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The paper investigates the special clustering phenomena that one can observe in systems of non-
linear oscillators that are coupled via a shared flow of primary resoforea common power
supply). This type of coupling, which appears to be quite frequent in nature, implies that one can no

longer separate the inherent dynamics of the indiv
pling network. lllustrated by examples from microb

idual oscillator from the properties of the cou-
iological population dynamics, renal physiol-

ogy, and electronic oscillator theory, we show how competition for primary resources in a resource

distribution chain leads to a number of new generic
sliding of the synchronization

region with the

phenomena, including partial synchronization,
resource supply, and coupling-induced

inhomogeneity. €005 American Institute of PhysidDOI: 10.1063/1.1852151

Synchronization of interacting oscillators is of interest in
many areas of science and technology. The purpose of
this paper is to investigate the special type of synchroni-
zation phenomena that arise in systems of coupled self-
sustained oscillators where the interaction takes place via
a competition for primary resources. This implies that
one can no longer separate the characteristic modes of
the individual oscillators from the properties of the cou-
pling network. Our investigation is motivated by an at-
tempt to understand how the distribution of blood in the
renal arteriolar network interacts with the pressure and
flow regulation of the individual nephron. However, to
illustrate the generic aspects of the problem we also dis-
cuss examples from electronics and microbiological popu-
lation dynamics. We show how sharing of resources can
lead to coupling-induced inhomogeneity among the oscil-
lators, and how this coupling structure tends to produce
anti-phase synchronization.

I. INTRODUCTION

The classical synchronization paradijg?'n:onsiders the
interaction of two or more oscillators, each with their own

sources of energy, and with the coupling being responsible

for the frequency entrainment and mutual amplitude adjust
ments. Well-studied coupling structures includecal
coupling3 where oscillators in a latticer some other spatial
arrangementinteract with their nearest neighbors, agid-

bal coupling4 in which each oscillator in an ensemble inter-
acts with all other oscillatoréor with a mean field produced
by these oscillatojs The first type of coupling may represent
the interaction of heart muscle cells or pancregticells via
gap junction% through which ions and small molecules can
pass from one cell to its neighbors. This coupling typically
produces waves or pulses that propagate across the intera
ing units. Global coupling may be realized for a system of

coupled electrochemical oscillat8rsr for the metabolic os-
cillations in a suspension of yeast céll$ypical phenomena
associated with this coupling structure are global synchroni-
zation, oscillator death through mutual suppression, and vari-
ous forms of clustering in which the ensemble splits into
subgroups of synchronized oscillators, but such that each
subgroup maintains its own dynamics. More recently, the
study of so-calledmall-world network$as attracted consid-
erable interest® Here, the interaction among the oscillators
combine a local coupling with a feywnore or less random
long-range connections.

For all off the above coupling structures, the mathemati-
cal description assumes that the nonlinear properties of the
individual functional unit(i.e., its natural frequency, its re-
sistance to external perturbations and, if accounted for, its
inherent source of noiseare governed by the unit's own
parameters while the interaction is specified through a sepa-
rate set of parameters that characterize the coupling structure
and interaction strengths. Hence, one can distinguish the
natural modes of the individual oscillators from the proper-
ties of the coupling network.

However, there is a variety of problems in physics,
chemistry, biology, and engineering that cannot be consid-
ered within this paradigm, namely such problems where the
coupling between the oscillators takes place via the distribu-
tion of the energy(or resourcesthat allows the individual
oscillator to maintain its dynamics.

Typical examples, that we shall consider in the present
paper include:

Cascaded electronic oscillator circuits where the os-
cillators are coupled via a common power supply;
microbiological population dynamic systems where
pools of interacting species couple via the flow of
primary resources; and

(i)

0

(i) renal flow and pressure regulation where nephrons in
¥Electronic mail: olga@fysik.dtu.dk a vascular tree share a common blood supply.
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Our aim is not to discuss each of these problemsindetailn R, g R, 0w o "m0
but to point to a number of generic phenomena associatec 30
with the particular coupling structure and to illustrate the % B ]
spectrum of different areas where coupling via the distribu- yaol 3 L/ y=3)
tion of primary resources takes place. - /4 _ B

The system of cascaded electronic oscillators is of inter- @ 10 | ) ]
est both because the governing equations are well- CT 0 R .

