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Numerical studies of higher-dimensional piecewise-smooth systems have recently shown how a
torus can arise from a periodic cycle through a special type of border-collision bifurcation. The
present article investigates this new route to quasiperiodicity in the two-dimensional piecewise-
linear normal form map. We have obtained the chart of the dynamical modes for this map and
showed that border-collision bifurcations can lead to the birth of a stable closed invariant curve
associated with quasiperiodic or periodic dynamics. In the parameter regions leading to the exis-
tence of an invariant closed curve, there may be transitions between an ergodic torus and a reso-
nance torus, but the mechanism of creation for the resonance tongues is distinctly different from
that observed in smooth maps. The transition from a stable focus point to a resonance torus may
lead directly to a new focus of higher periodicity, e.g., a period-5 focus. This article also contains
a discussion of torus destruction via a homoclinic bifurcation in the piecewise-linear normal map.
Using a dc–dc converter with two-level control as an example, we report the first experimental
verification of the direct transition to quasiperiodicity through a border-collision bifurcation.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2208565�

Application of nonlinear dynamics and chaos theory in
practice, particularly in engineering, often leads to the
analysis of piecewise-smooth systems. Low-dimensional
models of such systems have shown that they can exhibit
behavioral transitions, referred to as border-collision bi-
furcations, that are qualitatively different from the bifur-
cations we know for smooth dynamical systems. In par-
ticular, these bifurcations can produce direct transitions
from periodicity to chaos or, for instance, from period-2
to period-3 dynamics. The purpose of this article is to
show that torus birth bifurcations (transitions to quasip-
eriodicity) can also occur via border-collision bifurca-
tions. In this case a pair of complex conjugate Floquet
multipliers jump from the inside to the outside of the unit
circle. We also examine the border-collision bifurcations
through which the ergodic torus is transformed into a
resonance torus. Torus destruction represents one of the
most complicated routes to chaos, and the possible
mechanisms for torus destruction in nonsmooth systems
have not yet been examined in detail. A second purpose of
the present article is to initiate this analysis. Finally, we
illustrate our results through a practical example from

power electronics and present the first experimental veri-
fication of torus birth via a border-collision bifurcation.

I. INTRODUCTION

Quasiperiodicity is a specific type of dynamic behavior
characterized by the coexistence of two �or more� oscillatory
modes with incommensurable frequencies. The transition
from regular periodic dynamics to quasiperiodicity is most
instructively discussed in terms of the Poincaré map, and it is
known that this transition in smooth �i.e., everywhere differ-
entiable� maps occur through a Neimark–Sacker bifurcation1

in which a pair of complex conjugate eigenvalues �Floquet
multipliers� for the fixed point cross out of the unit circle in
a continuous manner.

However, many systems of practical importance give
rise to maps that are not everywhere differentiable.
Piecewise-smooth maps typically arise as discrete-time mod-
els of dynamical systems where the continuous evolution in
time is punctuated by discrete impacts or switching events
that alter the form of the constitutive equations. Examples
of such systems include switching circuits,2–7 impact
oscillators,8–10 and walking robots,11,12 as well as physiologi-
cal models13 and various micro- and macroeconomic
systems.14 As a parameter is varied, the fixed point for the
Poincaré map of such a system may move in phase space and
collide with the borderline between two smooth regions.
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When this happens, the eigenvalues can change abruptly,
leading to a special class of nonlinear dynamic phenomena
known as border-collision bifurcations.15–22

Feigin was presumably first to consider these phenom-
ena in detail. His analyses of mechanical impact oscillators
date back to the 1970s.15–17 In Feigin’s work border-collision
bifurcations are called C-bifurcations, “C” standing for the
Russian word for “sewing.” This refers to the fact that one
has to “sew” the solutions together across the borderline be-
tween two smooth regions. Some of the main results of Fei-
gin’s work have subsequently been recast into the framework
of modern bifurcation theory by di Bernardo et al.22

In the western literature, early work on border-collision
bifurcations was published by Nusse and Yorke,19–21 and the
term “border-collision bifurcation” was introduced by these
authors. Among other phenomena, Nusse and Yorke empha-
sized the possibility of observing peculiar bifurcations such
as direct transitions from period-2 to period-3 dynamics or
from regular periodic motion into chaos. Banerjee et al.23–25

developed the theory of border-collision bifurcations in one-
and two-dimensional piecewise smooth maps, and illustrated
its application in power electronic systems. It was shown that
the so-called corner-collision, sliding and grazing bifurca-
tions all belong to this class.9,26–32 To investigate the various
types of bifurcation, a normal form map may be constructed
�see, e.g., Refs. 26–29�. Recent reviews on border-collision
bifurcations in piecewise-smooth mechanical and power
electronic systems have been published by Banerjee and
Verghese,33 Blazejczyk-Okolewska et al.,34 Leine and
Nijmeijer,35 Tse,36 and Zhusubaliyev and Mosekilde.37

