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Loss of coherence in a system of globally coupled maps
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2Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
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We study the formation of symmetric~i.e., equally sized! or nearly symmetric clusters in an ensemble of
globally coupled, identical chaotic maps. It is shown that the loss of synchronization for the coherent state and
the emergence of subgroups of oscillators with synchronized behavior are two distinct processes, and that the
type of behavior that arises after the loss of total synchronization depends sensitively on the dynamics of the
individual map. For our system of globally coupled logistic maps, symmetric two-cluster formation is found to
proceed through a periodic state associated with the stabilization either of an asynchronous period-2 cycle or
of an asynchronous period-4 cycle. With further reduction of the coupling strength, each of the principal
clustering states undergoes additional bifurcations leading to cycles of higher periodicity or to quasiperiodic
and chaotic dynamics. If desynchronization of the coherent chaotic state occurs before the formation of stable
clusters becomes possible, high-dimensional chaotic motion is observed in the intermediate parameter interval.

DOI: 10.1103/PhysRevE.64.026205 PACS number~s!: 05.45.Xt

I. INTRODUCTION

The purpose of this paper is to study the formation of
clusters of partially synchronized behavior in the ensemble

xi~n11!5~12«! f „xi~n!…1
«

N (
j 51

N

f „xj~n!… ~1!

of N globally coupled chaotic maps. Here,i 51, . . . ,N is a
space index for the N-dimensional state vectorx
5$xi(n)% i 51

N , andn50,1 . . . is thediscrete time variable.
«PR is the coupling parameter andf :R→R is a one-
dimensional noninvertible map for which we shall assume
the form f (x)5ax(12x) ~the logistic map!. a will be re-
ferred to as the nonlinearity parameter of the individual map,
and theN-dimensional map system defined by Eq.~1! will be
denotedF.

Globally coupled maps of the form~1! were originally
introduced by Kaneko@1# in order to study large systems of
identical chaotic oscillators interacting via some kind of a
mean field. Examples of such systems are typically found in
the biological sciences@2#. The insulin producingb cells of
the pancreas, for instance, are known to display complicated
patterns of bursts and spikes in their membrane potentials
@3#, and these dynamics may also become chaotic. The
b-cells interact with one another through a variety of differ-
ent mechanisms, including the short range diffusive ex-
change of ions and small molecules via gap junctions. But
there is also a global coupling arising from the response of
the whole population ofb-cells to changes in the blood glu-
cose concentrations produced partly through variations in the
total release of insulin. As shown by Sturiset al. @4,5#, this
type of global coupling tends to produce self-sustained oscil-
lations in the insulin secretion with a typical period of 2
hours. Systems of globally coupled chaotic oscillators may
also arise in studies of Josephson junction arrays@6# and of
multimode lasers@7#, and Wanget al. @8# have recently pro-
vided experimental evidence of clustering in a system of glo-

bally coupled electrochemical reactors. In systems of this
type the nonlocal coupling between the chemical reaction
sites arises through the electrostatic field; potential changes
at some location are rapidly transmitted to other locations.

The simplest form of asymptotic dynamics that can arise
in the globally coupled map system~1! is the fully synchro-
nized ~or coherent! state in which all elements display the
same temporal variation. In this case the motion is restricted
to a one-dimensional invariant manifold D
5$(x1 ,x2 , . . . ,xN)ux15x25•••5xN%, the main diagonal in
N-dimensional phase space, and along this manifold the dy-
namics is governed by the one-dimensional mapf of the
individual oscillator. For certain values of the parametersa
and«, the coherent state may attract all trajectories starting
from points in itsN-dimensional neighborhood. In this case,
the coherent state is asymptotically stable.

For other values of«, the phenomenon of clustering~or
partial synchronization! may occur, i.e., the population of
oscillators splits into subgroups~clusters! with different dy-
namics, but such that all oscillators within a given cluster
asymptotically move in synchrony. Two-cluster dynamics,
for instance, is characterized by a behavior in which two
synchronized groups of oscillators are present

xi 1
5xi 2

5•••5xi N1
ªx

xi N111
5xi N112

5•••5xi N
ªy, ~2!

where N1,N and N25N2N1 denote the number of syn-
chronized elements in each of the two clusters.

Under these conditions theN-dimensional coupled map
system ~1! reduces to a system of two coupled one-
dimensional maps

F:S x

yD→S f ~x!1p«@ f ~y!2 f ~x!#

f ~y!1~12p!«@ f ~x!2 f ~y!#
D , ~3!
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where the parameterp describes the relative distribution of
oscillators between the two clusters. More precisely,p
5N2 /N denotes the fraction of the total population that syn-
chronizes in statey. ForN53, for instance, with two clusters
x15x2ªx andx3ªy, the dynamics of Eq.~1! is described
by the two-dimensional mapF with p51/3. Clearly, forN
53, two-cluster dynamics can be realized in3!/(2!1!)53
different ways. Hence, we have three distinct~and mutually
symmetric! two-cluster states. For larger values ofN, the
possible realizations of a given cluster distribution grow very
rapidly. In the present paper we shall focus on the formation
of symmetric~i.e., equally sized! or nearly symmetric clus-
ters.

