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The paper investigates the special clustering phenomena that one can observe in systems of non-
linear oscillators that are coupled via a shared flow of primary resourcessor a common power
supplyd. This type of coupling, which appears to be quite frequent in nature, implies that one can no
longer separate the inherent dynamics of the individual oscillator from the properties of the cou-
pling network. Illustrated by examples from microbiological population dynamics, renal physiol-
ogy, and electronic oscillator theory, we show how competition for primary resources in a resource
distribution chain leads to a number of new generic phenomena, including partial synchronization,
sliding of the synchronization region with the resource supply, and coupling-induced
inhomogeneity. ©2005 American Institute of Physics. fDOI: 10.1063/1.1852151g

Synchronization of interacting oscillators is of interest in
many areas of science and technology. The purpose of
this paper is to investigate the special type of synchroni-
zation phenomena that arise in systems of coupled self-
sustained oscillators where the interaction takes place via
a competition for primary resources. This implies that
one can no longer separate the characteristic modes of
the individual oscillators from the properties of the cou-
pling network. Our investigation is motivated by an at-
tempt to understand how the distribution of blood in the
renal arteriolar network interacts with the pressure and
flow regulation of the individual nephron. However, to
illustrate the generic aspects of the problem we also dis-
cuss examples from electronics and microbiological popu-
lation dynamics. We show how sharing of resources can
lead to coupling-induced inhomogeneity among the oscil-
lators, and how this coupling structure tends to produce
anti-phase synchronization.

I. INTRODUCTION

The classical synchronization paradigm1,2 considers the
interaction of two or more oscillators, each with their own
sources of energy, and with the coupling being responsible
for the frequency entrainment and mutual amplitude adjust-
ments. Well-studied coupling structures includelocal
coupling,3 where oscillators in a latticesor some other spatial
arrangementd interact with their nearest neighbors, andglo-
bal coupling,4 in which each oscillator in an ensemble inter-
acts with all other oscillatorssor with a mean field produced
by these oscillatorsd. The first type of coupling may represent
the interaction of heart muscle cells or pancreaticb-cells via
gap junctions5 through which ions and small molecules can
pass from one cell to its neighbors. This coupling typically
produces waves or pulses that propagate across the interact-
ing units. Global coupling may be realized for a system of

coupled electrochemical oscillators6 or for the metabolic os-
cillations in a suspension of yeast cells.7 Typical phenomena
associated with this coupling structure are global synchroni-
zation, oscillator death through mutual suppression, and vari-
ous forms of clustering in which the ensemble splits into
subgroups of synchronized oscillators, but such that each
subgroup maintains its own dynamics. More recently, the
study of so-calledsmall-world networkshas attracted consid-
erable interest.8,9 Here, the interaction among the oscillators
combine a local coupling with a fewsmore or less randomd
long-range connections.

For all off the above coupling structures, the mathemati-
cal description assumes that the nonlinear properties of the
individual functional unitsi.e., its natural frequency, its re-
sistance to external perturbations and, if accounted for, its
inherent source of noised are governed by the unit’s own
parameters while the interaction is specified through a sepa-
rate set of parameters that characterize the coupling structure
and interaction strengths. Hence, one can distinguish the
natural modes of the individual oscillators from the proper-
ties of the coupling network.

However, there is a variety of problems in physics,
chemistry, biology, and engineering that cannot be consid-
ered within this paradigm, namely such problems where the
coupling between the oscillators takes place via the distribu-
tion of the energysor resourcesd that allows the individual
oscillator to maintain its dynamics.

Typical examples, that we shall consider in the present
paper include:

sid Cascaded electronic oscillator circuits where the os-
cillators are coupled via a common power supply;

sii d microbiological population dynamic systems where
pools of interacting species couple via the flow of
primary resources; and

siii d renal flow and pressure regulation where nephrons in
a vascular tree share a common blood supply.adElectronic mail: olga@fysik.dtu.dk
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Our aim is not to discuss each of these problems in detail
but to point to a number of generic phenomena associated
with the particular coupling structure and to illustrate the
spectrum of different areas where coupling via the distribu-
tion of primary resources takes place.

The system of cascaded electronic oscillators is of inter-
est both because the governing equations are well-
established and because detailed experimental verification of
the simulation results are easy to obtain.

Microbiological population dynamics play an important
role in many biotechnological industries. The homogeneous,
well-controlled bacterial cultures used in modern cheese pro-
duction, for instance, are often quite sensitive to virus attack,
and considerable effort is devoted to the search for more
resistant cultures.11 Based on original investigations by
Levin et al.,10 Baieret al.12 formulated a multispecies model
of interacting bacteria-virus populations and studied the de-
velopment of a chaotic hierarchy as the number of bacterial
variants increased. A resource distribution chain with several
cascaded pools was first considered by Postnovet al.13 They
showed how the forcing of one habitant by the variation in
substrate concentration in the overflow from the upstream
habitant can produce increasingly complicated dynamics and
how regions of phase synchronization could arise along the
chain. In the present paper, these results will be placed in a
more general perspective.

Nephrons are the functional units of the kidney in which
urine is formed through a complicated balance of filtration,
secretion andsactive and passived reabsorption processes. To
protect its function against changes in the arterial blood pres-
sure, the individual nephron disposes of a feedback mecha-
nism sthe tubuloglomerular feedback TGF mechanismd that
produces a contraction of the afferent arteriole and, hence, a
reduction of the incoming blood flow in response to elevated
NaCl concentrations in the fluid leaving the nephron. The
TGF regulation can generate self-sustained oscillations in the
proximal intratubular pressure with a typical period of
30–40 s.14 While for normal rats the oscillations have the
appearance of a limit cycle, highly irregular oscillations are
observed for spontaneously hypertensive rats. The tubulor-
glomerular feedback mechanism may be considered as rein-
forcement of the normal myogenic mechanism by which the
smooth muscle cells in the arteriolar wall respond to changes
in the transmural pressure.15

Nephrons are arranged in a tree structure with the affer-
ent arteriole branching off from a common interlobular ar-
tery. This structure allows a change in the blood flow to one
nephron to influence the blood flow to all the other nephrons
in the tree. Interaction between adjacent nephrons can occur
due to vascularly propagated coupling mediated by electro-
chemical signals and muscular contractions that travel along
the arteriolar wall16 and hermodynamic coupling by which
an increased flow resistance in the afferent arteriole leading
to one nephron forces a higher blood flow to the neighboring
nephrons. Only a few studies of multinephron systems ap-
pear to be available.17 We present a dynamical approach to
the description of a vascular-nephron tree.

