller than that predicted by
LSA. One interesting point found during the computations is
that a stability spot is found at �=0.58. The flow changes
state from steady to unsteady when the Reynolds number
reaches 4404. The flow again becomes steady when the

Reynolds number is increased to 4408, and stays steady until
the Reynolds number exceeds 4413.5. After this point, the
flow becomes unsteady. This phenomenon can be seen from
velocity fluctuations at different positions �see Fig. 8�.

VI. SWIRL FLOW AT ASPECT RATIO 2

To supplement the computations at �=1.5, computations
were performed at an aspect ratio �=2. First the influence of
counter-rotation on the transition from steady to unsteady
flow is studied. The dependence of the critical Reynolds
number, Recr, on the ratio of angular velocities, �, is plotted
in Fig. 9�a�. From Fig. 9�a�, we can see that when increasing
slightly the counter-rotating angular velocity, i.e., by letting �
vary from zero to a small negative value, the critical Rey-
nolds number decreases slightly. If counter-rotation increases
more, the critical Reynolds number starts to increase rapidly,
implying that the steady region for a moderate counter-
rotation has been enlarged. Further increasing counter-
rotation, the size of the steady region reaches a maximum
and then decreases, forming a sharp “beak” around �=−0.5.
The critical Reynolds number stays flat after the beak. The
reduced frequency is defined as 
=2�f /�top, where f �Hz�
is the frequency of oscillation. The critical reduced fre-
quency, 
cr, as a function of the ratio of angular velocities is
also plotted in Fig. 9�b�. From Fig. 9�b�, one can see that the

FIG. 9. Stability diagrams of oscilla-
tory instability in a cylinder of aspect
ratio 2 with rotating top and counter-
rotating bottom, �a� critical Reynolds
number and �b� critical frequency.

FIG. 10. Iso-lines of stream function. Counter-rotation at Re=3000 and
−0.49	�	−0.51. �a� �=−0.49; �b� �=−0.50; and �c� �=−0.51.

FIG. 11. Iso-lines of stream function. Counter-rotation at Re=2200 and
−0.51	�	−0.53. �a� �=−0.51; �b� �=−0.52; and �c� �=−0.53.

064102-5 Numerical study of swirling flow Phys. Fluids 18, 064102 �2006�

Downloaded 10 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



frequency of oscillation changes at �=−0.02 and �−0.07
from 0.23 to 0.16 and back from 0.16 to 0.22, respectively,
signalling the appearance of a different disturbance mode in
this range. Similar changes of the dominant mode were re-
vealed by Gelfgat et al.25 Note that at �=−0.02, the dominant
reduced frequency is 0.23, but that the signal also contains a
lower frequency component of 0.16. At �=−0.07, the same
phenomenon is observed. The reduced frequency follows an-
other branch in the region close to the beak of the critical
Reynolds number �−0.51���−0.4�. If the counter-rotating
angular velocity is further increased, the frequency increases
slightly and returns to the original branch.

In order to clarify the behavior of the bifurcation around
the beak of critical Reynolds number at �=−0.51, it is in-
structive to study the resulting flow structures. First, at a
Reynolds number of 3000, the parameter � is varied from
−0.49 to −0.51. The corresponding streamlines are plotted in
Fig. 10. From the picture, one can see that the intensity of the
middle bubble as well as the size of the separation zone
along the bottom edge changes slightly. Second, at a Rey-
nolds number of 2200, the ratio of angular velocities of
counter-rotation is varied from −0.51 to −0.53. From Fig. 11,
we can see that there is no middle bubble and that the bottom
edge separation zone is bigger than the one in Fig. 10. From

a topological point of view, two flow patterns are essentially
different. The difference can also be found from the stability
curve of critical frequency in Fig. 6 and they do simply not
belong to the same branch. The unsteady flow structure is
shown in Fig. 12. From the picture, we can see that the
bottom edge separation size changes during one period and
the middle bubble close to the center axis appears and then
disappears. This situation can be considered as a mixed pic-
ture of the situations in Figs. 10 and 11. If the counter-
rotating velocity is increased further, the bottom bubble
increases smoothly to end up as a symmetrical pattern at
�=−1.

In the following, the influence of co-rotating on the tran-
sition from steady to unsteady flow will be studied. The de-
pendence of the critical Reynolds number, Recr, on the ratio
of angular velocities, �, is plotted in Fig. 13�a�. From Fig.
13�a�, we can see that increasing the co-rotating angular ve-
locity increases the steady Reynolds number region. At an-
gular velocities about �=0.7, an S shaped diagram is found.
This S shape of critical Reynolds numbers was first found by
Gelfgat et al.25 using linear stability theory in the case of a
swirl flow in a closed cylinder with an aspect ratio of 1.5.
Unfortunately, the structure could not be reproduced by their
finite volume computations. The phenomenon at �=0.7 is

FIG. 12. Stream line plots for unsteady swirl flow in a closed cylinder with counter-rotating bottom at Re=3250, and �=−0.52. Four different time instants
in a period �a� t= t0; �b� t= t0+T /4; �c� t= t0+T /2; and �d� t= t0+3T /4.