In his original work, Kaneko@1# developed a rough phase
diagram for the occurrence of different clustering states in
the globally coupled map system~1!. If the coupling param-
eter« is high enough («*0.355 fora53.8), the state of full
synchronization attracts almost all trajectories within a large
region. For lower values of«, the coherent state breaks up
into a number of clusters. Immediately below the coherent
state one typically finds an ordered state with two-cluster
dynamics, or, for higher values ofa, a so-called glassy phase
where a few large clusters appear to coexist with many small
clusters. Finally, as the coupling parameter becomes small
enough, a transition to a turbulent state takes place. Here,
almost all attracting states involve a large number of clusters,
and the oscillators are nearly completely desynchronized.

In subsequent works, Kaneko has applied the globally
coupled map approach as a model of biological cell differ-
entiation @9#. He has also studied the occurrence of Milnor
attractors and the role of noise-induced selection in high-
dimensional systems@10#. Referring to the original definition
@11#, a Milnor attractor is a state that attracts a positive Le-
besgue measure set of points from its neighborhood, but for
which this neighborhood may also contain a positive Le-
besgue measure set of points that are repelled from the
~weakly! attracting state. The existence of such weak attrac-
tors is closely linked to the recently discovered phenomena
of riddled basins of attraction@12,13# and on-off intermit-
tency @14#.

Kaneko’s work has also inspired a considerable number of
other investigators. In particular, Xie and Hu@15# have
pointed out that with positive values of the coupling param-
eter synchronous periodic cycles that are stable for the indi-
vidual map are also stable inN-dimensional phase space.
Hence, these authors have discussed the transverse destabili-
zation of periodic orbits in the period-doubling cascade and
in the main periodic windows for negative values of the cou-
pling parameter. Glendinning@16# has investigated the frac-
tal nature of the blowout bifurcation in which the coherent
state loses its average stability in the transverse direction,
illustrating how globally coupled map systems can proceed
through a complicated sequence of synchronizations and de-
synchronizations in connection with transitions between pe-
riodic and chaotic dynamics for the individual map.

Considering a system of two coupled, identical logistic
maps, Maistrenkoet al. @17# have performed a detailed in-
vestigation of the so-called riddling bifurcation@18,19# in
which the first transverse destabilization of a periodic orbit

embedded in the synchronized chaotic state takes place. As
illustrated by Eq.~3!, the same model can be used to study
the transition to two-cluster dynamics for a system ofN
coupled logistic maps, provided that the maps distribute
themselves symmetrically between the two clusters. In a sub-
sequent study by Popovichet al. @20#, emphasis was given to
the role of an asymmetric distribution of the oscillators.
Whereas the transverse period-doubling bifurcation remains
essentially unaffected by such an asymmetry, the transverse
pitchfork bifurcation was found to be replaced by a trans-
critical riddling bifurcation in which a periodic orbit born in
a saddle-node bifurcation passes through the synchronization
manifold and exchanges its transverse stability with a saddle
cycle of similar periodicity in that manifold.

Most recently, partial synchronization~or cluster forma-
tion! has been studied by Maistrenkoet al. @21# in a system
of three coupled skew-tent maps and by Taborovet al. @22#
in a system of three coupled logistic maps. Applying a spe-
cial coupling scheme of relevance in connection with appli-
cations for secure communication, they have determined the
regions in parameter space where total and partial synchro-
nization take place and they have analyzed the bifurcations
through which the coherent state~total synchronization!
breaks down to give way for two- and three-cluster dynam-
ics.

Hamm @23# has considered the asymptotic behavior of a
globally coupled map system in the thermodynamic limitN
→`, and Ouchi and Kaneko@24#, and Belykhet al. @25#
have started to study models with both local and global cou-
pling as a way of understanding hierarchical pattern forma-
tion in systems with interactions on different length scales. In
this connection it is worth noticing that globally coupled
systems differ qualitatively from locally coupled systems
with respect to the types of dynamics that they can support.
Moreover, in contrast to locally coupled systems, globally
coupled systems do not seem to relax towards a statistical
equilibrium @26#.

With the aim of answering a number of questions that
arise in connection with the phase diagram provided by
Kaneko@1#, the present paper performs a bifurcation analysis
of the transition from coherent behavior to two- and three-
cluster dynamics for the globally coupled map system~1!. As
previously mentioned we restrict our attention to the emer-
gence of partially synchronized dynamics with an even or
nearly even distribution of maps between the clusters. The
formation of strongly asymmetric clusters (p!1) constitutes
a separate problem with a variety of interesting phenomena.
We start in Sec. II by establishing the conditions for trans-
verse stability of attractors belonging to anyK-dimensional
state of theN-dimensional map. In Sec. III, a detailed phase
diagram is presented. We find that, under proper conditions
desynchronization of the coherent state can directly give
birth to high-dimensional chaotic dynamics. We suppose that
this high-dimensional state has the full dimension of
N-dimensional phase space. Finally, Sec. IV is devoted to a
study of the stability of chaotic two- and three-cluster states.
Here, our computer calculations recover the spurious phe-
nomenon known as synchronization with positive condi-
tional ~i.e., transverse! Lyapunov exponents@27,28#. This
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type of numerically generated clustering can lead to false
conclusions concerning the occurrence of low-dimensional
dynamics. The phenomenon can be removed by adding a
small amount of noise to the computations.