A typical feature of the considered examples is that the
energysor primary resourcesd available to the individual sub-

unit sand, hence, its mode of behaviord depends on the en-
ergy consumed by all the other oscillators in the system, both
with respect to its average value and with respect to its tem-
poral variationsamplitudes and phasesd. If the system has a
cascaded structure, the energy supply tends to decrease along
the chain. Hence, the functional units will operate in differ-
ent regimes and, even if their parameters are identical, their
amplitudes and frequencies may differ. Moreover, only a cer-
tain group of oscillators within a chain may experience the
proper conditions to oscillate and/or synchronize, and this
group may shift up and down along the chain depending on
the total energy supply. The considered aspects of the prob-
lem are different from known examples of synchronized
cluster formation in a chain of Rössler systems with gradu-
ally varying parameters.18

II. FORMATION OF SPATIAL OSCILLATORY
PATTERNS IN RESOURCE-DEPENDENT SYSTEM

A. Model

To investigate the typical behavior patterns in a resource
consumption chain we need a simple model that mimics the
main properties of such a system. Let us consider the elec-
tronic circuit with a tunnel diode shown in Fig. 1. Here, the
incoming I in and outgoingIout power supply currents are ex-
plicitly taken into account. The voltageE plays the role of
energy source for the oscillator system containing the ele-
mentsR3, L, C1, andD. Self-sustained oscillations are main-
tained due to theN-shaped characteristicssnegative differen-
tial resistanced of the diode D. The oscillation period is
determined by the capacitanceC1 and the inductanceL. Ca-
pacitorC2 is introduced to account for possible accumulation
of energy by an individual oscillator while the resistorR1 is
responsible for the finite replenishment rate and for losses
because of transmission.

Using Kirchhoff’s law for the circuit in Fig. 1sad and
introducing the new time variablet= t /C1 we can write
down the governing equations in dimensionless form

ẋ = y − fsxd,

«ẏ = z− yR− x, s1d

FIG. 1. sad Circuit diagram andsbd the null-clines for the 2D limit case
R1,2=0. In the dimensionless model equationss1d, x represents the voltageu
across the tunnel diodeD, y is the currenti in the inductorL, andz is the
voltageE across the capacitorC2.
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gż= − y +
1

r
sein − 2z+ eoutd.

Here, «=L /C1 and g=C2/C1. ein and eout are potentials in
the “in” and “out” points, respectively. Parametersr and R
are dimensionless representations of the resistorsR1=R2 and
R3. Variablesx, y, andz correspond to the voltageu over the
diode, the currenti through the inductorL, and the voltageE
on the capacitorC2, respectively. We assume thatC2!C1 so
thatz quickly follows variations ofx andy. In the following
calculations«=0.1 andg=0.01. fsxd is assumed to be of
cubic shape with the nonlinearity chosen in the form:

fsxd = 1/3 + 20x − 5x2 + x3/3. s2d

In the limit r →0, one can getz=sein+eoutd /2. Hence, we
obtain a 2D oscillator which is similar to the FitzHugh–
Nagumo model19 with z as a control parameter. Figure 1sbd
illustrates the location of the nullclines in the system. Note
that the x-nullcline coincides with thefsxd function. It is
clearly seen that for small and large values ofz, intersection
of the nullclines occurs outside of the interval with negative
slope of fsxd, i.e., the equilibrium point is stable. For inter-
mediate values ofz, there is a couple of Hopf bifurcation
points where a stable limit cycle is born, and extinguished.

In order to build a one-dimensional array of such func-
tional units we take

ein = zj−1, eout = zj+1, j = 1 . . .N,

where j represents the number of the oscillator, andN is the
total number of units.z0 is constant bias voltage, hereafter
denoted asZ0. Free end of the chain is modeled byzN+1

=zN.

B. Clustering

Organized in a chain, the unitss1d become globally
coupled via variation of thezj variables. There is a gradual
decrease of the mean value ofzj along the chain because of
the voltage drop across each coupling resistorr. Note that the
current along the chain splits into two currents at each unit.
Thus it decreases along the chain, and the drop ofzj from
unit to unit becomes smaller and smaller.

In the phase space of the whole system, the variation of
the mean value ofzj affects the stability of the global equi-
librium state that can be defined from

ẋj = 0, ẏj = 0, żj = 0, j = 1 . . .N.

The transition from damped behavior to self-sustained
oscillations for a particular unit in the chain takes place
through an Andronov–Hopf bifurcation in thesxi ,yid phase
sub-space. In Fig. 2 the real part for each pair of complex-
conjugated eigenvalues is plotted againstZ0 for a chain of 10
units s1d. The third eigenvalue for each subsystem is not
shown in the figure since it is strongly negative in the whole
range of control parameters. With increasingZ0 from 4.0, the
eigenvalues are seen one by one to cross the imaginary axis
and attain positive real values and asZ0 increases further,
again to become negative. According to the number of eigen-
values with positive real part, the dimension of the unstable

manifold Du of the equilibrium point first raises and then
decreases with increasingZ0 sinsert in Fig. 2d.

From a physical point of view, these results imply the
possibility of Du/2-mode self-sustained dynamics in the
whole system. In spite of the fact that we can not formally
assign a given pair of eigenvalues to a specific unit of the
chain, it is clear that the first pair of eigenvalues crossing
zero should be related to the first unit in a chain that receives
the necessary energy input fromZ0. Similarly, the subsequent
crossings of zero by different pairs of eigenvalues represent
the subsequent transitions of oscillatory units from the
damped state to self-sustained dynamics, orvice versa. This
is the basis for the formation of a group of units along the
chain, that we call anoscillatory cluster.