established and because detailed experimental verification o == 6o 2 4 6 8 10 12
the simulation results are easy to obtain. X
Microbiological population dynamics play an important FIG. 1. (@ Circuit diagram andb) the null-clines for the 2D limit case
role in many biotechnological industries. The homogeneousgi2=0- In the dimensionless model equatidas x represents the voltage
well-controlled bacterial cultures used in modern cheese prq?glr;zse?thf;snseihdfféifd;:e current in the inductorl., andz is the
duction, for instance, are often quite sensitive to virus attack,
and considerable effort is devoted to the search for more
resistant culture¥: Based on original investigations by
Levin et al,'® Baieret al* formulated a multispecies model unit (and, hence, its mode of behaviatepends on the en-
of interacting bacteria-virus populations and studied the deergy consumed by all the other oscillators in the system, both
velopment of a chaotic hierarchy as the number of bacterialvith respect to its average value and with respect to its tem-
variants increased. A resource distribution chain with severaporal variation(amplitudes and phasesf the system has a
cascaded pools was first considered by Postial L3 They cascaded structure, the energy supply tends to decrease along
showed how the forcing of one habitant by the variation inthe chain. Hence, the functional units will operate in differ-
substrate concentration in the overflow from the upstreangnt regimes and, even if their parameters are identical, their
habitant can produce increasingly complicated dynamics an@mplitudes and frequencies may differ. Moreover, only a cer-
how regions of phase synchronization could arise along th&in group of oscillators within a chain may experience the
chain. In the present paper, these results will be placed in Broper conditions to oscillate and/or synchronize, and this
more general perspective. group may shift up and down along the chain depending on
Nephrons are the functional units of the kidney in whichthe total energy supply. The considered aspects of the prob-
urine is formed through a complicated balance of filtration,/lem are different from known examples of synchronized
secretion andactive and passiVeeabsorption processes. To cluster formation in a chain of Rossler systems with gradu-
protect its function against changes in the arterial blood pre<2lly varying parameter’
sure, the individual nephron disposes of a feedback mecha-
nism (the tubuloglomerular feedback TGF mechanighat
produces a contraction of the afferent arteriole and, hence, lh FORMATION OF SPATIAL OSCILLATORY
reduction of the incoming blood flow in response to elevated®PATTERNS IN RESOURCE-DEPENDENT SYSTEM
NaCl concentrations in the fluid leaving the nephron. They podel
TGF regulation can generate self-sustained oscillations in the
proximal intratubular pressure with a typical period of  To investigate the typical behavior patterns in a resource
30—40 s'* While for normal rats the oscillations have the consumption chain we need a simple model that mimics the
appearance of a limit cycle, highly irregular oscillations aremain properties of such a system. Let us consider the elec-
observed for spontaneously hypertensive rats. The tubuloftonic circuit with a tunnel diode shown in Fig. 1. Here, the
glomerular feedback mechanism may be considered as reif1comingli, and outgoind o, power supply currents are ex-
forcement of the normal myogenic mechanism by which thePlicitly taken into account. The voltagé plays the role of
smooth muscle cells in the arteriolar wall respond to change§nergy source for the oscillator system containing the ele-
in the transmural pressute. mentsRs, L, C;, andD. Self-sustained oscillations are main-
Nephrons are arranged in a tree structure with the affert2ined due to thé&l-shaped characteristi¢segative differen-
ent arteriole branching off from a common interlobular ar-fial resistancg of the diodeD. The oscillation period is
tery. This structure allows a change in the blood flow to onegf€termined by the capacitanCg and the inductance. Ca-
nephron to influence the blood flow to all the other nephrond?@citorC; is introduced to account for possible accumulation
in the tree. Interaction between adjacent nephrons can occ@f €nergy by an individual oscillator while the resisty is
due to vascularly propagated coupling mediated by electrgiesponsible for the_ flmte replenishment rate and for losses
chemical signals and muscular contractions that travel alon§&cause of transmission. S
the arteriolar wal® and hermodynamic coupling by which _ Using Kirchhoff's law for the circuit in Fig. (&) and
an increased flow resistance in the afferent arteriole leadinfitroducing the new time variable=t/C, we can write
to one nephron forces a higher blood flow to the neighboringo‘"’n the governing equations in dimensionless form
nephrons. Only a few studies of multinephron systems ap-
pear to be availabl¥. We present a dynamical approach to x=y-f(x),
the description of a vascular-nephron tree.
A typical feature of the considered examples is that the
energy(or primary resourcgsvailable to the individual sub- ey=z-yR-X, (D
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3.0 T T T T

. 1
vZ=-y+ F(em_ 2Z+ €y -
2.0
Here,e=L/C; and y=C,/C;. g, and e, are potentials in
the “in” and “out” points, respectively. Parameterand R 1.0
are dimensionless representations of the resi®prdR, and

Rs. Variablesy, y, andz correspond to the voltageover the :— 0.0
diode, the currentthrough the inductok, and the voltag& oy
on the capacito€,, respectively. We assume tha;<C; so o -1.0
that z quickly follows variations ofk andy. In the following 20
calculationse=0.1 and y=0.01. f(x) is assumed to be of -2.0 (=T
cubic shape with the nonlinearity chosen in the form: 0
_30 40 50 60_70 80 90

f(x) = 1/3 + 20 - 552 + X/3. ?) %
In the limit r—0, one can get=(e,+e,,)/2. Hence, we 490 50 60 70 80 9.0
obtain a 2D oscillator which is similar to the FitzHugh— Z,

Nagumo modéf with z as a control parameter. Figurébl
illustrates the location of the nullclines in the system. NOteFIG' 2.'The real part of the equilibrium state eigenyalluﬁexceeds zero in

. L . ; . a certain range o, (each curve represents one pair of complex-conjugated
that the x-nulicline coincides with thef(x) function. It is eigenvaluep The resulting dimension of the unstable manifBlgvs Z; is
clearly seen that for small and large valuespintersection  shown in the insert.
of the nullclines occurs outside of the interval with negative
slope off(x), i.e., the equilibrium point is stable. For inter-
mediate values of, there is a couple of Hopf bifurcation manifold D, of the equilibrium point first raises and then
points where a stable limit cycle is born, and extinguished. decreases with increasitgy (insert in Fig. 2.

In order to build a one-dimensional array of such func-  From a physical point of view, these results imply the
tional units we take possibility of D,/2-mode self-sustained dynamics in the
whole system. In spite of the fact that we can not formally
assign a given pair of eigenvalues to a specific unit of the
wherej represents the number of the oscillator, ahis the ~ chain, it is clear that the first pair of eigenvalues crossing
total number of unitsz, is constant bias voltage, hereafter Zero should be related to the first unit in a chain that receives

denoted a<Z,. Free end of the chain is modeled ty,, the necessary energy input frafy. Similarly, the subsequent
=2\ crossings of zero by different pairs of eigenvalues represent

the subsequent transitions of oscillatory units from the

damped state to self-sustained dynamicsyioe versa This

is the basis for the formation of a group of units along the
Organized in a chain, the unit€l) become globally chain, that we call awscillatory cluster

coupled via variation of the; variables. There is a gradual Let us now consider what happens in a longer chain of

decrease of the mean value Dfalong the chain because of 50 units in terms of amplitudes of oscillations. In Fig. 3, the

the voltage drop across each coupling resistdfote that the

current along the chain splits into two currents at each unit.