Evidence from the study of a large number of physical
systems,35,37–43 e.g., switching circuits, impact oscillators,
accumulated over the years demonstrates that quasiperiodic
dynamics regularly occurs in such systems. The onset of qua-
siperiodic behavior has been reported in impact oscillators
by Piiroinen et al.43 This article discusses the changes in
system behavior that arise as parameter variations lead to the
appearance of grazing intersections between quasiperiodic
attractor and a two-dimensional impact surface in a three-
dimensional state space. The occurrence of such “nonsmooth
Hopf bifurcation” was briefly discussed in a book by Leine
and Nijmeijer.35 The purpose of the present article is to study
the transition to quasiperiodicity through a border-collision
bifurcation and to examine different examples of this process
both numerically and experimentally. In one such example,
an ergodic torus is born simultaneously with a period-5
saddle and a stable period-5 node. We have also observed
that the stable cycle on the resonance torus can be born as a
focus rather than as a node, like it is the case for smooth
systems. Next, we consider the transitions between an er-
godic torus and a resonant torus and show that the involved
mechanisms are distinctly different from the mechanisms
known for smooth systems. We also discuss how torus de-
struction can take place via a homoclinic bifurcation in the
piecewise-linear model map. This analysis involves the use
of numerical methods that can follow the stable and unstable
manifolds for the various modes.

Finally, using a dc–dc buck converter with two-level
control as an example, we experimentally verify the occur-

rence of torus birth bifurcations in piecewise-smooth dy-
namical systems.

II. THE PIECEWISE LINEAR NORMAL FORM

As we are interested in the dynamics near a border-
crossing fixed point, the torus birth bifurcation can be inves-
tigated by using a piecewise-linear approximation to the
piecewise-smooth map close to that point. It has previously
been shown that this map, through a series of coordinate
transformations, can be expressed on the normal form19

F:�x

y
� � �F1�x,y� , x � 0

F2�x,y� , x � 0,
�1�

where

F1�x,y� = ��Lx + y + �

− �Lx
�;

F2�x,y� = ��Rx + y + �

− �Rx
�, �x,y� � R2.

In this representation the phase plane is divided into two
halves, L= ��x ,y� : x�0, y�R	 and R= ��x ,y� : x
�0, y�R	. �L and �L denote the trace and the determi-
nant, respectively, of the Jacobian matrix JL in the left-hand
side half-plane, and �R and �R are the trace and determinant
of the Jacobian matrix JR in the right-hand side half. It is
easy to show that

JL = � �L 1

− �L 0
�, JR = � �R 1

− �R 0
� .

The theory of border-collision bifurcations developed so
far assumes contractive dynamics at both sides of the discon-
tinuity �i.e., 
�L 
 �1 and 
�R 
 �1�.23,25 By contrast, we con-
sider a situation where an attracting fixed point changes into
a spirally repelling fixed point as it moves across the border.

The stability of a fixed point is determined by the eigen-
values of the corresponding Jacobian matrix �1,2

= 1
2 ��±��2−4��. Following di Bernardo et al.,22 we indicate

a stable fixed point in L by A and an unstable one by a.
Similarly, stable and unstable fixed points in R will be de-
noted by B and b, respectively. These fixed points are deter-
mined by

A or a = � �

1 − �L + �L
,

− ��L

1 − �L + �L
� , �2�

B or b = � �

1 − �R + �R
,

− ��R

1 − �R + �R
� . �3�

For the fixed point A or a to actually exist, we must have
� / �1−�L+�L��0, otherwise a virtual fixed point is located

in R and denoted as Ā or ā. Similarly, for B or b to actually
occur, one needs � / �1−�R+�R��0. Otherwise a virtual

fixed point is located in L, and denoted as B̄ or b̄.
As the parameter � in map �1� is varied from a negative

to a positive value, the fixed point moves from L to R, and
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the border collision, at which the fixed point crosses between
the two regions, occurs at �=0. Let us choose the parameters
such that �L�1 and �R�1. The conditions

− �1 + �L� � �L � 1 + �L, − 2��R � �R � 2��R �4�

then ensure that the fixed point is attracting for ��0 and a
spiral repeller for ��0.