Let us now consider what happens in a longer chain of
50 units in terms of amplitudes of oscillations. In Fig. 3, the

FIG. 2. The real part of the equilibrium state eigenvaluesli exceeds zero in
a certain range ofZ0 seach curve represents one pair of complex-conjugated
eigenvaluesd. The resulting dimension of the unstable manifoldDu vs Z0 is
shown in the insert.

FIG. 3. With increasingZ0, the oscillatory cluster changes its position along
the chain and varies slightly in size. Parameters are fixed atr =0.001,R
=0.05,«=0.1, andg=0.001.
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xj variable of each unit is plotted against its position in the
chain for different voltagesZ0 of the power supply. For rela-
tively small voltagessZ0=8.0d, the first 8 units display oscil-
lations of considerable amplitude. For the next units, the
mean value ofzj is not sufficient to support self-sustained
dynamics.

For a larger value of the voltagesZ0=20.0d, inspection
of the figure shows that the first 16 units no longer display
significant temporal variations ofxj because the high mean
value of zj places the individual unit in a damped state ac-
cording to Fig. 1sbd. The next 8 units demonstrate self-
sustained dynamics while the rest are in a damped state. With
increasingZ0 sZ0=50d, the oscillating group shifts towards
the end of chain and grows in size. Thus, we observe an
oscillatory cluster shifting upstream or downstream the chain
with variation of the energy source parameterZ0. When ap-
proaching the low-voltage end of the chain, the cluster be-
comes fairly large before it completely disappears atZ0

<59.
While Z0 defines the maximal level ofzj for units in the

chain, the parameterr affects the voltage drop from unit to
unit. Hence,r can also influence the position and size of the
oscillatory cluster. Figure 4 reveals the relation between the
variations ofZ0 and r. In both cases, the size of the cluster
remains relatively stable until the end of the chain is reached.
Here the cluster becomes significantly longer before it disap-
pears. This can partly be explained by the decreasing voltage
drop per oscillator along the chain. When the cluster is lo-
cated in the middle of a chain, the tailing oscillators consume
electric power even though they are in a damped state. This
produces an additional voltage drop and reduces the cluster
size. Closer to the end of chain, the cluster has less “silent”
energy consumption. The voltage drop from one unit to the
next decreases, and the cluster length grows.

C. Intra-cluster synchronization

With the emergence of a cluster of oscillatory, identical
units, one might expect to observe synchronized behavior for
the globally coupled identical oscillators. However, inspec-
tion of the cluster reveals a completely different situation.

Figure 5sad shows how the mean period of oscillations is
distributed along the cluster for different values of the volt-
ageZ0. In this figurek=1 is assigned to the first oscillator
with self-sustained dynamics in the chain. Thus, different
positions along the chain correspond to different curves in
Fig. 5sad. This allows us to compare the spatio-temporal
structure of clusters for different values of the control param-
eter. It is remarkable that the period distribution maintains its
form. For all the values ofZ0 shown there are two oscillators
with longer periods close to the beginning and the end of the
cluster, and there is a clear minimum of the oscillation period
near the center of the cluster. Both the first and the last os-
cillators in the cluster also display relatively low oscillation
periods.

To explain the particular shape of the intra-cluster period
distribution, we calculate how the period depends on thez
value for an individual systems1d in the limit r →0. The
results are given in Fig. 5sbd. The period distribution along
the cluster clearly follows the behavior of an individual unit
with decreasingz. The observed structure is the result of the
drop in zj from unit to unit, combined with the variation of
fsxd in the region of differential negative resistance.

Hence, in spite of the presence of a coupling between all
cluster units, synchronization is not observed due to a
coupling-induced frequency mismatchbetween the oscilla-
tors. For small values ofr the frequency mismatch vanishes
together with the drop ofzj from one oscillator to the next.
However, the coupling vanishes too. The largerr is, the
stronger the coupling will be, but at the same time the fre-
quency mismatch becomes more pronounced between two
neighboring units. Together this results in an asynchronous
intra-cluster behavior in the considered parameter range.

As observed in Fig. 5sbd, the maximal possible period
drop between two units is not greater thanDT<0.53 corre-
sponding to the difference between the top and bottom points
of the curve. Thus, the coupling-induced mismatch is limited
to about 20%, while the coupling strength can be increased
by an appropriate choice of control parameters. Let us select
R=0.01 andr =0.02. This provides a strong drop ofzj, and
the oscillatory cluster consists mostly of just two units. The
cluster position and operating regimes are schematically
given in Fig. 6 together with representative phase plots. The
synchronized pairs of oscillator units are given in gray, while

FIG. 4. The position and size of the oscillatory cluster are given by the gray
region for differentZ0 valuessat r =0.001d, and by the hatched region for
different r values sat Z0=30d. Other parameters are fixed atR=0.05, «
=0.1, andg=0.001.

FIG. 5. sad: The distribution of oscillation periodsT inside the cluster is
preserved, while the whole cluster moves with the variation ofZ0. k repre-
sents the relative position within the cluster. Atr =0.001,R=0.05, «=0.1,
and g=0.001. sbd T vs z dependence for the individual oscillatory unit
reveals the origin of intra-cluster period distribution.
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asynchronous behavior is denoted by hatched regions. For
higher values ofZ0 the oscillatory cluster moves out of the
chain to the right.