€n=7Z-1,  €out= Zj+1, j=1...N,

B. Clustering

Thus it decreases along the chain, and the drop; dfom LT ' Z,-80
unit to unit becomes smaller and smaller. ‘.Illl

In the phase space of the whole system, the variation of i l“mw
the mean value of; affects the stability of the global equi- —
librium state that can be defined from (00000000, Z0=200 1

0004

X] = O, yl = O, ZJ = 07 J =1...N. L , I , ||I-llllT‘“‘T.“’T"“T”NT“Mh

The transition from damped behavior to self-sustained 00000000, Zp=500 1
oscillations for a particular unit in the chain takes place i °°~m..oo||.|.||| ]
through an Andronov—Hopf bifurcation in tHe;,y;) phase - essasones
sub-space. In Fig. 2 the real part for each pair of complex- 20 .» I z :_ 55:0
conjugated eigenvalues is plotted agaifistor a chain of 10 X; 100 °°°’°°°°°m.m.,.mm 0~
units (1). The third eigenvalue for each subsystem is not - """Illll'll'
shown in the figure since it is strongly negative in the whole °r
range of control parameters. With increasifiggfrom 4.0, the 0 10 20 30 40 50
eigenvalues are seen one by one to cross the imaginary axis Position in the chain, |

and attain positive real values and &g increases further, FIG. 3. With increasing,, the oscillatory cluster changes its position along

again to k_)ecom?_negative- Accordin_g to th_e number of eigenne chain and varies slightly in size. Parameters are fixed=at001, R
values with positive real part, the dimension of the unstable-0.05,£=0.1, andy=0.001.
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60 0.020 (@ 3.0 —— (b) 3.0 . . .
e Z=10
50 } J0.010 287 i 28 [ .
26 | E
40 ¢ - ‘ — 26} ;
7 10.005 r 24 | -
30 } ]
0 22 9 ] 24 | :HB—
i ] 1HB. I
20 0-002 2.0 1 1 1 1 1 2.2 ! 1 1 I| 2
0 2 4 6 8 10 12 5.0 6.0 7.0 8.0
10 {0.001 k z
0 ! ! FIG. 5. (a): The distribution of oscillation period$ inside the cluster is
0 10 20 30 40 50 preserved, while the whole cluster moves with the variatio@pk repre-
Position in the chain, ] sents the relative position within the cluster. »t0.001,R=0.05,¢=0.1,

and y=0.001. (b) T vs z dependence for the individual oscillatory unit

FIG. 4. The position and size of the oscillatory cluster are given by the graJeveaIS the origin of intra-cluster period distribution.
region for differentZ, values(at r=0.001), and by the hatched region for

different r values (at Z,=30). Other parameters are fixed R=0.05, &

=0.1, andy=0.001.

Figure 5a) shows how the mean period of oscillations is
distributed along the cluster for different values of the volt-
ageZ,. In this figurek=1 is assigned to the first oscillator
with self-sustained dynamics in the chain. Thus, different

ositions along the chain correspond to different curves in
ig. 5@a). This allows us to compare the spatio-temporal
structure of clusters for different values of the control param-
For a larger value of the voltagy=20.0, inspection eter. It is remarkable that the period distribution maintains its

f the fi h that the first 16 unit | displ form. For all the values of, shown there are two oscillators
ot the figure shows that the 1irs units no fonger aispiay, ;i longer periods close to the beginning and the end of the
significant temporal variations of because the high mean

| P the individual unit i d d stat cluster, and there is a clear minimum of the oscillation period
value otz places e Individual unit in a dampea state ac-, ., the center of the cluster. Both the first and the last os-
cording to Fig. 1b). The next 8 units demonstrate self-

. ) . . _cillators in the cluster also display relatively low oscillation
sustained dynamics while the rest are in a damped state. Wi riods Py y
Lr;]creas(;ngfzo r(]Z(_):SO)a the OSC'.”a“'."g g_rrohup shifts tg)wards To explain the particular shape of the intra-cluster period
€ end of chain and grows in size. thus, We ObSEIVE aljigyiy tion, we calculate how the period depends onzhe
oscillatory cluster shifting upstream or downstream the Cha”Q/alue for an individual systentl) in the limit r—0. The
with vquatlon of the energy source paramgi@r When ap- results are given in Fig.(6). The period distribution along
proaching the low-voltage end of the chain, the cluster be;

fairly | bef i letely di t the cluster clearly follows the behavior of an individual unit
iognges airly large before it completely disappearszgt iy, decreasing. The observed structure is the result of the

: ' . L drop inz from unit to unit, combined with the variation of
While Z, defines the maximal level & for units in the PNz

hain. th tar affects th it drop f it 1 f(x) in the region of differential negative resistance.
chain, the parametarafiects the vollage drop from unit to Hence, in spite of the presence of a coupling between all
unit. Hencey can also influence the position and size of the

lat luster. Fi 4 Is th lation betw thcluster units, synchronization is not observed due to a
osciliatory ClUSIEr. Figure < reveals the retation between %oupling-induced frequency mismatbletween the oscilla-
variations ofZ, andr. In both cases, the size of the cluster

. . . o ors. For small values af the frequency mismatch vanishes
remains relatively stable until the end of the chain is reache

S o ogether with the drop of; from one oscillator to the next.
Here the cluster becomes significantly longer before it d'sapHowever the coupling vanishes too. The largeis, the
pears. This can partly be explaine_d by the decreasing V.Oltagﬁronger ’the coupling will be, but at the same timé the fre-
drop per oscillator along the chain. When the cluster is Io—quency mismatch becomes more pronounced between two

lectri thouah th . d d stat Th‘?]eighboring units. Together this results in an asynchronous
electric power even though they are in a damped state. Tig. o o\ ster behavior in the considered parameter range.

p_roduces an additional voltag_e drop and reduces the“c_luste:r As observed in Fig. @), the maximal possible period
size. Closer to th_e end of chain, the cluster has Iess_ S'Ientdrop between two units is not greater thafi~0.53 corre-
energy consumption. The voltage drop from one unit to thesponding to the difference between the top and bottom points
next decreases, and the cluster length grows. of the curve. Thus, the coupling-induced mismatch is limited
to about 20%, while the coupling strength can be increased
by an appropriate choice of control parameters. Let us select
R=0.01 andr=0.02. This provides a strong drop gf and
With the emergence of a cluster of oscillatory, identicalthe oscillatory cluster consists mostly of just two units. The
units, one might expect to observe synchronized behavior fotluster position and operating regimes are schematically
the globally coupled identical oscillators. However, inspec-given in Fig. 6 together with representative phase plots. The

tion of the cluster reveals a completely different situation. synchronized pairs of oscillator units are given in gray, while

x; variable of each unit is plotted against its position in the
chain for different voltage&, of the power supply. For rela-
tively small voltagegZ,=8.0), the first 8 units display oscil-
lations of considerable amplitude. For the next units, th
mean value ofz is not sufficient to support self-sustained
dynamics.