Let us now investigate the character of this transition. As
the parameter � crosses the bifurcation point at �=0, a
stable fixed point A on the L side turns into an unstable focus
point b on the R side, and trajectories near the fixed point
start to spiral outward. When the spiralling trajectory crosses
back through the boundary to the L side, its dynamics will be

guided by the attracting virtual fixed point Ā located in R. In
this way the outward motion of the trajectory is arrested on
the R side, and the system displays a rotating motion, con-
trolled by the complex conjugated eigenvalues of b, but lim-
ited to a finite amplitude. This allows for the existence of an
invariant closed curve on which the stationary state must lie.
Figure 1 shows the bifurcation diagram with � varied from a
negative to a positive value. This diagram illustrates the
abrupt transition from periodic to quasiperiodic behavior in a
border-collision bifurcation. By contrast to the classic
Neimark–Sacker bifurcation, the border-collision bifurcation
is characterized by a linear growth in amplitude of the qua-
siperiodic dynamics as � increases beyond the bifurcation
point.

III. TRANSITIONS BETWEEN MODE-LOCKED
DYNAMICS AND QUASIPERIODICITY

If one of the other parameters of map �1� is varied within
the range delineated by �4�, one can observe more compli-
cated bifurcational transitions. To illustrate these phenomena,
we have calculated the chart of dynamical modes �or two-
parameter bifurcation diagram� in the parameter plane
��L ,�R� for positive values of �.

As shown in Fig. 2, this chart is characterized by a dense
set of periodic tongues. Between the tongues there are pa-
rameter combinations that lead to quasiperiodicity. The bifur-
cation diagram in Fig. 3, calculated for �R=5�L /3 �i.e., along
the main diagonal of Fig. 2�, shows the successively occur-
ring regions of periodic and aperiodic behavior.

In the chart of dynamical modes shown in Fig. 2, 	
,1

and 	
,2 are domains where the trajectories of the map di-
verge to infinity for all initial conditions. Like for smooth
systems, the tongues of periodicity can be ordered in accor-
dance with the level of complexity.44 Tongues of the first
level of complexity have rotation numbers of the form r :q
=1:m, m=3,4 ,5. . . . Between any two tongues of the kth
level of complexity, k�1 with the rotation numbers rk

m /qk
m

and rk
m+1 /qk

m+1 there are two infinite sequences of tongues of
the �k+1�th level of complexity with the rotation numbers44

rk+1
s

qk+1
s =

srk
m + rk

m+1

sqk
m + qk

m+1 ,
rk+1

s

qk+1
s =

rk
m + srk

m+1

qk
m + sqk

m+1 .

Here, s=1,2 , . . . is the number of the tongue in the sequence.
The first sequence accumulates in the tongue with the rota-
tion number rk

m /qk
m, and the second accumulates in the

tongue with the rotation number rk
m+1 /qk

m+1.
Low-periodicity tongues of the first level of complexity

�and a few of the second level of complexity� are specified in
the chart of dynamical modes �Fig. 2� by their respective
rotation numbers. The level of complexity is indicated by the
background color of the rotation number in the small tags:
White corresponds to the first level of complexity and gray
to the second.

FIG. 1. Bifurcation diagram for the normal form map as the parameter �
varies from −0.1 to 0.1. The diagram shows a direct transition from a
period-1 orbit to a quasiperiodic orbit. The other parameters are �L

=0.6765, �R=1.5, �L=0.5, and �R=1.6.

FIG. 2. �Color� Chart of dynamical modes of the normal form map in the
parameter plane ��L ,�R� with the remaining parameters fixed at �L=0.5,
�R=1.6, and �=0.05.

FIG. 3. Bifurcation diagram calculated for the section ���L ,�R� :−0.1��L

�1.0;�R=5�L /3	 situated along the main diagonal of Fig. 2. The diagram
shows repeated transitions between mode locking and quasiperiodicity.
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In piecewise-linear systems the resonance tongues in pa-
rameter plane display a lens-like form �see Fig. 2�. This
structure was first described by Yang and Hao45 for the case
of a one-dimensional piecewise-linear map and was subse-
quently generalized to the case of higher-dimensional
piecewise-smooth systems.37,46 The latter work also pre-
sented a detailed bifurcation analysis of the resonance
tongues and showed that the tongues are bounded by curves
where stable and unstable cycles of different types merge and
disappear in a border-collision bifurcation. We will refer to
such a border-collision bifurcation as a border-collision fold
bifurcation �an alternative denotation used in previous
publications5,23 is border-collision pair bifurcation�.