For some intervals of Z0 se.g., Z0

P f10.4,11.2g ,f12.2,12.8gd, oscillations in clusters of 2 or 3
units are synchronized with a phase lag between two neigh-
boring units as shown in the inserts. Note, that the phase lag
in the two-unit cluster increases withZ0, and the cluster
passes through the anti-phase state somewhere in the middle
of theZ0 interval for synchronous behavior. For the two-unit
cluster there is a clear explanation: When only two units in
the chain display self-sustained dynamics, the influence of
other units can be considered as a shift of control parameters.
Hence, we have a system of two oscillators coupled in a
competitive way that typically leads to anti-phase synchroni-
zation. Together with the coupling induced frequency mis-
match this provides anti-phase rather than in-phase synchro-
nization. At some value ofZ0 we find the most balanced
regimesminimal frequency mismatchd, and the synchroniza-
tion regime becomes anti-phase. The insert for theZ0=16.8
shows that there is also synchronization at various rational
frequency ratios.

At some values ofZ0 the cluster changes its position.
Such a translation is typically accompanied by an extension
of the cluster to 3 units and a desynchronization between two
or all three involved unitsssee the bottom insert in Fig. 6d.
When the first or last element of a cluster passes through the
Hopf bifurcation pointfFig. 5sbdg, the coupling-induced fre-
quency mismatch can be strong enough to desynchronize the
intra-cluster behavior. We can thus conclude that:

sid Although the chain units are originally identical, the
resource drop along the spatial coordinate introduces
variations of the operating point and, hence, a fre-
quency mismatch between neighboring units;

sii d in the case of weak coupling, the cluster elements are
generally out of synchrony, and the period distribution
along the cluster follows the curve of period vs energy
supply for the individual oscillatory unit. The result-
ing intra-cluster period/frequency distribution pre-
serves its structure as the cluster moves along the
chain with variation of the bias voltage. Due to the
competitive nature of the coupling, there is a tendency
for anti-phase synchronization;

siii d for strong enough coupling, intra-cluster synchroniza-
tion is typical. However, shifts of the cluster position
are accompanied by desynchronization of the cluster
elements.

III. BIOLOGICAL EXAMPLES

A. Microbiological oscillators

To explore how cluster formation manifests itself in a
very different system we consider a microbiological chain of
interacting bacteria and viruses. Being coupled via the flow
of nutrition, such a population model fits well with the ideas
of spatial development and damping of self-sustained
dynamics.

1. Model

Our analysis considers a one-dimensional array of popu-
lation pools as originally introduced by Postnovet al..13

Each pool is the habitat for a three-variable predator-prey
system, consisting of bacteria, infected bacteria, and viruses,
represented in the equations by their concentrationsBi, I i,
and Pi, respectivelysi denotes the pool numberd. Nutrition
balance of inflow, outflow, and consumption provides a
fourth equation for the substrate concentrationSi. Altogether
this leads to the following set of coupled differential equa-
tions

dBi

dt
=

nBiSi

Si + K
− rBi − avPiBi , s3d

dIi
dt

= avBiPi − rI i − I i/t, s4d

dPi

dt
= f − Pir − aBiPi − aI iPi + bI i/t, s5d

dSi

dt
= rsSi−1 + sid − rSi −

gnBiSi

Si + K
, s6d

where the termnBiSi / sSi +Kd in the first and fourth equations
describes standard Monod kinetics for bacterial growth. The
Michaelis–Menten constantK represents the concentration of
nutrients at which the growth rate is reduced to half its maxi-
mal value, and each cell division is assumed to be associated
with a resource consumptiong. For all variables, negative

FIG. 6. Small-sized clusters exhibit different synchronous or asynchronous
patterns with varyingZ0 for strong interaction along the chainsr =0.02,R
=0.01,«=0.1, andg=0.001d. Gray areas denote synchronized behavior, and
hatched areas denote asynchronous dynamics.
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terms proportional tor in the governing equations reflect the
washing out from the habitat. According to our assumptions,
however, only nutrients will be transmitted to the next pool.
Infection of bacteria by viruses is described by the term
avBiPi in s3d and s4d. Here,a is the kinetic rate constant,
and v is the probability that a virus particle successfully
infects a cell, once it has affixed to its surface. TheI i /t term
in s4d and s5d describe a lytic response to the virus attack
where, after a latent periodt of the order of 30 min, the
infected cell bursts and releases an average ofb new viruses.
Note, the term −aI iPi in s5d represents unsuccessful virus
attacks on already infected cells. Coupling between the pools
takes place only through the flow of nutrients with a total
incoming rate ofrsSi−1+sid, an outflow of −rSi, and a con-
sumption in the habitat ofgnBiSi / sSi +Kd. For the first habi-
tat, Si−1;S0 is assumed to be zero.si represents a possible
lateral nutrition source for theith habitat.

The parameter values that we have applied in the present
analysis correspond to the values used in our previous
studies:12 n=0.024 min−1, K=10 mg/ml, t=30 min,v=0.8,
g=0.01 ng,b=100. These values are also in general agree-
ment with the experimental values obtained by Levinet al.10

for particular strains of bacteria and viruses. The concentra-
tions Bi, I i, and Pi will be specified in units of 106/ml.
Hence, we have used a value ofa=10−3 ml/min sas com-
pared with the valuea=10−9 ml/min applied by Baieret
al.12d.

Like many other ecological models, our system involves
positive feedback mechanisms related to the replication of
bacteria and viruses. There are nonlinear constraints associ-
ated both with the bacterial growth rate and with the infec-
tion rate, and there is a delay associated with replication of
the viruses. The rate of dilution is a main determinant of

dissipation in the system. In the absence of viruses, the
single pool model displays an equilibrium point

B0 =
1

g
Ss −

rK

n − r
D, S0 =

rK

n − r
, s7d

in which the rate of bacterial growth balances the wash out.
For dilution ratesr.rc=sn / sK+sd, only the trivial equilib-
rium point B1=0, S1=s exists.

As r is reduced belowrc, the equilibrium population of
bacteria starts to increase. At the beginning, the cell concen-
tration is still too small for an effective replication of viruses
to take place, and the virus population remains nearly negli-
gible. As the dilution rate continues to decrease, however, the
virus population grows significantly. The model then under-
goes a Hopf bifurcation, and the system starts to perform
self-sustained oscillations.