C. Intra-cluster synchronization
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18 (i)  Although the chain units are originally identical, the
resource drop along the spatial coordinate introduces
17 variations of the operating point and, hence, a fre-
guency mismatch between neighboring units;
16 (i)  in the case of weak coupling, the cluster elements are
generally out of synchrony, and the period distribution
15 along the cluster follows the curve of period vs energy
supply for the individual oscillatory unit. The result-
14 ing intra-cluster period/frequency distribution pre-
Z0 serves its structure as the cluster moves along the
13 chain with variation of the bias voltage. Due to the
competitive nature of the coupling, there is a tendency
12 for anti-phase synchronization;
(i)  for strong enough coupling, intra-cluster synchroniza-
1 tion is typical. However, shifts of the cluster position
are accompanied by desynchronization of the cluster
10 elements.
° lll. BIOLOGICAL EXAMPLES
1 2 3 4 5 6 7 A. Microbiological oscillators
Position in the chain, | To explore how cluster formation manifests itself in a

. N very different system we consider a microbiological chain of
FIG. 6. Small-sized clusters exhibit different synchronous or asynchronous . b . d vi Bei led via the fl
patterns with varyingZ, for strong interaction along the chain=0.02,R 'merac.t'.ng acteria an V|r'uses. emg couple ’ via t _e ow
=0.01,:=0.1, andy=0.001. Gray areas denote synchronized behavior, andOf nutrition, such a population model fits well with the ideas
hatched areas denote asynchronous dynamics. of spatial development and damping of self-sustained
dynamics.

_ . 1. Model
asynchronous behavior is denoted by hatched regions. For ode

higher values 0%, the oscillatory cluster moves out of the ~Our analysis considers a one-dimensional array of popu-
chain to the right. lation pools as originally introduced by Postnet al.

For some intervals of Z, (e.g., Z, Each poolis the habitat for a three-variable predator-prey
€[10.4,11.2,[12.2,12.9), oscillations in clusters of 2 or 3 System, consisting of bacteria, infected bacteria, and viruses,
units are synchronized with a phase lag between two neigHepresented in the equations by their concentratignd;,
boring units as shown in the inserts. Note, that the phase la@d Pi, respectively(i denotes the pool numberNutrition
in the two-unit cluster increases with, and the cluster Palance of inflow, outflow, and consumption provides a
passes through the anti-phase state somewhere in the middfrth equation for the substrate concentratinltogether
of the Z, interval for synchronous behavior. For the two-unit this leads to the following set of coupled differential equa-
cluster there is a clear explanation: When only two units intlONs
the chain display self-sustained dynamics, the influence of dB  1BS

other units can be considered as a shift of control parameters. at - ﬁ - pB; — awP;B;, (3)
Hence, we have a system of two oscillators coupled in a
competitive way that typically leads to anti-phase synchroni-
zation. Together with the coupling induced frequency mis- di = awB,P, - pl, - Il 7, (4)
match this provides anti-phase rather than in-phase synchro-  dt o b
nization. At some value oZ, we find the most balanced
regime(minimal frequency mismatghand the synchroniza- dp;
tion regime becomes anti-phase. The insert forZe16.8 dt ¢=Pip=aBiPi —aliPi+ Bli/7, 5)
shows that there is also synchronization at various rational
frequency ratios. ds yBS
At some values ofZ, the cluster changes its position. ot =p(S-1+ ) —pS - S+K' (6)

Such a translation is typically accompanied by an extension
of the cluster to 3 units and a desynchronization between twavhere the termB;S /(S +K) in the first and fourth equations

or all three involved unit§see the bottom insert in Fig).6 describes standard Monod kinetics for bacterial growth. The
When the first or last element of a cluster passes through thichaelis—Menten constaht represents the concentration of
Hopf bifurcation point Fig. 5b)], the coupling-induced fre- nutrients at which the growth rate is reduced to half its maxi-
quency mismatch can be strong enough to desynchronize timeal value, and each cell division is assumed to be associated
intra-cluster behavior. We can thus conclude that: with a resource consumptiop. For all variables, negative
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terms proportional te in the governing equations reflect the dissipation in the system. In the absence of viruses, the
washing out from the habitat. According to our assumptionssingle pool model displays an equilibrium point

however, only nutrients will be transmitted to the next pool.

Infection of bacteria by viruses is described by the term BO=£<0— pK ) =A’ 7)
awB;P; in (3) and (4). Here, « is the kinetic rate constant, Y v=p v-p

_and @ IS the proba_blhty thgt a virus particle successtully j, \yhich the rate of bacterial growth balances the wash out.
!nfects a cell, once it has aff!xed o its surface. Tﬁe M Eor dilution ratep > p.=ov/ (K+a), only the trivial equilib-

in (4) and (5) describe a lytic response to the virus attackrium poiNtB,=0, ;= exists

yv?erf:,daftﬁlrba Ia;tent dperllod of the order Ofmgo min, the As p is reduced belovp,, the equilibrium population of
Infected cell bursts and releases an averagemew VIrUSeS. 1, vierjg starts to increase. At the beginning, the cell concen-

Note, the term =l;P; in (5) represents unsuccessful Virus yavion is still too small for an effective replication of viruses
attacks on already infected cells. Coupllng_betwee_n the poolﬁ;) take place, and the virus population remains nearly negli-
takes place only through the flow of nutrients with a totalgible.As the dilution rate continues to decrease, however, the

incoming _ratiOfﬁ(Sb‘,ﬁUi)’ an (/)utflow of —psr’] ar]ld ahcot?- virus population grows significantly. The model then under-
sumption in the ha |tatdoi/inS (S+K). For the first a'tl)-l goes a Hopf bifurcation, and the system starts to perform
tat, § =S is assumed to be zere; represents a possible <ot stained oscillations.

lateral nutrition source for thgh habitat.