With the exception of the 1:5 tongue, the tongues situ-
ated above the region of divergence 	
,1 comprise more than
one “lens” separated by so-called shrinking points where the
width of the tongues reduces to zero.45,47 At the shrinking
points the boundaries of the tongue intersect. These points
correspond to border-collision bifurcations where the peri-
odic orbit continuously transforms from one type into an-
other �i.e., border-collision bifurcations leading to a simple
change of the solution type� as the parameter point passes
from one lens to the next.

If ��0 then map �1� has a single nontrivial stable fixed
point with a negative x coordinate. When � changes sign, the
x coordinate of the fixed point also changes sign and the
fixed point abruptly loses stability: the stable focus trans-
forms into an unstable focus. If the chosen parameter values
correspond to a tongue of periodicity, then stable and saddle
cycles softly arise from the fixed point. These cycles are
located on a closed invariant curve composed of the unstable
manifolds of the saddle and the points of two cycles. An
example of such a curve is shown in Fig. 4 for the 1:5
tongue. The stable closed invariant curve of the resonance
torus arises from the fixed point in a border-collision bifur-
cation.

Let us now study the bifurcational transitions from mode
locking to quasiperiodicity. Figure 5 displays a bifurcation
diagram illustrating the transition from the 1:5 mode-locking

tongue to quasiperiodicity. The fifth iterate map, �1�, has five
stable fixed points and five saddle fixed points. If the param-
eter �R increases or decreases, the stable and unstable fixed
points collide and disappear in a border-collision fold bifur-
cation at the points �R

+ and �R
−, respectively. Between the

points �R
h �1.0425 and �R

+ �1.068 785 the stable periodic or-
bit coexists with a quasiperiodic state. Figure 5 allows us to
conclude that hard hysteretic transitions from one dynamical
mode to another take place in the points �R

h and �R
+. For

example, with increasing �R a hard transition from a periodic
to a quasiperiodic orbit takes place at �R

+. Similarly, if the
system follows the quasiperiodic oscillations with decreasing
�R one observes the reverse transition to the periodic orbit at
the point �R

h . It is interesting to note that precisely the same
phenomenon is observed in our experiments with a power
electronic dc–dc converter as described in Sec. IV.

Let us consider the characteristics of the bifurcational
behavior shown in Fig. 5 in more detail in order to under-
stand the mechanism of the transition between mode locking
and quasiperiodicity. Within the mode-locking window there
is a stable closed invariant curve �see Fig. 4�. Our numerical
analysis shows that, with increasing �R, the invariant curve
loses its smoothness near the point �R

h .
In the initial state �Fig. 4�, the system displays a closed

invariant curve that is the union of the unstable manifold of
the saddle cycle of period 5 and the points of the stable and
saddle period-5 cycles. The closed invariant curve is piece-
wise smooth with sharp cusps in the node points. As the trace
�R increases, in the point �R�1.041 812, the manifolds be-
come tangent to each other, and this leads to the formation of
a nontransversal homoclinic orbit �see Fig. 6�. With the fur-
ther increase of �R, the stable and unstable manifolds of the
period-5 saddle cycle intersect transversally to form the ho-
moclinic structure.48,49 The intersection of the two manifolds
implies the existence of a Smale horseshoe and, as a conse-
quence, of an infinite number of long-periodic orbits.48 The
stable and saddle five cycles continue to exist after the closed
invariant curve has been destroyed. With further increase of
�R, the stable and saddle cycles merge and disappear in a
border-collision fold bifurcation.

FIG. 4. �Color� Phase portrait of the normal form map within the 1:5 tongue
of periodicity for �L=0.3, �L=0.5, �R=1.04, �R=1.6, and �=0.05. Here b is
the fixed point, N and S are the node and saddle period-5 cycles, and M±

S

and M±
U are the stable and unstable manifolds, respectively, of the saddle S.