2. Spatial dynamics

Depending on the population sizes attained in the up-
stream habitats, different degrees of depletion of the nutrient
concentration will occur, and as the surplus resources con-
tinue to flow into the next habitat, this population pool will
be modulated by a temporal nutrient supply that depends on
the type of dynamics realized in the former pool.

Along the chain there will be a net consumption of re-
sources. However, different choices of the surplus nutrient
supplysi along the chain allow us to simulate different pat-
terns of growth dynamics. Below we consider two important
cases: Lateral nutritionfFigs. 7sad and 7sbdg and afferent nu-
trition fFigs. 7scd and 7sddg. The dilution rate is assumed to
be r=0.003/min, and the nutrient concentration is specified
in mg/ml.

FIG. 7. Overview of the behavior of a chain of 20
population pools: Diagram of dynamical regimessleft
panelsd and variance of bacterial concentrations for se-
lected s values sright panelsd. i is the pool number
along the chain andsi the concentration of the local
nutrient supply.sad and sbd lateral nutrition:s is as-
sumed to be the same for all pools;scd andsdd upstream
nutrition: s1.0, si =0, i =2,3,4, . . .20.
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In the first case, the choice of equal values ofsi =s, i
=1,2,3. . . provides a separate influx of resources to each
habitat. For low values ofs, the system attains a stable equi-
librium state that extends along the entire chain. As the nu-
trient supply is increased, starting in the downstream end of
the chain, habitat after habitat begins to perform self-
sustained oscillations. There is an interval where all habitats
from a given number and up execute a synchronous periodic
behavior. Ass is further increased, the downstream habitats
begin to show quasiperiodic, chaotic and higher order cha-
otic behaviors of increasing complexity, and only the inter-
mediate or first pools perform simple periodic oscillations.
For s.7 mg/ml, only the motion of the first habitat remains
periodic. Figure 7sbd shows the variation of the bacterial
concentrationB along the chain fors=2.0 mg/ml. It is
clearly seen that the first 5 pools reach an equilibrium state at
very low B values. The bacterial populations survive here,
but the concentrations are not high enough to generate self-
sustained oscillations. Oscillatory behavior with increasing
amplitudesgray lines indicate the variance ofBid is observed
starting from the 6th habitat. Pools from 6 to 10 form a
cluster with synchronized periodic oscillations. With gradu-
ally increasing resources, oscillations become chaotic in the
11th habitat and maintain this dynamics till the last, 20th,
habitat.

A second interesting case is afferent nutrition where
there is a single source of nutrition to the first habitatfFigs.
7scd and 7sddg. Since each bacterial population consumes part
of the incoming resources, the concentration decreases along
the chain. Thus, for some habitat the available resources will
not suffice to support self-sustained oscillations. However,
the modulation ofS may still be propagated with the flow
providing an oscillatory forcing for habitats in the rest chain.
In this case, one can observe a limited region of self-
sustained oscillations along the chainfFig. 7scdg.

For low values ofs1, a number of habitats at the begin-
ning of a chain may be able to attain fairly high levels of
bacterial concentration. However, these concentrations are
not sufficient to produce self-sustained dynamics in interac-
tion with the viruses. As more and more of the resources are
consumed along the chain, the bacterial populations collapse
sBi <0d. At s1=7.024mg/ml the first population reaches the
point of Hopf bifurcation and self-sustained dynamics arises
in the chain. Since the variation of the natural frequency is
weak and the coupling strengthsproportional to modulation
depth of resources flowd is quite high, one observes synchro-
nization in the group of habitats that display self-sustained
dynamics.

Further increase ofs1 to 10.0–12.0mg/ml reveals a dif-
ferent pattern where only the first two habitats maintain the
regime of synchronous regular oscillations, while period-
doubled regimes and the development of chaos can be ob-
served further downstream.

Finally, for s1.16.0mg/ml only the first habitat shows
regular oscillationssbecause this is the only possible oscil-
lating regime for an individual systemd, while the subsequent
are in a chaotic state. The cases1=18.0mg/ml is illustrated
in Fig. 7sdd. By virtue of the resource consumption along the
chain, the self-sustained chaotic behavior dies out after the

10th habitat. However, the next three habitats display some
intermediate dynamical patterns, representing neither the
self-sustained regime nor the population collapse. We can
describe these states in terms of chaotic forcing across the
Hopf bifurcation point for the individual system. Thus, such
habitats switch chaotically between a self-sustained regime
when the nutrition amount temporarily is high enough, and a
damped state. In Fig. 7sdd habitats 11, 12, and 13 display
low, but finite amplitudes of variation in the bacterial con-
centrations. All downstream habitats are in the population
collapse regimesBi <0d.

Let us summarize some of the main findings:

sid Rising or declining resource concentrations along the
chain of habitats can generate limited-sized clusters
with self-sustained dynamics while other habitats are
in the collapsed state;

sii d inside such clusters, subclusters with different behav-
ior ssteady state, regular synchronous oscillations, or
chaotic behaviord can be detected. Note that chaotic
regimes can also be synchronous or asynchronous as
described by Postnovet al.;13

siii d there is an intermediate operating regime arising via
periodic or chaotic modulations of the individual sys-
tem across a Hopf bifurcation point.

B. Renal autoregulation

While a chain of microbiological habitats provides a
one-way coupling between the oscillators, the next example
involve more complicated distribution network associated
with an asymmetric but global coupling through the sharing
of blood flow in a nephronic system.

The blood filtration in kidney is processed with a large
number of sub-unitssnephronsd connected to a complex
branching structure of vessels called thepreglomerular vas-
cular tree with an inhomogeneous distribution of arteriolar
lengths, nephron parameters, etc.20 Since the individual
nephron is known to operate in a regime of self-sustained
oscillations with the arterial pressure being a control param-
eter, the coupled nephrons can be considered in the frame-
work a resource distribution system.

1. Vascular-nephron model

In order to examine the typical mechanisms associated
with a structure of preglomerular vascular tree we consider a
simplified vascular network that allows us to made conclu-
sions about the main operating regimes and the transitions
between these regimes with varying parameters.