The parameter values that we have applied in the present ) )
analysis correspond to the values used in our previou§: SPatial dynamics
studies'? »=0.024 mint, K=10 ug/ml, 7=30 min, »=0.8, Depending on the population sizes attained in the up-
v=0.01 ng,B8=100. These values are also in general agreestream habitats, different degrees of depletion of the nutrient
ment with the experimental values obtained by Lesiral’®  concentration will occur, and as the surplus resources con-
for particular strains of bacteria and viruses. The concentrainue to flow into the next habitat, this population pool will

tions B;, I;, and P; will be specified in units of 19ml. be modulated by a temporal nutrient supply that depends on
Hence, we have used a value @103 ml/min (as com- the type of dynamics realized in the former pool.

pared with the valuex=10"° ml/min applied by Baieret Along the chain there will be a net consumption of re-
al.??). sources. However, different choices of the surplus nutrient

Like many other ecological models, our system involvessupply o; along the chain allow us to simulate different pat-
positive feedback mechanisms related to the replication oferns of growth dynamics. Below we consider two important
bacteria and viruses. There are nonlinear constraints assocases: Lateral nutritiofFigs. 7a) and qb)] and afferent nu-
ated both with the bacterial growth rate and with the infec-trition [Figs. Ac) and 7d)]. The dilution rate is assumed to
tion rate, and there is a delay associated with replication obe p=0.003/min, and the nutrient concentration is specified
the viruses. The rate of dilution is a main determinant ofin ug/ml.
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In the first case, the choice of equal valuesogt o, i 10th habitat. However, the next three habitats display some
=1,2,3...provides a separate influx of resources to eachintermediate dynamical patterns, representing neither the
habitat. For low values af, the system attains a stable equi- self-sustained regime nor the population collapse. We can
librium state that extends along the entire chain. As the nudescribe these states in terms of chaotic forcing across the
trient supply is increased, starting in the downstream end offopf bifurcation point for the individual system. Thus, such
the chain, habitat after habitat begins to perform self-habitats switch chaotically between a self-sustained regime
sustained oscillations. There is an interval where all habitatvhen the nutrition amount temporarily is high enough, and a
from a given number and up execute a synchronous periodidamped state. In Fig.(d) habitats 11, 12, and 13 display
behavior. Aso is further increased, the downstream habitatdow, but finite amplitudes of variation in the bacterial con-
begin to show quasiperiodic, chaotic and higher order chaeentrations. All downstream habitats are in the population
otic behaviors of increasing complexity, and only the inter-collapse regiméB; =~ 0).
mediate or first pools perform simple periodic oscillations.  Let us summarize some of the main findings:

Foro>7 ug/ml, only the motion of the first habitat remains ()
periodic. Eigure ) shows the_ variation of the bactgrial chain of habitats can generate limited-sized clusters
concentrationB along the chain fors=2.0 ug/ml. It is with self-sustained dynamics while other habitats are
clearly seen that the first 5 pool§ reach an'eqU|I|br|u'm state at in the collapsed state:;

very low B values.- The bactena! populations survive here,gi) inside such clusters, subclusters with different behav-
but the concentrations are not high enough to generate self-" ;. (steady state, regular synchronous oscillations, or
sustamed osmllgﬂon;. Qscnlatory bghawor vy|th increasing chaotic behavidrcan be detected. Note that chaotic
amplitude(gray lines indicate the variance Bf) is observed

X : regimes can also be synchronous or asynchronous as
starting from the 6th habitat. Pools from 6 to 10 form a described by Postnost al:13

cluster with synchronized periodic oscillations. With gradu—(iii) there is an intermediate operating regime arising via
ally increasing resources, oscillations become chaotic in the periodic or chaotic modulations of the individual sys-
11th habitat and maintain this dynamics till the last, 20th, tem across a Hopf bifurcation point.
habitat.
A second interesting case is afferent nutrition where
there is a single source of nutrition to the first habjigs.  B. Renal autoregulation
7(c) and 1d)]. Since each bacterial population consumes part ) ) ) ) ) ) ]
of the incoming resources, the concentration decreases along hile @ chain of microbiological habitats provides a

the chain. Thus, for some habitat the available resources wiff"€-Way coupling between the oscillators, the next example

not suffice to support self-sustained oscillations. HowevernVolve more complicated distribution network associated

the modulation ofS may still be propagated with the flow With an asymmetric but global coupling through the sharing

providing an oscillatory forcing for habitats in the rest chain. ©f blood flow In a n(_aphr.om(_: system. .

In this case, one can observe a limited region of self- The blood f||tra.t|on in kidney is processed with a large

sustained oscillations along the chéfig. 7(0)]. numbe_r of sub-unit§nephrons connected to a complex
For low values ofo;, a number of habitats at the begin- branching structure of vessels calleq ;h_eglc_)merular vas-

ning of a chain may be able to attain fairly high levels of cular tree with an inhomogeneous distribution of arteriolar

bacterial concentration. However, these concentrations anngthS’ nephron  parameters, &esince the  individual

not sufficient to produce self-sustained dynamics in interacpephron is known to operate in a regime of self-sustained

tion with the viruses. As more and more of the resources ar((gscnlatlons with the arterial pressure being a control param-

consumed along the chain, the bacterial populations collapseé[er’ the coupled nephrons can be considered in the frame-

(B;=0). At 04=7.024 ug/ml the first population reaches the Wwork a resource distribution system.

point of Hopf bifurcation and self-sustained dynamics arises

in the chain. Since the variation of the natural frequency isl- Vascular-nephron model

weak and the coupling strengthroportional to modulation In order to examine the typical mechanisms associated

depth of resources flows quite high, one observes synchro- with a structure of preglomerular vascular tree we consider a

nization in the group of habitats that display self-sustainedgimplified vascular network that allows us to made conclu-

dynamics. sions about the main operating regimes and the transitions
Further increase af; to 10.0-12.0ug/ml reveals a dif- between these regimes with varying parameters.

