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Frequency response in surface-potential driven electrohydrodynamics
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DK-2800 Kongens Lyngby, Denmark
�Received 29 September 2005; published 24 March 2006�

Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit
description of the electrohydrodynamics in a binary electrolyte confined by a plane surface with a modulated
surface potential. We consider the case with a spatially constant intrinsic surface capacitance where the net
flow rate is, in general, zero while harmonic rolls as well as time-averaged vortexlike components may exist
depending on the spatial symmetry and extension of the surface potential. In general, the system displays a
resonance behavior at a frequency corresponding to the inverse RC time of the system. Different surface
potentials share the common feature that the resonance frequency is inversely proportional to the characteristic
length scale of the surface potential. For the asymptotic frequency dependence above resonance we find a �−2

power law for surface potentials with either an even or an odd symmetry. Below resonance we also find a
power law �� with � being positive and dependent of the properties of the surface potential. Comparing a tanh
potential and a sech potential we qualitatively find the same slip velocity, but for the below-resonance fre-
quency response the two potentials display different power-law asymptotics with �=1 and ��2, respectively.

DOI: 10.1103/PhysRevE.73.037302 PACS number�s�: 47.65.�d, 47.32.�y, 47.70.�n, 85.90.�h

I. INTRODUCTION

The ability to manipulate liquids on microfluidic chips is
essential to the functionality of micrototal analysis systems
�1� and recently there has been quite some interest in utiliz-
ing ac electrical surface potentials for pumping, manipulat-
ing, and mixing electrolytes. For an overview of electrohy-
drodynamics and ac electro-osmosis we refer to Refs. �2–9�
and references therein.

In this paper we consider the RC model in Ref. �3� of an
electrolyte confined by an insulating surface with an applied
external potential of the general form

Vext�y,t� = V0f�y�exp�i�t� . �1�

Here, � is the driving frequency and f�y� is a dimensionless
function representing the amplitude variations along the sur-
face. For simplicity we consider a binary electrolyte with
permeability �, viscosity �, and conductivity �. Assuming a
low Péclet number we may neglect convection so that the
electrodynamics can formally be solved independently of the
hydrodynamics. On the other hand, the hydrodynamics, of
course, still depends on the electrodynamics through the
body force which effectively may be taken into account
through a finite slip velocity, see, e.g., Refs. �3,7,10–12�, and
references therein.

II. ELECTRODYNAMICS

For the electrodynamics we follow Ajdari �3� with the
surface and the Debye layer each represented by a capacitive
element while the bulk liquid is represented by an Ohmic
element. The model applies to the situation where spatial
variations along the surface are slow on the length scale of
the Debye screening length �D, the driving frequency is
small compared to the Debye frequency �D, and the electro-
static energy is small compared to the thermal energy kBT,

i.e., the Debye-Hückel approximation is valid. As shown by
many, the model may be justified in detail starting from a
nonequilibrium electrohydrodynamic continuum description.
For more details we refer to Refs. �10,11� as well as �8,9�,
and references therein.

In the bulk of the liquid there is charge neutrality and the
electrical potential 	 thus fulfills the Laplace equation �2	
=0 subject to the relation between surface charge �D and the
potential drop across the capacitive element 	�x=0,y , t�
−Vext�y , t�=�D�y , t� /C0 as well as a continuity equation
�t�D�y , t�=−Jx�0,y , t�=��x	�x=0,y , t� relating the change
in the surface charge to the electrical Ohmic current J.
Above, C0= �Cs

−1+CD
−1�−1 is a series capacitance with Cs be-

ing the intrinsic surface capacitance and CD=� /�D being the
Debye layer capacitance.

We formally solve this problem by introducing the inverse
Fourier transform F�Q� of f�y�, see Eq. �1�,

F�Q� = �
−



 dy�
�2�

f�y��e−iQy�. �2�

From the solution of the spatially harmonic problem �3� we
may write the general solutions for the potential and the
surface charge as

	�x,y,t� = V0 exp�i�t��
−



 dQ
�2�

F�Q�exp�iQy�exp�− �Q�x�
1 − i�Q��D

�3�

and

�D�y,t� = i
�V0

�
exp�i�t��

−



 dQ
�2�

F�Q��Q�exp�iQy�
1 − i�Q��D

. �4�

Above, we have introduced the frequency dependent effec-
tive length scale �D given by
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�D = �1 + �
�D

�
�D, �5�

where =CD /Cs is the capacitance ratio and �D=D /�D
2 is

the Debye frequency.