FIG. 5. Bifurcation diagram where �R is varied from 0.9 to 1.2 whereas the
other parameters are fixed at �L=0.3, �L=0.5, �R=1.6, and �=0.05. This
diagram shows a hysteretic transition between mode locking and quasiperi-
odicity. �R

− and �R
+ are the border-collision fold bifurcation points. �R

h is the
point of transition from quasiperiodic to periodic dynamics. The periodic
orbit coexists with quasiperiodicity within the region �R

h ��R��R
+, where

�R
h �1.0425 and �R

+ �1.068 785.
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Figure 7 shows the phase portrait at �R=1.05 after the
closed invariant curve is destroyed. Here the stable period-5
node N coexists with the quasiperiodic orbit designated as C
in Fig. 7�a�. This quasiperiodic orbit arises after the second
homoclinic tangency48,49 at the point �R

h . Hence, there is a
region where the stable cycle coexists with quasiperiodic dy-
namics. We have previously shown50 that this region is
bounded by the bifurcation curve of the second homoclinic
tangency and by the curve of the border-collision fold bifur-
cation.

If we choose the parameters �L and �R in the region
between the second homoclinic tangency and the border-
collision fold bifurcation then a pair of stable and saddle
period-5 cycles arise together with the quasiperiodic orbit as
the fixed point crosses the borderline x=0. Figure 7�b� pre-
sents the bifurcation diagram for such transition, with � as
parameter.

We note how two coexisting stable orbits �periodic and
quasiperiodic� appear as the period-1 orbit becomes unstable.
Near the bifurcation point, when � has a very small positive
value, the radii of the basins of attraction of the coexisting
orbits can be arbitrarily small. In this case the existence of
even weak sources of noise, such as truncation errors in the
computer simulations, can lead to a nonmonotonic behavior
of the disturbance, and we can expect the appearance of non-
determinate dynamics. This represents a fundamental source
of uncertainty51,52 as to which attractor the system goes.

The tongues in the chart of dynamical modes �Fig. 2�
intersect. This represents the occurrence of regions of multi-
stability. For example, the 1:4 resonance tongue intersects

with the 1:3 tongue of the first level of complexity and other
tongues of the second and larger levels of complexity. When
the closed invariant curve is destroyed, several stable peri-
odic orbits coexist. Figures 8�a� and 8�b� show the phase
portrait of the map for �L=0.35 and �R=−1.157, where the
stable period-4 orbit coexists with the closed invariant curve.
Figure 8�b� is a magnification of the region outlined by the
rectangle in Fig. 8�a�. The closed invariant curve is the union
of the unstable manifold of the saddle cycle of period 7 and
the points of the stable focus and saddle period-7 cycles.
Figure 8�c� shows a phase portrait of the map for �L=1.384
and �R=0.089 after the closed invariant curve is destroyed.
Here the stable period-5 orbit coexists with the stable
period-6 cycle.

In the first case �illustrated by Figs. 8�a� and 8�b��, if we
choose the parameters �L and �R in the region of multistabil-
ity, varying � from a negative to a positive value causes the
stable closed invariant curve to arise together with one �or
more� stable periodic orbits as the fixed point crosses the
borderline x=0. In the other case �Fig. 8�c��, a bifurcational
transition takes place where several coexisting stable period
cycles arise from the fixed point in a border-collision bifur-
cation. It is interesting to note that these transitions can lead
directly from a stable focus fixed point to a stable cycle of
focus type lying on an attracting closed invariant curve.

IV. EXPERIMENTAL CONFIRMATION

In the present section, we consider a concrete example in
the form of a multilevel pulse-width modulated dc-dc buck

FIG. 6. �Color� �a� Homoclinic tan-
gency appearing at �R�1.041 812. �b�
Magnified part of the phase portrait
outlined by the rectangle in �a�.

FIG. 7. �Color� �a� Phase portrait of
the map after the closed invariant
curve has been destroyed. Here the
stable period-5 cycle N coexists with
the quasiperiodic orbit C. The basins
of attraction of the periodic and quasi-
periodic orbits are separated by the
stable manifold of the period-5 saddle
cycle. �b� Bifurcation diagram illus-
trating the birth of a pair of stable and
saddle period-5 cycle together with the
quasiperiodic orbit from the fixed
point through a border-collision bifur-
cation with varying �. Other param-
eters are the same as in �a�.
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converter,53–58 and experimentally confirm that the phenom-
ena observed for the piecewise linear normal form map �1�
actually occur in practical systems. More concretely, we
present the first experimental observation of the transition
from periodicity to quasiperiodicity through a border-
collision bifurcation.