ferent pattern where only the first two habitats maintain the ~ Our model for the vascular-nephron tree consists of a set

regime of synchronous regular oscillations, while period-of afferent arterioles branching off from a single interlobular

doubled regimes and the development of chaos can be olitery as shown schematically in Fig. 8. The vascular-

served further downstream. nephron tree structure is described in terms of the lengths of
Finally, for o4 >16.0 ug/ml only the first habitat shows the arteriolar and arterial branches together with their hemo-

regular oscillationgbecause this is the only possible oscil- dynamic resistances. It is assumed that the glomerulus of

lating regime for an individual systemwhile the subsequent each nephron is connected to the corresponding branching

are in a chaotic state. The case=18.0 ug/ml is illustrated  point via an arteriole of length?, and of hemodynamic re-

in Fig. 7(d). By virtue of the resource consumption along thesistanceR?,i=1...12. Thearterial pressur®, to be used in

chain, the self-sustained chaotic behavior dies out after ththe model of individual nephron now becomes the driving

Rising or declining resource concentrations along the
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In this way, the vascular propagated interaction is delivered
to each nephron as an additional part of its activation poten-

8 amplitude(kPa) . .

) 04 tial W:

. 0.0 8 N

s 7 AV = X Wexp- L +LY), (9
i=1i#k

4 Number of

= branching point et wherej is the number of the branching point to which the

considered nephron with numbkiis connected. The matrix

L;i contains the lengths from a given branching pgita all

FIG. 8. Left: Sketch of vascular-nephron tree including the interlobularnephrons=1...N, andl_g is the length from the given neph-

artery, the afferent arterioles and the glomeruli. Right: Oscillation amplituderon to the connected branching point.

as a function of arterial pressure and position of the branching point along . .

the vascular tree. Each individual nephron may be described by the fol-
lowing model®??®

blood pressure at the given branching pd?@tj k=2,...7. P, = Ci{Ff(Pt,Pa,r) = Freab— Fuls (10
Connection between the branching points is described in tub

terms of branch Iength!sf’k and their hemodynamic resis-

tancestbk j=1...7. Thesame approach is used to describe r=uv,, (12)
the connection of branching point 1 to the terminal points

with the constant pressure valuBg and P,,. This part of 1

the vascular-nephron tree imitates the connection of the tree v, = —{Pa(Py,Pal) = Pedr, ¥ (X3,0),T) — wdv,},  (12)
to higher-level arteries. To describe a drop of blood pressure @
along the vascular-nephron tree the transient time for blood
pressure distribution over all branching points is assumed to
be much smaller than the characteristic time scale for the
TGF regulation in the nephrons. In other words, the elasticity
parameter of the arteriolar walls is considered to be so high
that we can neglect time delays in the pressure evolution. X2:§(X1—Xz), (14)
With this approach we can calculate the static pressure dis- T

tribution for any state of connected nephrons using linear

algebraic equations written for each branching point. Asnex- . 3

ample of such an equation for the 6th branching point of the X3 = }(Xz = X3). (15
vascular-nephron treg-ig. 8) reads:

. 3
Xl = FH - _I__Xl, (13)

The first equation determines the pressure variations in the
Pe-P2 PR-P5 PY-PR PY-PR proximal tubule in terms of the in and outgoing fluid flows
PR + R + R =0. (8) whereF; is the single-nephron glomerular filtration rate, re-
3 4 absorption in the proximal tubulg,.,is assumed to be con-

Here, P§ and Pj represent the blood pressure in the stant,Fy is the flow into the loop of Henle, an@,,, is the
glomerulus of 3th and 4th nephroR?, Pg, and P? represent elastic compliance of the tubule.
the blood pressure in the 5, 6, and 7th branching point, re- The following two equations describe the dynamics as-
spectively.R denotes the hemodynamic resistance betweesociated with the flow control in the afferent arteriole. Here,
6th and 7th branching points. This resistance is assumed torepresents the radius of the active part of the vesseband
be the same for all brancheé®] andRj] are the hemodynamic s its rate of increased is a characteristic time constant de-
resistances to 3th and 4th nephron, respectively. NoteRthat scribing the damping of the oscillations, is a measure of
andR{ are not constant because it includes the resistance dfie mass density of the arteriolar wall, aRg, denotes the
an active part of an afferent arteriole. average pressure in the active part of the arteriglgis the

Equations of this type for the all branching points arevalue of this pressure for which the arteriole is in equilibrium
obviously interdependent and, hence, produce a glodrmlo-  with its present radius and muscular activatibn The ex-
dynamic couplingamong nephrons in the vascular-nephronpressions foF;, P,,, andP.qinvolve a number of algebraic
tree. The strength of this coupling is generally increasingequations that must be solved along with the integration of
with RY,, but decreasing with increasiriy. Egs.(10—<(15).

Neighboring nephrons can also influence one another The remaining equations in the single-nephron model
through a vascular propagated electri¢alectrochemical represent the dela¥ in the TGF regulation. For a more
signal. To account for this mechanism, the total activationdetailed explanation of the model and its parameters see,
potential fork’th nephron in Eq(12) is assumed to be the e.g., Ref. 21.
sum of contributions from all other nephrons in the tree.  Thus the mathematical model of vascular-nephron tree
Moreover, the electrical activation potentials are assumed twe investigate consists ofi) 12 sets of coupled ODEs de-
propagate along the vascular wall with an exponential decacribing individual nephrons(ii) a set of linear algebraic
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0031 [° 2 oo =16 5 7
0des x*;g g > FIG. 9. (a) Slow frequency adjustment with varying
g0 pe7, Emmeemeeted 5 vascular couplingP,=13.3 kPa,R"=0.002 kPa- s/l
i eyt Insert shows the variation df, for the first nephron vs
£ 0029 | y. Phase entrainment of the slow mode @) y
=1.6 mm?* and (¢) y=4.0 mm?; (R°=0.002 kPa-s/nl
0.028 | and P,=13.3 kPa Phase differences are calculated
with respect to the first nephron.
0.027