III. THE SLIP VELOCITY

The slip velocity is given by �3�

vslip�y� =
�D

�
�D�y��− �y	�x,y��x=0, �6�

where it is implicit that real values of �D and 	 must be
taken. From Eqs. �3� and �4� we now formally get

vslip�y,t� = −
�D�V0

2

�

�D

�

� Re	iei�t�
−



 dQ
�2�

F�Q��Q�exp�iQy�
1 − i�Q��D



� Re	iei�t�

−



 dQ�
�2�

F�Q��Q� exp�iQ�y�
1 − i�Q���D


 ,

�7�

and for the time-averaged slip velocity �vslip�t we use
�Refei�t�Regei�t��t=

1
2Ref*g� as well as F*�Q�=F�−Q� so

that

�vslip�y,t��t =
�D�V0

2

2�

�D

�
Re	�

−



 dQ
�2�

�
−



 dQ�
�2�

�
F�Q��Q�exp�iQy�

1 − i�Q��D

F�Q��Q� exp�iQ�y�
1 + i�Q���D


 .

�8�

Equations �7� and �8� are our general results for the surface-
potential induced hydrodynamics. Velocity and pressure
fields may be obtained by solving the Navier-Stokes equation
without body forces subject to a slip-velocity condition.

Before turning our attention to specific potentials we may
already extract some general properties of the model. From
Eq. �8� it is clear that �vslip�y , t��t is a spatially dependent
function of finite magnitude. This in turn also means that the
external potential can induce a finite time-averaged velocity
field in the fluid. However, it is also clear that the induced
net flow rate will be zero since �vslip�y , t��t has no spatial dc
component, as may be seen by substituting the general ex-
pression for F�Q�. Spatial asymmetry in the applied potential
is thus not a sufficient condition to achieve pumping and as
also indicated in Ref. �3�, asymmetry in the surface capaci-
tance is required. Formal studies of the model for �yCs�0
will be an interesting subject for future studies, but here we
will follow the lines where Cs is constant along the surface.
The case of f�y�=cos�qy� was first studied in Ref. �3�. The
Fourier transform is then a simple sum of two Dirac delta
functions, F�Q���Q−q�+�Q+q�, and substituting into
Eqs. �7� or �8� we easily arrive at results fully consistent with
those reported previously.

IV. FREQUENCY DYNAMICS

In order to draw some general conclusions about the fre-
quency dynamics of the hydrodynamics, apart from the fre-
quency doubling �3�, we imagine that the surface potential
has a characteristic length scale 1 /q. Since we have made a
RC description of the electrohydrodynamics it follows quite
naturally that the system will have a resonance behavior at a
frequency comparable to the inverse RC time of the system.
Above resonance the system has an asymptotic power-law
frequency response as we will illustrate below for a surface
potential of even symmetry. In that case F�Q� is a real and
even function of Q, so that Eq. �8� with Q=sq becomes

�vslip�y,t��t = 2ṽq2 Re	�
0


 ds
�2�

F�sq�s cos�sqy�

��/�̃� − is

� �
0


 ds�
�2�

i��/�̃�F�s�q�s� sin�s�qy�

��/�̃� + is�

 ,

�9�

where we have introduced a characteristic resonance fre-
quency �̃ as well as a characteristic flow velocity ṽ,

�̃ � q�D�1 + ��D = q�D�, ṽ =
q�V0

2

��1 + �
. �10�

Since

Re	 1

� − is

i�

� + is�

 =

�s� − s��2

��2 + s2���2 + �s��2�

= �s − s���−2 + O��−4� �11�

we expect with �=� / �̃ that

�vslip�t � �−2, � � �̃ . �12�

Likewise, for surface potentials of odd symmetry we arrive
at the same conclusion. Making a similar expansion for the
below-resonance asymptote one might speculate that �vslip�t

��� with a power �=2. However, with such an expansion
the integrals are, in general, no longer convergent which in
turn indicates that the power � is below 2 depending on the
actual surface potential under consideration. In the following
we will illustrate this by the aid of two explicit examples.

A. Two-electrode configuration

Recently, a circulating flow was observed experimentally
using two adjacent electrodes and an ac field �12� and in Ref.
�13� the problem was studied theoretically by assuming that
the two electrodes are infinitely close corresponding to a
steplike model potential. However, such a potential is some-
what unphysical since the electric field diverges and instead
one should take the electrode gap into account �14�. In the
following we model such an electrode configuration with a
smooth external potential of the form f�y�=tanh�qy�, which
incorporates the built-in electrode gap in terms of the length
scale 1 /q. Fourier transforming and substituting into Eq. �8�
we get
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�vslip�y,t��t = ṽ Re	�
0




ds
csch���/2�s�s sin�sqy�

i��/�*� + 2s

� �
0




ds�
i��/�*� csch���/2�s��s� cos�s�qy�

i��/�*� − 2s� 
 ,

�13�

where the resonance frequency is given by �*= �̃ /2. In order
to study the maximal value of �vslip�y , t��t as a function of
frequency we note that when �vslip�y , t��t is maximal so is its
slope at y=0. If we define ����= �qṽ�−1�y��vslip�y , t��t�y=0 we
get