Our model for the vascular-nephron tree consists of a set
of afferent arterioles branching off from a single interlobular
artery as shown schematically in Fig. 8. The vascular-
nephron tree structure is described in terms of the lengths of
the arteriolar and arterial branches together with their hemo-
dynamic resistances. It is assumed that the glomerulus of
each nephron is connected to the corresponding branching
point via an arteriole of lengthLi

g, and of hemodynamic re-
sistanceRi

g, i =1. . .12. Thearterial pressurePa to be used in
the model of individual nephron now becomes the driving
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blood pressure at the given branching pointPj
b, j ,k=2, . . .7.

Connection between the branching points is described in
terms of branch lengthsLjk

b and their hemodynamic resis-
tancesRjk

b j =1. . .7. Thesame approach is used to describe
the connection of branching point 1 to the terminal points
with the constant pressure valuesPin and Pout. This part of
the vascular-nephron tree imitates the connection of the tree
to higher-level arteries. To describe a drop of blood pressure
along the vascular-nephron tree the transient time for blood
pressure distribution over all branching points is assumed to
be much smaller than the characteristic time scale for the
TGF regulation in the nephrons. In other words, the elasticity
parameter of the arteriolar walls is considered to be so high
that we can neglect time delays in the pressure evolution.
With this approach we can calculate the static pressure dis-
tribution for any state of connected nephrons using linear
algebraic equations written for each branching point. An ex-
ample of such an equation for the 6th branching point of the
vascular-nephron treesFig. 8d reads:

P5
b − P6

b

Rb −
P6

b − P7
b

Rb +
P3

g − P6
b

R3
g +

P4
g − P6

b

R4
g = 0. s8d

Here, P3
g and P4

g represent the blood pressure in the
glomerulus of 3th and 4th nephron.P5

b, P6
b, andP7

b represent
the blood pressure in the 5, 6, and 7th branching point, re-
spectively.Rb denotes the hemodynamic resistance between
6th and 7th branching points. This resistance is assumed to
be the same for all branches.R3

g andR4
g are the hemodynamic

resistances to 3th and 4th nephron, respectively. Note thatR3
g

andR4
g are not constant because it includes the resistance of

an active part of an afferent arteriole.
Equations of this type for the all branching points are

obviously interdependent and, hence, produce a globalhemo-
dynamic couplingamong nephrons in the vascular-nephron
tree. The strength of this coupling is generally increasing
with Rkj

b , but decreasing with increasingRi
g.

Neighboring nephrons can also influence one another
through a vascular propagated electricalselectrochemicald
signal. To account for this mechanism, the total activation
potential fork8th nephron in Eq.s12d is assumed to be the
sum of contributions from all other nephrons in the tree.
Moreover, the electrical activation potentials are assumed to
propagate along the vascular wall with an exponential decay.

In this way, the vascular propagated interaction is delivered
to each nephron as an additional part of its activation poten-
tial C:

DC = o
i=1,iÞk

N

Ci exps− gsLji + Lk
gdd, s9d

where j is the number of the branching point to which the
considered nephron with numberk is connected. The matrix
Lji contains the lengths from a given branching pointj to all
nephronsi =1. . .N, andLk

g is the length from the given neph-
ron to the connected branching point.

Each individual nephron may be described by the fol-
lowing model:22,23

Ṗt =
1

Ctub
hFfsPt,Pa,rd − Freab− FHj, s10d

ṙ = vr , s11d

v̇r =
1

v
hPavsPt,Pa,rd − Peqsr,CsX3,ad,Td − vdvrj, s12d

Ẋ1 = FH −
3

T
X1, s13d

Ẋ2 =
3

T
sX1 − X2d, s14d

Ẋ3 =
3

T
sX2 − X3d. s15d

The first equation determines the pressure variations in the
proximal tubule in terms of the in and outgoing fluid flows
whereFf is the single-nephron glomerular filtration rate, re-
absorption in the proximal tubuleFreabis assumed to be con-
stant,FH is the flow into the loop of Henle, andCtub is the
elastic compliance of the tubule.

The following two equations describe the dynamics as-
sociated with the flow control in the afferent arteriole. Here,
r represents the radius of the active part of the vessel andvr

is its rate of increase.d is a characteristic time constant de-
scribing the damping of the oscillations,v is a measure of
the mass density of the arteriolar wall, andPav denotes the
average pressure in the active part of the arteriole.Peq is the
value of this pressure for which the arteriole is in equilibrium
with its present radius and muscular activationC. The ex-
pressions forFf, Pav, andPeq involve a number of algebraic
equations that must be solved along with the integration of
Eqs.s10d–s15d.

The remaining equations in the single-nephron model
represent the delayT in the TGF regulation. For a more
detailed explanation of the model and its parameters see,
e.g., Ref. 21.

Thus the mathematical model of vascular-nephron tree
we investigate consists of:sid 12 sets of coupled ODEs de-
scribing individual nephrons,sii d a set of linear algebraic

FIG. 8. Left: Sketch of vascular-nephron tree including the interlobular
artery, the afferent arterioles and the glomeruli. Right: Oscillation amplitude
as a function of arterial pressure and position of the branching point along
the vascular tree.
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equations that determines the blood pressure drop from one
branching point to another, andsiii d algebraic relations for
the vascular interaction.

Depending on the choice of the control parameters, the
amplitudes of the pressure oscillations in the nephron tree are
found to be different at different positions in the tree. Due to
model symmetry, two nephrons connected to the same node
have the same oscillation amplitudes. Thus, we can refer to
the number of the branching point to describe the amplitude
properties. Branching points 2, 3, and 4 may correspond to
deep nephrons and branching points 6 and 7 to superficial
nephrons. Experimentally, only the pressure oscillations in
nephrons near the surface of the kidney have been investi-
gated. However, we suppose that both deepsjuxtamedullaryd
and superficial nephrons can exhibit oscillations in their
pressures and flows.