Figure 9 shows a schematic diagram of the considered
dc-dc power converter with two-level pulse-width modula-
tion. The switches S1 and S2 may be realized, for instance, by
metal-oxide-semiconductor field-effect transistors that can
operate with more than 50 000 switchings per second. To
understand the way of working of this converter, let us first
suppose that comparator 2 and switch S2 are excluded from
the circuit. In this case we have a simple dc-dc buck con-
verter with single-zone regulation as described, for instance,
by Aroudi et al.42 As switch S1 opens and closes, the voltage
applied to the LC filter varies between input voltage and
zero. The LC filter smooths the signal to be applied to the
load resistor R into a relatively constant voltage of a value
lower than that of the input voltage. It is usually desirable to
regulate the output voltage to a prescribed value. This can be
achieved by controlling the switching process through a
feedback mechanism. A simple method, called voltage-mode
control, implies that a voltage proportional to the output volt-
age vC is compared with a reference voltage Vref to generate
a control voltage vcon. This control voltage is compared with
a sawtooth waveform Vramp to generate the switching signal.
The switch is turned on at the beginning of every ramp pe-
riod, and is turned off when the ramp voltage exceeds the
value of the control voltage at the beginning of the ramp
cycle �this is sometimes called pulse-width modulation of
type 1�. The output voltage approaches E0 /2 when S1 is
closed, and vC tends to 0 when S1 is open. The electronic
circuit itself is linear, and the nonlinearities arise from the
switching processes that alter the structure and, hence, the
dynamics of the system.

The system we consider in this article is a variant of the
previous scheme which is applicable when two or more input

FIG. 8. �Color� Phase portraits of the map in the region of multistability. The small open circle in the middle represents the unstable fixed point. �a� Stable
period-4 cycle coexisting with the closed invariant curve. �b� Magnified part of the phase portrait outlined by the rectangle in �a�. The closed invariant curve
is the union of the unstable manifold of the saddle cycle of period 7 and the points of the stable focus F and saddle S period-7 cycles. �c� Phase portrait of
the map for the case when the closed invariant curve does not exist. Stable period-5 cycle coexists here with a stable period-6 cycle. The numbers 5 and 6 mark
period-5 and period-6 saddle points, respectively.

FIG. 9. �a� Schematic diagram of the dc–dc buck converter with two-level
control. Here S /H is the sample–hold unit. �b� Generation of switching
signals S1 and S2 in a two-level controlled buck converter. a denotes the
period of the ramp function.
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voltage levels are available, or easily obtainable from a
single voltage source. The scheme is implemented by using
two ramp signals–Vramp

�1� between VL and VU1, and Vramp
�2� be-

tween VU1 and VU2, both driven by the same clock. As illus-
trated in Fig. 9, the control voltage is given by

vcon = ��X� = ��Vref − vC� .

� and  are referred to as the amplification constant for the
corrector and the transfer parameter for the voltage sensor,
respectively. If the value of vcon at the beginning of a ramp
cycle falls between VL and VU1=VL+U0 /2 �zone 1�, the con-
trol signal generates a closing signal to switch S1 as long as
it exceeds Vramp

�1� . If vcon at the beginning of a ramp cycle lies
between VU1 and VU2=VL+U0 �zone 2�, it is compared with
Vramp

�2� to generate a closing signal to switch S2. The genera-
tion of these switching signals for a typical control voltage
waveform is illustrated in Fig. 9�b�.

Period T of a periodic mode is an integer multiple of the
period of the ramp signal, i.e., T=ma, where m=1,2 , . . .
Such an operation of the converter will be referred to as a
period-m mode, or m cycle. It is clear from Fig. 9�b� that
when the converter operates in a period-1 mode, only one
pulse-width modulated signal can be generated. Two types of
period-1 cycles are possible for a system with two-level
modulation. The first type corresponds to the case where the
value of the control voltage vcon at the beginning of a ramp
cycle lies in zone 1 and the control pulse is produced only by
comparator 1. In this case, switch S2 remains open. The sec-
ond type corresponds to the case where the control voltage
lies in zone 2 and the control pulse is produced by compara-
tor 2 �see Fig. 9�a��. In this case switch S1 remains closed.

In our earlier work50 we have performed a detailed bi-
furcation analysis of a converter of this type. We have shown
that the dynamics of this converter can be described by
means of a stroboscopic map that is piecewise smooth.50 We
had obtained the chart of dynamical modes for this map and
showed how torus birth can take place either via a classical
Neimark–Sacker bifurcation or via a border-collision bifur-
cation.