� = − 2�2�J2
2 − J1J3�, Jn = �

0




ds
csch���/2�s�sn

�2 + 4s2 ,

�14�

where we have introduced �=� /�*. Panel �a� of Fig. 1
shows the time-averaged slip velocity at resonance evaluated
numerically from Eq. �13� and its slope at y=0, based on a
numerical evaluation of Eq. �14�, is also included. Panel �b�
shows ���� as a function of frequency. The plot confirms Eq.
�12� and suggests a linear dependence �vslip�t�� for the
below-resonance frequency response. This may also be
confirmed by an asymptotic analysis by first noting that
J1=1/ �2��+O��2�. For J2 we note that �J2 /��
=−2��0


 ds csch��� /2�s�s2 / ��2+4s2�2�−4� /��0

ds s / ��2

+4s2�2=−1/2�� so that J2�const−ln��� /2�. For J3 we
similarly note that �J3 /���− 1

8 so that J3=const−� /8.

When collecting terms we thus get a � dependence to lowest
order.

B. Single-electrode configuration

As a second example we consider single-electrode driven
electrohydrodynamics and as a model potential we use f�y�
=sech�qy� to mimic the potential of a single electrode with a
characteristic width 1/q. Fourier transforming and substitut-
ing into Eq. �8� we get

�vslip�y,t��t

= −
1

2
ṽ Re	�

0




ds
i��/�*� sech���/2�s�s cos�sqy�

i��/�*� + s

��
0




ds�
sech���/2�s��s� sin�s�qy�

i��/�*� − s� 
 , �15�

where in this case �*= �̃ is the resonance frequency. In anal-
ogy with the previous example we get

� = −
1

2
�2�I2

2 − I1I3�, In = �
0




ds
sech���/2�s�sn

�2 + s2 . �16�

Panel �c� in Fig. 1 shows the time-averaged slip velocity at
resonance evaluated numerically from Eq. �15� and the slope
at y=0 based on a numerical evaluation of Eq. �16� is also
included. Panel �d� shows the frequency response confirming
Eq. �12� for the above-resonance response while for the
below-resonance response �vslip�t��� with a power ��2.

FIG. 1. Dynamics for tanh�qy� and sech�qy� surface potentials, panels �a� and �b� and �c� and �d�, respectively. Panels �a� and �c� show
the time-averaged slip velocities at resonance while panels �b� and �d� show the corresponding frequency response. In �a� and �c� the solid
lines show numerical evaluations of Eqs. �13� and �15�, respectively, while dashed lines show the slope �y�vslip�t at y=0 calculated from Eqs.
�14� and �16�, respectively. In �b� and �d� the solid lines show numerical evaluations of Eqs. �14� and �16�, respectively, while dashed lines
are included to indicate asymptotics.
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For the asymptotic analysis we note that I2=1+O��2� and
I3=8C /�2+O��2� where C�0.915 966 is Catalan’s
constant. For I1 it follows that �I1 /��
=−2��0


ds sech��� /2�s�s / ��2+s2�2�−2��0

ds s / ��2+s2�2

=−�−1 so that I1=const−ln���+O��2�. There will thus be a
logarithmic correction �2 ln��� to the �2 dependence.

V. DISCUSSION AND CONCLUSION

In this work we have used a Fourier transform approach
to make a general analysis of the frequency dynamics of
ac-induced electrohydrodynamics within the RC model of
Ref. �3�. In the case with a spatially constant intrinsic surface
capacitance we generally prove that the net flow rate is zero.
A finite net flow rate will require a spatially inhomogeneous
capacitance so that the charge and electrical field dynamics
are mutually out of phase.

For the frequency dynamics we observe a resonance be-
havior at a frequency corresponding to the inverse RC time
of the system and different surface potentials share the com-
mon feature that the resonance frequency is inversely propor-
tional to the characteristic length scale of the surface poten-
tial. Above resonance we, in general, find a �−2 power law

for surface potentials with either even or odd symmetry. Be-
low resonance we likewise find a power-law dependence ��

with � being positive and dependent of the properties of the
surface potential. As two examples we have compared tanh
�odd symmetry� and sech �even symmetry� surface potential.
Unexpectedly, we qualitatively find the same slip velocity,
while the frequency dynamics is very different for the below-
resonance frequency response where power-law asymptotics
with �=1 and ��2, respectively, are found.

Our study illustrates how the frequency dynamics carries
strong fingerprints of the driving surface potential and we
believe that a detailed analysis of the frequency dynamics
would be a way to extract more information from experimen-
tal data. Recent related work �15� also suggests the possibil-
ity for a strong frequency dependence in ac electroosmosis
also in the flow topology.
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