2 4 6 8 10 12

Nephron number -2 [ 2 n 32x
Phase difference

equations that determines the blood pressure drop from omather than its physiologically relevant properties. From a
branching point to another, andi) algebraic relations for structural point of view, the object we consider is a popula-
the vascular interaction. tion of globally coupled two-mode oscillatofé Besides the

Depending on the choice of the control parameters, theelatively slow mode produced by the TGF mechanism with
amplitudes of the pressure oscillations in the nephron tree aiigs inherent delay of about 15(associated with the flow of
found to be different at different positions in the tree. Due tofluid though the loop of Hene there is a five to six times
model symmetry, two nephrons connected to the same nodaster mode arising from the response of the smooth muscles
have the same oscillation amplitudes. Thus, we can refer ti the arteriolar wall. A typical phenomenon that can be ob-
the number of the branching point to describe the amplitudgerved in such systems is synchronization. Namely, a certain
properties. Branching points 2, 3, and 4 may correspond t@egree of frequency and/or phase entrainment is expected to
deep nephrons and branching points 6 and 7 to superficiglccur under variation of appropriate control parameters.
nephrons. Experimentally, only the pressure oscillations in  From the classical theory of synchronization it is known
nephrons near the surface of the kidney have been investihat there are two main parameters: The strefothype of
gated. However, we suppose that both dgegtamedullary  the interaction and the degree of frequency mismatch. Our
and superficial nephrons can exhibit oscillations in theirfist question is, therefore, how the control parameters of the
pressures and flows. vascular network are related to the synchronization param-

When varying the arterial pressure, different amplitudegters. We have previously shofrthat increasing vascular
patterns can be observed in the multinephron modelgq piing leads to in-phase synchronization while strong he-
(10~(15), (8), and(9). For low values of the arterial pressure i qqynamic interaction can produce anti-phase entrainment.
P, vanishing amplitude of the tubular pressure osc:illiationq,\,e would expect similar results in our nephron tree. How-
can be observed near the top of the t(ee., in branching gy er the influence of the arterial pressieand of the he-
points 5, 6, 7. The nephrons connected to these points 0Py, ,qynamic resistances between the neighboring branching
erate in a damped regime like the population pools we disqinis is not trivial since these parameters also affect the
cussed in the above example.

) . In_the individual ”ephf‘”haturm dynamics of the individual nephrons. Let us perform
model, the self-sustained dynamics is bounded by two pointg ¢, experiments to clarify the situation

of a Hopf bifurcation atP;=11.48 kPa and®,=13.86 kPa.
The calculated value of the mean blood pressure in branch-  yynre parameters used in Fig. 8, a choice of the arte-
ing point 5 is lower tharP,. Hence, neither nephrons con-

nected to this boint nor nephrons downstream to it osc'IIateriaI pressure oP,=13.3 kPa allows all nephrons to be in the
. IS pol P W : : oscillatory regime. Here, the hemodynamic resistance has
As P, increases abov®,, the upstream nephrons stop to

. . ) . =0.002 kP l. Th I -
oscillate. For intermediate values Bf, there is a cluster of been assumed to t&=0.00 as/n € vascuiar cou

. . S 1
nephrons with self-sustained dynamics in the middle section?lmg may then be varied by adjusting gffrom 1.6 mm

i : 1 ’ . i
of the tree. Finally, for high enough values Bf(>17 kPa ;trong |nterabct|o)‘|to 4.0 mm (We‘.ak interaction As de

: . gned aboveR® denotes the flow resistance between two suc-
only nephrons connected to the branching points 6 and

essive branching points of the vascular tfese Fig. 8 and

display oscillations because for all other nephrons the bloocﬁhe arameter measures the lenath constant associated with
pressure in the corresponding branching point is too high, P v 9

Thus, the oscillatory amplitude patterns along a nephron treg}e exi)honenglal' (Ijeca}l/_hof ;[he vasculzr i)r'gp?gated couptllhng
have a reasonable explanation in terms of a drop in drivin ong he arterioles. The irequency distribution among the

pressure from one branching point to the next, causing ephrons is shown in Fig. 9 for the slofi) oscillatory

change of the operating regime of the individual ne hrons.mOde'
g P greg P For y=1.6 mni?, the frequencies of the slow TGF me-

diated modes are locked at the same vd}jjr0.0275 Hz for
2. Coupling-induced inhomogeneity all the nephrons. Hence, strong vascular coupling leads to
in vascular-nephron tree perfect frequency locking along the tree. With decreasing
The nephron tree represents an extended network whos®upling strength, the collective behavior becomes asynchro-
complex dynamics is controlled by a significant number ofnous. In Fig. %) this is illustrated by the curves foy=2.5
parameters. To focus our investigations we shall emphasizand y=3.0 mm*. Surprisingly, we find that with further re-
the generic aspects of cooperative behavior in the networkluction of the coupling y=4.0 mn1?), all nephrons again

Trial 1. Weak hemodynamic coupling
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FIG. 10. (a) Slow frequency adjustment f&°=0.01 kPas/nl withvarying vascular coupling. Phase entrainment of slow dynamifs) ai=1.6 mm; and
(c) y=3.0 mm%. (R°=0.01 kPa-s/nl an&®,=13.3 kPa.

demonstrate a synchronous state, novf,,at 0.0287 Hz. To However, a globally synchronized state similar to the
explain this, let us consider the phase dynanpfégs. 9b) state shown in Fig. 9 is not achieved even for
and 9c)]. In the first synchronous statstrong vascular cou- =10.0 mm?*. We conclude that a stronger hemodynamic
pling), in-phase relationships are clearly observed for theoupling is unable to synchronize the slow mode oscillations
slow TGF oscillations[Fig. 9b)], while the second state in the whole tree.