The period-1 cycle changes its type through a border
collision bifurcation when, with the change of a parameter,
the value of the control voltage at a clock instant coincides
with VU1, i.e., the boundary between the two levels. At such
an event, depending on the parameter values, we may ob-
serve a variety of different scenarios. The first possibility is
the continuous transformation of the stable period-1 cycle
into a stable period-1 cycle of another type. This transition
involves an abrupt change in the multipliers of the cycle.
However, none of the multipliers leave the unit circle, and
the system does not undergo a bifurcation.

A second possibility is that a stable focus is transformed
into an unstable focus and that a quasiperiodic orbit arises
from the fixed point in a border-collision bifurcation. This
bifurcation is characterized by the abrupt jump of the fixed
point’s complex conjugate eigenvalues from the inside to the
outside of the unit circle. Moreover, the amplitude of the
produced quasiperiodic oscillations varies linearly with the
distance from the bifurcation point �see Fig. 1�.

We have implemented the previous control scheme in a
two-zone dc-dc converter with the following parameters: R
=126 �, L=0.11 H, rL=13.5 �, C=1 �F, Vref=2.5 V, VL

=0.6 V, VU1=3.1 V, VU2=5.5 V, =0.22, �=10, T
=150 �s. Here, L and C denote the inductance and the ca-
pacitance, respectively, of the LC filter, R is the load resis-
tance, and rL is a parasitic resistance characterizing the dis-
sipation in the inductance coil.

The input voltage E0 is used as a bifurcation parameter.
The experimentally obtained bifurcation diagram is shown in
Fig. 10. The diagram shows a transition from periodicity to
quasiperiodicity at E0�24.5 V, and, as the parameter is fur-
ther increased, we observe a series of periodic windows with
mode-locked behavior.

FIG. 10. �a� Experimental bifurcation diagram of the two-level controlled
buck converter with the input voltage as a bifurcation parameter and �b�
close-up of the parameter region where the transition to quasiperiodicity
takes place.

FIG. 11. Experimental waveforms of the converter under regular periodic
operation at E0�20.3 V.
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Figure 11 shows the waveforms of the control voltage
and the ramp voltages under normal periodic operation. At
every clock instant, the control voltage is in zone 2. As the
input voltage is increased, vcon approaches the boundary be-
tween the two zones and, when the control voltage hits the
border, the behavior abruptly changes into quasiperiodicity.
This is illustrated in Fig. 12, and we conclude that the tran-
sition is caused by a border-collision bifurcation.

Immediately following this bifurcation, the amplitude of
the lower frequency component is small �as seen in Fig.
12�b��. However, the amplitude increases with increasing bi-
furcation parameter and, as the input voltage is increased to
E0�32 V, we observe the emergence of a periodic window.
Figure 13 shows the discrete-time phase portraits as the
states are observed in synchronism with the falling edge of
the triangular waves. The phase portrait shows a closed in-
variant curve when the waveform is quasiperiodic. After the
transition to periodicity, the dynamics produces a finite num-
ber of points placed on the invariant curve. In continuous
time, this implies a transition from an ergodic torus to a
resonance torus.

In order to explore the transition mechanism between
quasiperiodicity and mode locking, Figs. 14�a� and 14�b� dis-
play the waveforms just before and after the transition from
quasiperiodic to periodic orbit occurring at E0�32 V. De-
tailed inspection of these waveforms seems to show that the
transition is not caused by a border-collision bifurcation. Fig-
ures 14�c� and 14�d� show the waveforms just before and
after the transition from periodic to quasiperiodic orbit as it
occurs for E0�34 V. In this transition the control voltage
hits the boundary between the two regions, indicating that

the transition is a border-collision event, presumably related
to the border-collision fold bifurcation leading to the destruc-
tion of the periodic orbit. As discussed in Secs. III and IV,
such a bifurcation is generally preceded by a homoclinic bi-
furcation, and there is a parameter range where the periodic
and quasiperiodic orbits coexist.

On the curves of border-collision fold bifurcation and
homoclinic tangency one can expect hysteretic transitions
from periodic to quasiperiodic orbit or vice versa �see Figs. 5
and 7�. Such transitions are also observed experimentally.
The bifurcation diagrams obtained by varying the input volt-
age in opposite directions �Fig. 15� show hysteresis at the
right-hand side of the period-5 window. This confirms our
theoretical predictions. Figure 15�a� illustrates the transition
from quasiperiodic orbit to period-5 cycle with decreasing
input voltage E0, and Fig. 15�b� illustrates the transition from
period-5 cycle to quasiperiodic orbit with increasing E0. The
bifurcation points in the two diagrams are marked by the
dashed lines. The bifurcations are seen to occur somewhat
below and somewhat above E0=42 V, respectively.