When varying the arterial pressure, different amplitude
patterns can be observed in the multinephron models
s10d–s15d, s8d, ands9d. For low values of the arterial pressure
Pa, vanishing amplitude of the tubular pressure oscillations
can be observed near the top of the treesi.e., in branching
points 5, 6, 7d. The nephrons connected to these points op-
erate in a damped regime like the population pools we dis-
cussed in the above example. In the individual nephron
model, the self-sustained dynamics is bounded by two points
of a Hopf bifurcation atP1=11.48 kPa andP2=13.86 kPa.
The calculated value of the mean blood pressure in branch-
ing point 5 is lower thanP1. Hence, neither nephrons con-
nected to this point nor nephrons downstream to it oscillate.
As Pa increases aboveP2, the upstream nephrons stop to
oscillate. For intermediate values ofPa there is a cluster of
nephrons with self-sustained dynamics in the middle section
of the tree. Finally, for high enough values ofPas.17 kPad
only nephrons connected to the branching points 6 and 7
display oscillations because for all other nephrons the blood
pressure in the corresponding branching point is too high.
Thus, the oscillatory amplitude patterns along a nephron tree
have a reasonable explanation in terms of a drop in driving
pressure from one branching point to the next, causing a
change of the operating regime of the individual nephrons.

2. Coupling-induced inhomogeneity
in vascular-nephron tree

The nephron tree represents an extended network whose
complex dynamics is controlled by a significant number of
parameters. To focus our investigations we shall emphasize
the generic aspects of cooperative behavior in the network

rather than its physiologically relevant properties. From a
structural point of view, the object we consider is a popula-
tion of globally coupled two-mode oscillators.24 Besides the
relatively slow mode produced by the TGF mechanism with
its inherent delay of about 15 ssassociated with the flow of
fluid though the loop of Henled, there is a five to six times
faster mode arising from the response of the smooth muscles
in the arteriolar wall. A typical phenomenon that can be ob-
served in such systems is synchronization. Namely, a certain
degree of frequency and/or phase entrainment is expected to
occur under variation of appropriate control parameters.

From the classical theory of synchronization it is known
that there are two main parameters: The strengthsor typed of
the interaction and the degree of frequency mismatch. Our
first question is, therefore, how the control parameters of the
vascular network are related to the synchronization param-
eters. We have previously shown25 that increasing vascular
coupling leads to in-phase synchronization while strong he-
modynamic interaction can produce anti-phase entrainment.
We would expect similar results in our nephron tree. How-
ever, the influence of the arterial pressurePa and of the he-
modynamic resistances between the neighboring branching
points is not trivial since these parameters also affect the
natural dynamics of the individual nephrons. Let us perform
a few experiments to clarify the situation.

Trial 1. Weak hemodynamic coupling
With the parameters used in Fig. 8, a choice of the arte-

rial pressure ofPa=13.3 kPa allows all nephrons to be in the
oscillatory regime. Here, the hemodynamic resistance has
been assumed to beRb=0.002 kPa·s/nl. The vascular cou-
pling may then be varied by adjusting ofg from 1.6 mm−1

sstrong interactiond to 4.0 mm−1 sweak interactiond. As de-
fined above,Rb denotes the flow resistance between two suc-
cessive branching points of the vascular treessee Fig. 8d, and
the parameterg measures the length constant associated with
the exponential decay of the vascular propagated coupling
along the arterioles. The frequency distribution among the
nephrons is shown in Fig. 9 for the slowshd oscillatory
mode.

For g=1.6 mm−1, the frequencies of the slow TGF me-
diated modes are locked at the same valuefh=0.0275 Hz for
all the nephrons. Hence, strong vascular coupling leads to
perfect frequency locking along the tree. With decreasing
coupling strength, the collective behavior becomes asynchro-
nous. In Fig. 9sad this is illustrated by the curves forg=2.5
andg=3.0 mm−1. Surprisingly, we find that with further re-
duction of the couplingsg=4.0 mm−1d, all nephrons again

FIG. 9. sad Slow frequency adjustment with varying
vascular couplingsPa=13.3 kPa,Rb=0.002 kPa·s/nld.
Insert shows the variation offh for the first nephron vs
g. Phase entrainment of the slow mode atsbd g
=1.6 mm−1 and scd g=4.0 mm−1; sRb=0.002 kPa·s/nl
and Pa=13.3 kPad. Phase differences are calculated
with respect to the first nephron.
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demonstrate a synchronous state, now atfh<0.0287 Hz. To
explain this, let us consider the phase dynamicsfFigs. 9sbd
and 9scdg. In the first synchronous statesstrong vascular cou-
plingd, in-phase relationships are clearly observed for the
slow TGF oscillationsfFig. 9sbdg, while the second state
sweak vascular interactiond corresponds to out-of-phase syn-
chronizationfFig. 9scdg. Probably, in this case, the hemody-
namic coupling plays the ordering role. The insert in Fig.
9sad illustrates how the locking frequency within a certain
range shifts non-monotonically with varying vascular cou-
pling.

Trial 2. Stronger hemodynamic coupling
To examine the hypothesis that the hemodynamic inter-

action mechanism is responsible for the out-of-phase syn-
chronous state at largeg, we increase the initial hemody-
namic coupling toRb=0.01 kPa·s/nl andperform the same
experiment with increasing vascular interaction.

Let us focus on the changes in the slow dynamics of the
nephrons. For strong vascular couplingsg=1.6 mm−1d all
nephrons are frequency lockedsFig. 10d. However, this syn-
chronous state is out-of-phasefFig. 10sbdg in contrast to trial
1. With decreasing vascular coupling one can observe asyn-
chronous behavior diagnosed both as frequency and phase
divergencefFig. 10scdg. Note that the pairs of nephrons con-
nected to the same branching point remain synchronous, and
the first 6 nephrons operate in synchrony although the distri-
bution looks a little washed out, but remains limited.

However, a globally synchronized state similar to the
state shown in Fig. 9 is not achieved even forg
=10.0 mm−1. We conclude that a stronger hemodynamic
coupling is unable to synchronize the slow mode oscillations
in the whole tree.