(weak vascular interactigrcorresponds to out-of-phase syn-  wjth increasing vascular coupling the nephrons are
chronization[Fig. %(c)]. Probably, in this case, the hemody- found to synchronize at a lower frequency than in the case of

namic coupling plays the ordering role. The insert in Fig.gma|| vascular coupling. This effect cannot be explained
9(a) illustrates how the locking frequency within a certain solely in terms of the in-phase nature of the vascular cou-

range shifts non-monotonically with varying vascular COU-pling. To find an explanation of the observed behavior, let us

pllng_]r.' |2 St h d . i consider how the vascular coupling influendés natural
nal <. >tronger hemodynamic couping frequencyof the individual nephron. Here, the natural fre-

To examine the hypothesis that the hemodynamic inter-

action mechanism is responsible for the out-of-phase synguency of th 'th nephron is understood to be the frequency

. o of a the nephron pressure oscillations in the absence of in-

chronous state at largg, we increase the initial hemody- ) . -
namic coupling toR’=0.01 kPas/nl andperform the same teraction, bl_Jt W|th_ the same driving pressure as the pressure
experiment with increasing vascular interaction. ata bbran(_:hmg point to which the nephron is connected, i.e.,

Let us focus on the changes in the slow dynamics of thd’a=Pj- Since the vascular coupling acts via the activation
nephrons. For strong vascular couplifig=1.6 mnil) all ~ Potential' ¥ of each nephrofEq. (9)], it can influence the
nephrons are frequency lockégig. 10. However, this syn- OPerating regime of the nephron. For in-phase synchronous
chronous state is out-of-phaféig. 10b)] in contrast to trial ~ State, one can estimate this influence via an artificial varia-
1. With decreasing vascular coupling one can observe asyrion of ¥ in the individual nephron¥’=k¥. Here, u is a
chronous behavior diagnosed both as frequency and phaséaling factor, the stronger the vascular coupling is, the
divergencgFig. 10c)]. Note that the pairs of nephrons con- larger u will be. Figure 11 illustrates how the nephron fre-
nected to the same branching point remain synchronous, argiency depends op. It is clearly seen that the oscillation
the first 6 nephrons operate in synchrony although the distrifrequency changes in a nonmonotonous way with increasing

bution looks a little washed out, but remains limited. u and becomes lower in average. Thus the vascular coupling
0.030 T y T . 0.031 . .
(@) () Yy
0.030 .
0.029 0.029 | FIG. 11. (a) The strength of the mus-
;:r? :1.:7 cular activation affects the oscillation
= = i frequency in a nonmonotonic way
= 0.028 ! ] is an artificial scaling factonV’ =uW.
0.028 E (b) Frequency of individual nephron
0.027 | ! i as a function of arterial pressuRy,.
Trial 2 H:Trla”
0'0271.00 102 104 108 108 1.0 0'02"]1,5 120 125 13.0 ' 135
1 P, (kPa)
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in general reduces the nephron frequepatyleast as long as energy supply parameter (for stronger couplingvia small-
it is introduced according t()]. sized clusters with out-of-phase synchronization that move
The influence of the hemodynamic coupling is evenalong the chain. Note, the resource parameter limited region
more complicated. However, a similar approach can be useaf self-sustained dynamics appears to be the necessary con-
Because the value of the hemodynamic resistaRteis  dition for such type of behavior.
closely related to the drop of arterial pressure along the vas- The individual microbiological population pool only dis-
cular tree, it can cause essential changes in the oscillatoglayed a simple Hopf bifurcation. However, different re-
properties of the individual nephrons. source delivering environments provide different behavioral
Figure 11b) shows how the nephron frequency dependspatterns. By increasing the lateral resource supply, the chain
on the driving pressure for the individual nephron. The curveof population pools could be driven into a state of increasing
is strongly nonmonotonic and includes pieces of gradual incomplexity with clusters of chaotic, frequency synchronized
crease, gradual fall, as well as values of abrupt changeools. The opposite case of afferddbwnstream-onlynu-
Clearly, such behavior is related to the bifurcations of thetrition provides a finite sized cluster with self-sustained dy-
nephron oscillatory regimes. Thus a variation of the hemonamics, outside of which the oscillations die out.
dynamic coupling can cause effects that are strongly nonmo- The physiological example of a vascular tree involves a
notonous and depend d#,. In Fig. 11(b), trials 1 and 2 are significantly more complicated coupling structure with the
presented in terms d?f’ drop along the vascular tree. It is flow mediated hemodynamic coupling competing with a vas-
seen that the first trial corresponds to a relatively small frecular propagated coupling of a very different nature. The
quency mismatch among the nephrons while stronger couionlinearities of the considered physiological systéms
pling (R°=0.01 kPas/n) leads to a faster drop of arterial specified though the open loop gain cut¥efor the tubulo-
pressure along the tree and, hence, to a larger frequency miglomerular feedback mechanigmonly allowed self-
match. sustained oscillations in a finite range of resource supplies.
We conclude that: At high and low afferent blood pressures, the individual
(i) There is a clear evidence for clustering of oscillatorsnelohrons dlsplayed stabl_e equilibrium points. Hence_, the
: . cluster formation mechanism we observed for a chain of
in the vascular tree model. The clustering clearly re- S . . . X
. . electronic circuits manifests itself in full range. Inside the
sembles the similar phenomenon observed in our elec- .
. . . cluster(or when the cluster occupies the whole vasculantree
tronic model(Sec. 1) and is obviously governed by . o . .
- we again met the coupling induced inhomogeneity that now
the same mechanism;

(i) due to a coupling induced shift of the operating re_activated rather complex patterns due to the complex re-
sponse of the individual system to external driving.

gime for each nephron, the hemodynamic resistance . . . .
b . . ) . The type of coupling that we have considered in this

R® acts in two different ways: As a coupling param- o . ) .
Dpaper is likely to be quite common in nature as well as in

eter and as a mismatch parameter; Variation of th .
manmade systems. The generic naturthefresource depen-
parameters of the preglomerular vascular tree pro-

duces different conditions under which the nephron dent couplingsuggests that it can serve as useful paradigm

. . .“together with the well-known and widely used approaches
along the tree operate, and this is equivalent to a mis- S : . .

) assuming interaction via mechanisms unrelated to the re-
match between the nephrons;

(i)  similar effects are observed for the vascular propa_source supply.

gated coupling. All together, these mechanisms pro-
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