V. CONCLUSION

The appearance of quasiperiodic dynamics has repeat-
edly been observed in recent numerical studies of various
piecewise-smooth systems,35,37,39,40,42,43,46 and it has been re-
ported that such behavior can appear through a smooth
Neimark–Sacker bifurcation as well as through a border col-
lision bifurcation.

FIG. 12. �a� Waveforms just before the transition to quasiperiodicity at E0

�23.6 V and �b� just after the transition, E0�24.8 V. Note how the strictly
periodic dynamics in �a� becomes modulated by a slower dynamics in �b�.

FIG. 13. Phase portraits on the Poincaré section, �a� for the quasiperiodic
dynamics at E0�31.9 V and �b� for the 1:8 mode-locked dynamics for E0

�32.9 V. Note how the closed invariant curve for the ergodic torus turns
into a set of discrete points for the resonance torus.
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Border-collision bifurcations are distinguished from the
local bifurcations we know for smooth systems by the fact
that the eigenvalues of the considered modes can make
abrupt jumps in the complex plane. Representing the ana-
logue of the classical Neimark–Sacker bifurcation �Hopf bi-
furcation for maps� in which a pair of complex conjugate
eigenvalues under variation of a parameter continuously
move out of the unit circle, the birth of quasiperiodicity
through border collision bifurcation is marked by an abrupt
jump of a complex conjugate pair of eigenvalues from the
inside of the unit circle to the outside.

Based on the normal form map that represents the be-
havior of the system in a close neighborhood of the border,
we have investigated the transition from a stable fixed point
�regular cycle in the continuous-time system� to a stable
closed invariant curve associated with periodic or quasiperi-
odic dynamics via a border-collision bifurcation.

The chart of dynamical modes for the normal form map
was obtained through a detailed numerical study. This chart
is characterized by a dense set of resonance zones. The tran-
sitions between mode-locked dynamics and quasiperiodicity
are shown to occur in the following way. Inside of each
tongue with the rotation number r:q there is a closed invari-
ant curve that is the union of the unstable manifold of the
period-q saddle and the points of the stable �node or focus�
and saddle period-q cycles. When the parameters are
changed, this closed invariant curve may be destroyed
through a homoclinic bifurcation. However, the stable and
saddle cycles continue to exist after the destruction of the

FIG. 14. The waveforms �a� before the transition from ergodic torus to resonance torus, E0�31.9 V, �b� after the transition, E0�32.3 V, �c� before the
transition from resonance torus to ergodic torus, E0�33.5 V, and �d� after the transition, E0�34.7 V.

FIG. 15. Experimental bifurcation diagram illustrating the hysteretic transi-
tion from periodic to quasiperiodic orbit and vice versa �indicated by the
punctuated lines�: �a� when the input voltage decreases and �b� when the
input voltage increases.
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closed invariant curve to finally disappear at the boundaries
of the tongue through a border-collision fold bifurcation.
Therefore, in the parameter plane between the lines of ho-
moclinic bifurcation and border-collision fold bifurcation
there is a multistability region. On the boundaries of this
region one can observe hysteretic transitions. This multista-
bility was illustrated by two examples in which the stable
period-5 cycle coexisted, respectively, with quasiperiodic dy-
namics and with a stable period-6 cycle. In both cases de-
tailed phase plots were presented showing, besides the vari-
ous steady states, also the associated invariant manifolds.

Using a dc–dc converter with multilevel pulse-width
modulation as an example, we have also experimentally
shown that the phenomena observed for the piecewise linear
normal form map actually occur in practical systems. The
verified phenomena include the occurrence of

�i� a border-collision torus birth bifurcation when the in-
put voltage exceeds a certain threshold value;

�ii� border-collision fold bifurcations in connection with
the transitions from periodic to quasiperiodic attrac-
tor; and

�iii� hysteresis �associated with a homoclinic bifurcation
and a border-collision fold bifurcation� in the transi-
tion between mode locking and quasiperiodicity.

To our knowledge, these are the first experimental veri-
fications of torus-related border collision bifurcations in
piecewise-smooth dynamical systems.
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