II. STABILITY OF K-CLUSTER STATES

Let us suppose that system~1! falls into aK-cluster state,
i.e., the coordinates of the state vectorx5$xi% i 51

N split into K
groups such that in each group the coordinates are identically
the same

xi 1
5xi 2

5•••5xi N1
ªy1 ,

xi N111
5xi N112

5•••5xi N11N2
ªy2 ,

A

xi N11N21•••1NK2111
5xi N11N21•••1NK2112

5•••5xi N
ªyK .

~4!

The positive integerNj represents the number of variablesxi
belonging to thej th cluster, j 51,2, . . . ,K, so thatN11N2
1•••1NK5N. We note that, by virtue of the complete sym-
metry of the system~i.e., the fact that all the individual maps
are the same!, for any set$Nj% the K-dimensional subspace
defined by Eqs.~4! remains invariant for the dynamics in the
correspondingK-cluster state.

Introducing the set of parameterspj5Nj /N, j
51,2, . . . ,K, the dynamics in theK-cluster state can be de-
scribed by the system ofK coupled one-dimensional maps

yi~n11!5~12«! f „yi~n!…1«(
j 51

K

pj f „yj~n!…,

i 51, . . . ,K. ~5!

This system is also a globally coupled map system, but with
different weightspj associated with the contribution of the
j th cluster to the global coupling. Varying the parameterspj
in Eq. ~5! we can obtain the governing map for any possible
K-cluster dynamics of our original system~1!.

A necessary condition for the presence of stableK-cluster
behavior in system~1! is that the map~5! with the assumed
values of the parameterspj has a stable invariant setA(K),
but that there is no stable invariant setsA(L) with L,K. For
example, system~1! with even number of citesN may dem-
onstrate symmetric two-cluster dynamics~2! if the two-
dimensional map~3! with p50.5 has a stable invariant set
A(2)£D5$(x,y)ux5y%.

Provided that it is stable in the cluster subspace, the con-
ditions for an attractorA(K) of system~5! to be stable in the
whole N-dimensional phase space are that it is also stable in
the transverse directions. The transverse stability ofA(K)

may be asymptotic, when it attracts all trajectories from its
neighborhood, or weak, whenA(K) is stable in the Milnor
sense, i.e., it attracts a positive Lebesgue measure set of ini-
tial data@11#.

In order to examine the conditions for transverse stability
of the two-cluster state~2! we consider the Jacobian matrix
DF of the N-dimensional mapF defined by Eq.~1!. Re-
duced on the subspace defined by Eqs.~2!, the matrixDF
can be represented as

DF5F M ~x! L~y!

LT~x! N~y!
G ,

whereM (x) andN(y) are symmetric matrices of dimensions
N13N1 andN23N2, respectively, andT denotes the opera-
tion of transposition. It is easy to show that the matrixDF
has two distinct eigenvaluesn',15 f 8(x)(12«) and n',2
5 f 8(y)(12«) that occur with the multiplicitiesN121 and
N221, respectively.

Let now the two-dimensional map~2! have an attractor
A(2) that does not belong to the diagonalD5$(x,y)ux5y%.
By virtue of the form of the transverse eigenvaluesn',1,2 and
the fact that the corresponding eigenvectors do not depend
on the phase coordinates, the transverse Lyapunov exponents
of the two-cluster state are given by

l',1
(2) 5 lim

k→`

1

k (
n50

k21

lnu f 8„x~n!…~12«!u

5 lim
k→`

1

k (
n50

k21

lnu f 8~x~n!!u1 lnu12«u,

l',2
(2) 5 lim

k→`

1

k (
n50

k21

lnu f 8„y~n!…~12«!u

5 lim
k→`

1

k (
n50

k21

lnu f 8„y~n!…u1 lnu12«u, ~6!

evaluated for a typical trajectory$(x(n),y(n))%n50
` ,A(2).

As discussed above, the attractorA(2) for the system~3!
of two-coupled maps is at least a Milnor attractor for the
N-dimensional system~1! when it attracts a positive Le-
besgue measure set of points fromRN. For this to occur, both
the above Lyapunov exponents must be negative@18#.
Hence, a procedure for finding stable two-cluster states in
system~1! can be the following. First, we find an attractor
A(2)£D5$(x,y)ux5y% for the system of two coupled maps
~3!. Then two Lyapunov exponentsl',i ,i 51,2 of the form
~6! are calculated for typical trajectories onA(2). For the
parameter region where both of these Lyapunov exponents
are negative, the system of globally coupled maps~1! has a
stable~at least in average! two-cluster state with a dynamics
given by the two-cluster attractorA(2). This procedure does
not depend on the numberN of coupled oscillators in Eq.~1!.
The only restriction is that this number should allow the
assumed distribution of variables between the clusters. For
example, if the two-dimensional system~3! with p51/3 has
an attractorA(2) ~not belonging to the diagonalD), and both
the transverse Lyapunov exponents are negative, then the
N-dimensional system~1! will have corresponding stable
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two-cluster states atN53(N152,N251),N56(N154,N2
52),N59(N156,N253),N512(N158,N254) , etc.