With increasing vascular coupling the nephrons are
found to synchronize at a lower frequency than in the case of
small vascular coupling. This effect cannot be explained
solely in terms of the in-phase nature of the vascular cou-
pling. To find an explanation of the observed behavior, let us
consider how the vascular coupling influencesthe natural
frequencyof the individual nephron. Here, the natural fre-
quency of thej8th nephron is understood to be the frequency
of a the nephron pressure oscillations in the absence of in-
teraction, but with the same driving pressure as the pressure
at a branching point to which the nephron is connected, i.e.,
Pa=Pj

b. Since the vascular coupling acts via the activation
potentialC of each nephronfEq. s9dg, it can influence the
operating regime of the nephron. For in-phase synchronous
state, one can estimate this influence via an artificial varia-
tion of C in the individual nephron:C8=kC. Here,m is a
scaling factor, the stronger the vascular coupling is, the
larger m will be. Figure 11 illustrates how the nephron fre-
quency depends onm. It is clearly seen that the oscillation
frequency changes in a nonmonotonous way with increasing
m and becomes lower in average. Thus the vascular coupling

FIG. 10. sad Slow frequency adjustment forRb=0.01 kPa·s/nl withvarying vascular coupling. Phase entrainment of slow dynamics atsbd g=1.6 mm−1; and
scd g=3.0 mm−1. sRb=0.01 kPa·s/nl andPa=13.3 kPad.

FIG. 11. sad The strength of the mus-
cular activation affects the oscillation
frequency in a nonmonotonic way.m
is an artificial scaling factor,C8=mC.
sbd Frequency of individual nephron
as a function of arterial pressurePa.
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in general reduces the nephron frequencyfat least as long as
it is introduced according tos9dg.

The influence of the hemodynamic coupling is even
more complicated. However, a similar approach can be used.
Because the value of the hemodynamic resistanceRb is
closely related to the drop of arterial pressure along the vas-
cular tree, it can cause essential changes in the oscillatory
properties of the individual nephrons.

Figure 11sbd shows how the nephron frequency depends
on the driving pressure for the individual nephron. The curve
is strongly nonmonotonic and includes pieces of gradual in-
crease, gradual fall, as well as values of abrupt change.
Clearly, such behavior is related to the bifurcations of the
nephron oscillatory regimes. Thus a variation of the hemo-
dynamic coupling can cause effects that are strongly nonmo-
notonous and depend onPa. In Fig. 11sbd, trials 1 and 2 are
presented in terms ofPj

b drop along the vascular tree. It is
seen that the first trial corresponds to a relatively small fre-
quency mismatch among the nephrons while stronger cou-
pling sRb=0.01 kPa·s/nld leads to a faster drop of arterial
pressure along the tree and, hence, to a larger frequency mis-
match.

We conclude that:

sid There is a clear evidence for clustering of oscillators
in the vascular tree model. The clustering clearly re-
sembles the similar phenomenon observed in our elec-
tronic modelsSec. IId and is obviously governed by
the same mechanism;

sii d due to a coupling induced shift of the operating re-
gime for each nephron, the hemodynamic resistance
Rb acts in two different ways: As a coupling param-
eter and as a mismatch parameter; Variation of the
parameters of the preglomerular vascular tree pro-
duces different conditions under which the nephrons
along the tree operate, and this is equivalent to a mis-
match between the nephrons;

siii d similar effects are observed for the vascular propa-
gated coupling. All together, these mechanisms pro-
vide for a rather complex response of the system to
variations in the coupling strengths.

IV. CONCLUSION

We considered three examples of coupled oscillator sys-
tems where the coupling is mediated though the flow of re-
sources that maintain the oscillatory state in the individual
unit.

The electronic example representing a relatively simple
chain structure allowed us to demonstrate generic behavioral
patterns under competing coupling. Localizedsfinite sizedd
clustersof oscillating units that slide up and down the con-
sumption chain in response to changing overall resource sup-
ply and coupling-induced inhomogeneity appear to be char-
acteristic phenomena in such systems. For our general model
of N identical oscillators,coupling induced inhomogeneity
manifests itself either via an asynchronous intra-cluster be-
havior with a distribution of mean periods resembling the
variation of the period of the individual oscillator with the

energy supply parameter orsfor stronger couplingd via small-
sized clusters with out-of-phase synchronization that move
along the chain. Note, the resource parameter limited region
of self-sustained dynamics appears to be the necessary con-
dition for such type of behavior.

The individual microbiological population pool only dis-
played a simple Hopf bifurcation. However, different re-
source delivering environments provide different behavioral
patterns. By increasing the lateral resource supply, the chain
of population pools could be driven into a state of increasing
complexity with clusters of chaotic, frequency synchronized
pools. The opposite case of afferentsdownstream-onlyd nu-
trition provides a finite sized cluster with self-sustained dy-
namics, outside of which the oscillations die out.

The physiological example of a vascular tree involves a
significantly more complicated coupling structure with the
flow mediated hemodynamic coupling competing with a vas-
cular propagated coupling of a very different nature. The
nonlinearities of the considered physiological systemsas
specified though the open loop gain curveC for the tubulo-
glomerular feedback mechanismd, only allowed self-
sustained oscillations in a finite range of resource supplies.
At high and low afferent blood pressures, the individual
nephrons displayed stable equilibrium points. Hence, the
cluster formation mechanism we observed for a chain of
electronic circuits manifests itself in full range. Inside the
clustersor when the cluster occupies the whole vascular treed
we again met the coupling induced inhomogeneity that now
activated rather complex patterns due to the complex re-
sponse of the individual system to external driving.

The type of coupling that we have considered in this
paper is likely to be quite common in nature as well as in
manmade systems. The generic nature ofthe resource depen-
dent couplingsuggests that it can serve as useful paradigm
together with the well-known and widely used approaches
assuming interaction via mechanisms unrelated to the re-
source supply.
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