FIG. 13. Stability diagrams of oscilla-
tory instability in a cylinder of aspect
ratio 2 with rotating top and co-
rotating bottom, �a� critical Reynolds
number and �b� critical frequency.
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that the flow first becomes unsteady at a Reynolds number
above 2870 and stays unsteady for Reynolds numbers up to
3418. The flow then becomes steady when the Reynolds
number is further increased in the range from 3418 to 4398.
The flow is fully unsteady at Reynolds numbers above 4398.

The critical frequency in Fig. 13�b� increases continu-
ously to 
cr=0.379 for ratios of angular velocities up to 0.4
and thereafter it is shifted to another branch �
cr=0.316�. It
then stays on the same branch as long as the ratio � remains
in the first half �lower side� of the S. The frequency changes
at �=0.67 in the second half �upper side� of the S into a
lower frequency �
cr=0.273�. Shortly after �=0.69, a double
harmonics appears in the signal. At �=0.75, this double har-
monic frequency becomes the basic frequency. Thus, the
lower frequency created at �=0.67 disappears at �=0.75.
After that, another branch appears for �	0.8 with a slightly
lower frequency �
cr=0.34�. At �=0.9, the critical frequency
appears on a branch with a high value �
cr=0.518�, where it
stays continuously until �=1 �
cr=0.542�.

To clarify in detail the flow behavior around the bifurca-
tions it is instructive to look at the development of the flow
structures. When increasing slightly the co-rotating velocity,

the size of the middle bubble close to the center axis in-
creases for finally to detach from the center axis. At the same
time, a small separation zone appears along the edge of the
bottom wall. If the co-rotating angular velocity is further
increased up to �=0.7, we see from Fig. 14 that the lower
separation zone increases and pushes the upper bubble back
toward the top wall. At �=0.7, the flow becomes unsteady at
a Reynolds number of 2900. In Fig. 15, the stream function
is plotted for one period. From Fig. 15, it is seen that the
unsteadiness of the swirl flow is mainly caused by the struc-
ture in the lower side of the cylinder. The flow again stays
steady for Reynolds numbers of 3500, 3800, 4000, and 4300
�see Fig. 16�. From Fig. 16, we see that the flow structure is
nearly identical at these Reynolds numbers. The unsteady
flow pattern at a Reynolds number of 4400 is shown in Fig.
17. From Fig. 17, the flow is seen to be dominated by large-
scale fluctuating structures from both the top and the bottom
of the cylinder.

For �	0.8, all flow patterns have a similar structure.
The lower side bubble increases in size when the co-rotating
velocity increases and the flow becomes symmetrical at
�=1.

VII. CONCLUSIONS

The stability of steady flow and the onset of the oscilla-
tory instability were studied by using a finite volume code
for a closed cylinder with rotating top and bottom. From our
computations at the same aspect ratio �=1.5 as the earlier
investigations by Gelfgat et al., the S shape of the stability
curve is confirmed in agreement with the linear stability
analysis. At an aspect ratio �=2, our results show that the
critical Reynolds number curve has a beak shape in the
counter-rotation region and a much wider S shape in the
co-rotation region. From linear stability theory for a cylinder
at �=1.5 the S shape did exist in both co-rotation and
counter-rotation branches of the stability curve of the critical

FIG. 14. Streamline plots of swirl flow in a closed cylinder with co-rotating
bottom at: �a� Re=3300 and �=0.3; �b� Re=3250 and �=0.5; and �c�
Re=2800, �=0.7.

FIG. 15. Stream line plots for unsteady swirl flow in a closed cylinder with co-rotating bottom at Re=2900, �=0.7. �a� t= t0; �b� t= t0+T /4; �c� t= t0+T /2; and
�d� t= t0+3T /4.
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Reynolds number but the width of the S shape in co-rotation
branch is overpredicted. This transformation of the S shape is
caused by the change in aspect ratio from 1.5 to 2 and there-
fore the corresponding topological behavior of the transition
is different.

The bifurcation from a steady to an unsteady regime is
governed by Hopf bifurcations in most of the counter and
co-rotating regions. In a region close to the top of the S
shape, however, a discontinuous bifurcation has been de-
tected.

FIG. 16. Streamline plots of steady flow in a closed cylinder with co-rotating bottom at �=0.7: �a� Re=3500; �b� Re=3800; �c� Re=4000; and �d� Re
=4300.

FIG. 17. Stream line plots for unsteady swirl flow in a closed cylinder with co-rotating bottom at Re=4400, �=0.7. �a� t= t0; �b� t= t0+T /8; �c� t= t0+T /4; �d�
t= t0+3T /8; �e� t= t0+T /2; �f� t= t0+5T /8; �g� t= t0+3T /4; and �h� t= t0+7T /8.
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