In the case of periodic dynamics, it can be shown that if
the two-dimensional mapF with 0<«<1 has a stable
period-2k, k51,2, . . . , cycle out of the diagonal with sym-
metric distributions of its points with respect to the diagonal
~e.g., for p50.5) then system~1! exhibits stable period-2k

two-cluster dynamics.
By analogy with the two-cluster state, for aK-cluster state

~4! with the attractorA(K), one has to iterate the map~5! on
A(K) and calculateK transverse Lyapunov exponents as
given by

l', j
(K)5 lim

k→`

1

k (
n50

k21

lnu f 8~yj~n!!u1 lnu12«u,

j 51,2, . . . ,K. ~7!

When all the Lyapunov exponents are negative,A(K) is
also an attractor inN dimensions in the Milnor sense@11#.
This provides the conditions for the existence of stable
K-cluster states for system~1!.

III. DIFFERENT WAYS OF DESYNCHRONIZATION
FOR THE COHERENT STATE

The purpose of this section is to discuss Kaneko’s phase
diagram @1# for the occurrence of the various clustering
states in more detail and to identify the different types of
bifurcations that occur as the coupling constant« and the
nonlinearity parametera are varied.

Coherent motion of the coupled map system~1! takes
place on the main diagonalD5$(x1 ,x2 , . . . ,xN)ux15x2
5•••5xN% of the N-dimensional phase space and is gov-
erned by the logistic mapf 5 f a . Depending on the value of
a, the coherent dynamics may be either periodic or chaotic,
as characterized by the sign of the Lyapunov exponent

la5 lim
k→`

1

k (
n50

k21

lnu f 8„x~n!…u

calculated for a typical trajectory$x(n)%n50
` of f a . For an

ensemble of coupled logistic maps this implies that, for any
particular value ofa, only a single one-dimensional attractor,
periodic or chaotic, can exist onD. Let us denote it byA(s),
where the superscript denotes ‘‘symmetric.’’

The average transverse stability of the attractorA(s) is
determined by the transverse Lyapunov exponentl'

(1)5la

1 lnu12«u. Actually, there areN21 transverse Lyapunov ex-
ponents but, due to the symmetry of system~1!, they are all
equal tol'

(1) ~see Sec. II! . Hence, the coherent motion loses
its transverse stability simultaneously in allN21 indepen-
dent transverse directions.

A. Two steps of desynchronization: Riddling and blowout

Transverse destabilization of the coherent motions, if they
are chaotic, takes place in two steps. First, the chaotic attrac-
tor A(s),D loses its asymptotic transverse stability in arid-

dling bifurcation @18,19#. This occurs when the first trajec-
tory embedded in the synchronous chaotic state becomes
transversely unstable. After the riddling bifurcation,A(s) is
no longer stable in the Lyapunov sense. In any small neigh-
borhood of the attractor one can find a positive measure set
of phase points such that the trajectories, when starting from
these points, will go away fromA(s). Provided that other
asymptotic states, which can be reached from the neighbor-
hood ofA(s), do not exist, most of the trajectories will sooner
or later return to the neighborhood ofA(s). In the presence of
noise, some of the trajectories may again perform a burst,
manifesting the typical bubbling behavior@18#. This type of
characteristic phase dynamics is associated with theweak~or
Milnor! stability of A(s). It gives rise tolocally riddledbasins
of attraction for the synchronous chaotic state@18,19#.

In the phase diagram of Fig. 1, the uppermost~dotted!
curve denotes the transverse destabilization of the fixed point
P1

(s)5(x0 ,x0 , . . . ,x0),x05121/a. In the parametera re-
gime (a.a0>3.678573) whereA(s) is one-piece chaotic,
P1

(s) is the first trajectory onA(s) to lose its transverse stabil-
ity, and, hence, the dotted curve represents the riddling bifur-
cation curve. This curve can easily be determined analyti-
cally @17#. Below the riddling bifurcation curve the coherent
chaotic state is weakly stable only. Destabilization ofP1

(s)

takes place via a transverse period-doubling bifurcation and

FIG. 1. Phase diagram for cluster formation in a system of glo-
bally coupled logistic maps.a is the nonlinearity parameter for the
individual map, and« is the coupling parameter. The uppermost
~dotted! curve represents the riddling bifurcation of the one-piece
chaotic coherent stateA(s) in which the fixed pointP1

(s)PA(s) loses
its transverse stability, and the fully drawn fractal curve delineates
the blowout bifurcation. The smooth fully drawn and dashed bold
curves represent stabilization of the asynchronous period-2 and
period-4 cycles in the symmetric two-cluster states, respectively.
The lowermost~dashed-dotted! curve represents the stabilization of
~another! period-4 cycle in the symmetric three-cluster state. Re-
gions denoted byR correspond to parameter values where the sys-
tem has stable clusters, and subscripts indicate the cluster numbers.
Rc denotes the region where the dynamics is high-dimensional cha-
otic.
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produces an asynchronous period-2 saddle around the fixed
point. For slightly lower values of the coupling parameter,
the synchronous period-2 cycle embedded in the coherent
chaotic state also undergoes a transverse period-doubling,
producing an asynchronous period-4 cycle.

The fractal curve in Fig. 1 denotes theblowoutbifurcation
of A(s). The blowout occurs at«5«bl512e2la when the
transverse Lyapunov exponentl'

(1) of the synchronous cha-
otic set changes its sign from minus to plus. After the blow-
out bifurcation,A(s) is no longer an attractor but has turned
into a chaotic saddle. Almost all trajectories now go away
from the coherent state described by the chaotic setA(s), and
in general only a zero measure set of trajectories will ap-
proachA(s) @18#. One of the main questions of the present
paper is to determine the fate of the diverging trajectories.
We find that, depending sensitively ona, there are two dif-
ferent possibilities associated with the mutual disposition of
the blowout and two-cluster stabilization curves.

Let a be fixed and let us consider what happens as the
control parameter« is reduced. If the blowout bifurcation
occurs before the appearance of a stable two-cluster state, the
coherent phase turns into a high-dimensional chaotic state.
With further reduction of parameter«, this may be captured
into one of the periodic two-cluster states. In the opposite
situation, i.e., when the asynchronous periodic cycles stabi-
lize before the blowout bifurcation, two-cluster states appear
before the blowout of the coherent state. As a consequence,
both types of dynamics—fully synchronized chaotic and
two-cluster periodic—coexist in some region of the
(a,«)-parameter plane@20#.

In Fig. 1, the solid and dashed bold curves represent the
stabilization of the asynchronous cyclesP2 ~period-2! and
P4 ~period-4! forming the possible symmetric~or close to
symmetric! two-cluster states. These cycles remain stable in
some regions under the curves to destabilize with further
reduction of« in a Hopf bifurcation. The symmetric two-
cluster stateP2, which arises as the asynchronous saddle
cycle produced through a transverse period-doubling bifur-
cation of the symmetric fixed pointP1

(s) , stabilizes in a sub-
critical, inverse pitchfork bifurcation along the fully drawn
bold curve.P4, which arises from a transverse period dou-
bling of the symmetric period-2 orbit, stabilizes along the
dashed bold curve. It can be seen in Fig. 1 that, fora
*3.93, P4 stabilizes before~i.e. for higher values of« than!
P2. Moreover, slightly asymmetric two-cluster states stabi-
lize after the symmetric ones when« decreases. In Sec. III C
we shall perform a more detailed analysis of the influence of
cluster asymmetry on the stabilization of the cyclesP2 and
P4 ~and the dynamics developed from these cycles!. The idea
is to illustrate the important role played by the exactly sym-
metric two-cluster states for the synchronization phenomena
in system~1!.

The last~dotted-dashed! bifurcation curve shown in Fig. 1
represents the stabilization of the symmetric three-cluster
state. In the moment of this bifurcation, stable period-4
cycles appear in each of the subspaces for the symmetric
three-cluster states whose dynamics is governed by system
~5! with K53 andpj51/3, j 51,2,3. In the region of inter-

est this three-cluster curve lies below the two-cluster curve
given by the stabilization ofP2 and P4. Therefore, we as-
sume that the two-cluster bifurcation curve delineates the
first moment of formation of symmetric clusters in the glo-
bally coupled map system~1!.

B. Dynamics in the two-cluster state

In the two-cluster states, the dynamics is governed by the
two-dimensional map~3!. Figure 2~a! shows a characteristic
phase portrait after the riddling bifurcation. The fixed point
P1

(s)5$x05y0512(1/a)% belongingA(s) has become trans-
versely unstable in a period-doubling bifurcation giving rise
to a saddle period-2 cycleP2. The thin curves connecting
P1

(s) with the points ofP2 represent a separatrix. Close to this
separatrix the trajectories will first approachP2 and then
proceed along one of the unstable manifolds of the saddle
cycle. Hence, there exists a positive measure set of the tra-
jectories that, when starting nearP1

(s) , can move away from
A(s) to a distance given by the deviation ofP2 from P1

(s) . As
the preimages of the fixed pointP1

(s) are dense inA(s), we
conclude that in the neighborhood of any point ofA(s), there
exists a positive measure set of points that give rise to tra-
jectories that go away fromA(s) in the direction towardsP2,
i.e., the basin of attraction ofA(s) is locally riddled.

Trajectories that burst away fromA(s) are restricted to an
absorbing areadenoted in Fig. 2~a! by A. This invariant
region is bounded by the segments of thecritical curves L1
andL2 @29,30#. These curves are obtained as the first and the
second images of the set

L05H ~x,y!uS x2
1

2D S y2
1

2D50J ,

which is the locus of points inR2 where the JacobianDF of
the mapF in Eq. ~3! vanishes. As long as the basin ofA(s) is
locally riddled only ~no other attractors insideA), most of
the trajectories entering into bursts will eventually be at-
tracted byA(s).

As we can see from Fig. 1, this type of locally riddled
dynamics occurs for a relatively wide region~denotedR1) of
the (a,«)-parameter plane. The lower boundary of this re-
gion consists of two very different parts: a fractal boundary
defined by the blowout bifurcation curve, and a smooth
boundary corresponding to the symmetric two-cluster forma-
tion curve. The corresponding transformations of the dynam-
ics of the system clearly involve very different processes.

If the parameter point (a,«) leaves the regionR1 through
the fractal~blowout! curve, the absorbing areaA defines a
new attractor in the plane of the two-cluster state. This is
illustrated in Fig. 2~b!. As we shall see in Sec. IV, however,
this type of two-dimensional attractor arising from the coher-
ent state in a blowout bifurcation is not stable in the whole
N-dimensional phase space. Transverse to the two-cluster
state, the maximal Lyapunov exponentl'

(2) is positive al-
though small, growing according to the power lawu«
2«blua,1<a<2, where«bl is the blowout bifurcation value.

Consider now in more detail the second possibility where
the (a,«)-parameter point leavesR1 through the smooth
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two-cluster formation curve. The characteristic phase portrait
after this transition is presented in Fig. 2~c!. Two different
asymptotic states coexist: a coherent state given by the syn-
chronous chaotic setA(s) and a periodic two-cluster state
given by the cycleP2. The basin of attraction for the coher-
ent attractor becomesglobally riddledwith the basin ofP2.
In the phase diagram of Fig. 1, the parameter region where
this kind of globally riddled dynamics occur, is denoted by
R1,2. When (a,«) belongs toR1,2, both coherent and two-
cluster regimes can be realized in system~1! when calcula-
tions are performed with randomly chosen initial conditions.
This follows from the stability of the cycles inN dimensions
as soon as they are stable in the two-cluster state~see Sec.
II !.

The lower boundary ofR1,2 in Fig. 1 is given by the
blowout bifurcation curve of the coherent attractorA(s). Un-
der this curve,A(s) is no longer stable even in average.
Hence, only two-cluster stable regimes can be manifested in
system ~1! provided that the parameter point (a,«) lies
above the three-cluster dotted-dashed curve (R2 region!. Be-
low the latter curve two- and three-cluster states coexist
(R2,3 region!. Moreover, in the lower left corner of Fig. 1,
one can observe a parameter region where the blowout curve
falls below the three-cluster curve (R1,2,3 region!. Here, the
coherent chaotic state and the two-cluster state coexist with
three-cluster dynamics.

The last region in Fig. 1, denoted byRc , is bounded by
the blowout curve from above and by the symmetric two-
cluster formation curves from below. Here, the dynamics of
system~1! can be high-dimensional chaotic, provided that
strongly asymmetric clusters do not arise. We justify this
statement in Sec. IV by showing that symmetric two- and
three-cluster states are unstable in the wholeN-dimensional
phase space of system~1! and that the dynamics inRc may
be completely uncorrelated, i.e., it is not attracted by a clus-
ter state of lower dimension. The role of strongly asymmetric
clusters for the formation of partially synchronized states
will be considered in a forthcoming publication@31#.

C. Formation of the symmetric clusters

As shown above, the appearance of the symmetric~or
slightly asymmetric! two-cluster dynamics in the globally
coupled map system~1! is caused by the stabilization of the
period-2 or period-4 asynchronous cyclesP2 andP4. In this
section we shall consider how the moments of stabilization
depend on a small cluster asymmetry, i.e., when the param-
eterp in system~3! starts to differ from 0.5. A main conclu-
sion is that the symmetric clusters, i.e., withp50.5, stabilize
at higher values of the coupling parameter« than other,
slightly asymmetric clusters. Moreover, the later the stabili-
zation occurs the larger the asymmetry is. For the symmetric
two-cluster state (p50.5), the cyclesP2 andP4 are born in
transverse period-doubling bifurcations of the coherent fixed
point P1

(s) andP2
(s) , respectively. After the bifurcations they

are first unstable~saddles! to later stabilize in inverse sub-
critical pitchfork bifurcations. A characteristic phase portrait
for the situation when both cyclesP2 and P4 have already
become stable is presented in Fig. 3. This figure corresponds

FIG. 2. Typical phase portraits for the globally coupled map
system~1! reduced to the symmetric two-cluster subspace@p50.5
in Eq. ~3!#: ~a! locally riddled basin of attraction for the coherent
stateA(s) after the riddling bifurcation (a53.8, «50.42),~b! on-off
intermittency after the blowout bifurcation ofA(s) (a53.8, «
50.34), and~c! globally riddled basin of attraction forA(s) after
stabilization of the asynchronous period-2 cycleP2 (a53.75, «
50.315). The light gray region in~a! and~c! represents the basin of
attraction forA(s), and the basin of attraction for the on-off attractor
in ~b!. The dark gray regions in~c! represent the basin of attraction
for the cycleP2 whose points are plotted by crossed circles. The
curvesL1 and L2 delineate the absorbing areaA, and P1

(s) is the
fixed point embedded inA(s). Note that the on-off state in~b! is not
stable inN-dimensional phase space.
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to a parameter point in the regionR2 of Fig. 1 where the
synchronized state is a chaotic saddle.

For the case of slightly asymmetric clusters, the cyclesP2
andP4 can be obtained by continuation of those in the sym-
metric case with the parameterp ~starting with p50.5). If
pÞ0.5, these cycles stabilize in saddle-node bifurcations off
the main diagonal rather than via inverse, subcritical pitch-
fork bifurcations as in the symmetric case (p50.5).

Figure 4 shows the regions of stability for the various
types of dynamics that evolve fromP2 and P4 under varia-
tion of p and « for two different values of the nonlinearity
parametera. In Fig. 4~a! (a53.8), the upper boundary of the
stability region~solid curve denoted SN! defines the moment
of stabilization of the asynchronous period-2 cyclesP2 in the
afore-said saddle-node bifurcations. This curve is clearly
seen to assume its maximal value forp50.5, representing
the fact that symmetric clusters will stabilize before slightly
asymmetric clusters as« is reduced.

For a53.8, stabilization ofP4 occurs at lower values of
the coupling parameter than stabilization ofP2, and we find
the stability region forP4 ~and for solutions developed from
P4) in the upper right corner of the stability region forP2.
For a54.0 @Fig. 4~b!#, on the other hand,P4 stabilizes be-
fore P2 ~see Fig. 1!, and the stability region forP4 falls
above that ofP2.

As shown in Sec. II, the stability of a periodic cycle in the
two-cluster phase plane implies its stability inN-dimensional
phase space. Hence, the uppermost curves in Figs. 4~a! and

4~b! are the bifurcation curves in the (p,«)-parameter plane
for the appearance of the symmetric~or nearly symmetric!
two-cluster states. The overlapping stability regions forP2
and P4 imply that the system has two coexisting types of

FIG. 3. Phase portrait of the globally coupled map system~1!
reduced to the symmetric two-cluster subspace@p50.5 in Eq.~3!#
after stabilization of both the asynchronous period-2~denoted byP2

and plotted by crossed circles! and the asynchronous period-4~de-
noted byP4 and plotted by stars! cycles. After the blowout bifur-
cation, the coherent stateA(s) ~dashed line segment! is a chaotic
saddle. The symmetric fixed point~denoted byP1

(s) and plotted by
the crossed square! and symmetric period-2 cycle~denoted byP2

(s)

and plotted by triangles! are repellors being after the transverse
period-doubling bifurcations which give birth toP2 andP4. Basins
of attraction for the cyclesP2 and P4 are shown in dark and light
grey, respectively. Parametersa53.9 and«50.345. With further
reduction of« each of the cyclesP2 andP4 undergoes a sequence
of additional bifurcations leading to various forms of quasiperiodic
and chaotic two-cluster dynamics.

FIG. 4. Stability regions in the (p,«)-parameter plane for the
various types of dynamics in system~3! that develop from the asyn-
chronous period-2 (P2) and period-4 (P4) cycles and represent
two-cluster states in Eq.~1!. Bifurcation curves denoted by SN, PD,
andH correspond to saddle-node, period-doubling, and Hopf bifur-
cations, respectively. With decreasing values ofp we can followP2

through a cascade of period-doubling bifurcations into a chaotic
off-diagonal attractor that finally destroys in a boundary crisis. The
bold dashed curve bounds the region where the largest Lyapunov
exponent transverse to the two-cluster state is negative. Here, sys-
tem ~1! displays stable two-cluster states with a distribution be-
tween clusters as defined byp and a dynamics that is given by the
attractors developed fromP2. Parametersa53.8 in ~a! and a54
in ~b!.
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two-cluster dynamics~see, e.g., Fig. 3!. With further varia-
tion of the parametersp and«, the cyclesP2 andP4 undergo
a variety of different bifurcations in which more complicated
two-cluster dynamics arises. Besides periodic cycles of
higher periodicity, quasiperiodic and chaotic dynamics occur.
Some of the bifurcation curves are indicated in Figs. 4~a! and
4~b! where period-doubling and Hopf bifurcation curves are
denoted PD andH, respectively. A more detailed examina-
tion of these dynamics falls outside the scope of the present
paper. We refer the reader to a previous study@20# where a
number of results in this direction are presented.

If the attractor in a two-cluster state is quasiperiodic or
chaotic, its stability within the two-cluster state does not im-
ply its stability in the full N-dimensional phase space. The
bold dashed curves in Figs. 4~a! and 4~b! denote the trans-
verse destabilization of the two-cluster attractors developed

FIG. 5. Variation of the largest transverse Lyapunov exponent
~solid bold curve! with the coupling parameter« for the two-cluster
states being~a! symmetric (p50.5) or ~b! with 2:1 variable distri-
bution (p51/3). Parametera54. Dashed curves represent
Lyapunov exponents within the two-cluster state. Note that, when«
decreases, the state stabilizes inN dimensions if it becomes an
attracting cycle. Our interest is focused on the behavior immedi-
ately after the blowout bifurcation of the coherent state, which oc-
curs at«50.5.

FIG. 6. Variation of the largest transverse Lyapunov exponent
l'

(2) for the chaotic two-cluster stateA(2) arising immediately after
the blowout bifurcation of the coherent stateA(s). Here,A(2) has a
form similar to those shown in Fig. 2~b!, and the blowout bifurca-
tion occurs at«50.5. Parametera54. The three curves in~a! rep-
resent different values of the asymmetry parameterp. In all cases,
the transverse Lyapunov exponent is positive~although small!. The
dashed curve gives a variation of the transverse Lyapunov exponent
l'

(1) of the coherent stateA(s). In ~b!, the same graphs in logarith-
mic scale illustrate the power law dependence~8!. Here, the trans-
verse Lyapunov exponents forp50.5, p50.4, andp50.3 are plot-
ted by circles, squares, and triangles, respectively. As one can see,
straight lines within the marks fit the values of the exponents and
have slopesa52 (p50.5), a51.8 (p50.4), and a51.7 (p
50.3). We conclude that the chaotic two-cluster state formed in this
process cannot be stable inN-dimensional phase space.
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from P2, and the lower right curves represent their final
boundary crises. The upper branch of the dashed curve coin-
cides with the saddle-node bifurcation curve of two-cluster
stabilization. As we can see, there is a fairly large parameter
region where the attractor in the two-cluster state is quasip-
eriodic and yet transversely stable. Below this region there is
another region where the two-cluster state is transversely un-
stable.

IV. TRANSVERSE INSTABILITY
OF CHAOTIC CLUSTERS

In this section we show that the chaotic motions in the
two- and three-cluster states in general are transversely un-
stable. This applies in particular to the chaotic motions that
appear after the blowout bifurcation of the coherent attractor
A(s). To verify this, we show that the largest transverse
Lyapunov exponentsl'

(2) ~for the two-cluster state! andl'
(3)

~for the three-cluster state! are positive. Moreover, immedi-
ately after the blowout bifurcation«bl they grow in accor-
dance with a power law.

A. Chaotic two-cluster state

Figures 5~a! and 5~b! display scans ofl'
(2) over the range

from «50 ~uncoupled system! to right above the blowout
bifurcation («50.5) fora54 and for two different values of
the asymmetry parameter:p50.5 ~symmetric clusters! and
p51/3 ~1:2 cluster distribution!. The scans ofl'

(2) are shown
as bold curves. The dashed curves show the variation of the
two Lyapunov exponents that control the two-dimensional
cluster dynamics~3!. In both cases the periodic two-cluster
states stabilize after the blowout bifurcation and this gives
rise to a hyperchaotic attractor bounded in two-dimensional
phase space by the absorbing areaA ~see Fig. 2 where the
characteristic form ofA is illustrated!. In Fig. 5~a! there is an

interval around«50.23 wherel'
(2) is negative while the

Lyapunov exponents in the two-cluster plane are positive.
Here, we have a transversely stable chaotic two-cluster state.
However, through most of the scan the transverse Lyapunov
exponent is positive when the longitudinal exponents are
positive.

Figure 6 shows an enlargement of the rightmost parts of
the graphs from Fig. 5 in order to illustrate the power law of
growth for l'

(2) after the blowout bifurcation for different
values of the asymmetry parameterp. Here,a54. As we can
see

l'
(2);u«bl2«ua, «→«bl , ~8!

where a>2 for the symmetric casep50.5 and decreases
with decreasingp. This result is supported by plotting the
graphs on logarithmic scale@Fig. 6~b!#. Here,D«5«bl2«,
and the slopes of the linear part of the graphs determine the
exponenta in the power law~8!.

The graph ofa5a(p) as a function ofp is shown in Fig.
7. As it can be seen,a decreases with decreasingp. More-
over, a tends to 1 asp approaches 0 and to 2 asp ap-
proaches 0.5.

B. Chaotic three-cluster state

As we have just shown, chaotic two-cluster motions,
when they appear after destabilization of the coherent phase,
are transversely unstable. It follows that the chaotic motions
that arise must at least be three dimensional. We now show
that the dimension must also be larger than three. To this end,
we give a numerical evidence that chaotic motions in the
symmetric three-cluster states are transversely unstable.

Figure 8 shows a plot of the transverse Lyapunov expo-
nent l'

(3) versus parameter« for a symmetric three-cluster
state.l'

(3) becomes positive immediately after the blowout
bifurcation («50.5) and appears to grow in accordance with
a power law similar to Eq.~8!. This can be justified as fol-
lows. As illustrated in Fig. 9, the typical trajectory in the
chaotic three-cluster state behaves in such a way that it
spends most of the time very near the diagonal two-
dimensional planessz5$x5y,z%, sy5$x5z,y%, and sx
5$x,y5z%. Moreover, it switches between these planes in an
apparently random manner. From this observation we con-
clude that an approximate value for the transverse~to the
three-cluster state! Lyapunov exponentl'

(3) can be obtained
as calculated on the planessx ,sy , andsz , with the addi-
tional assumption that the average time spent near each of
these planes is the same. This gives

l'
(3)>~2l',1

(2)1l',2
(2) !/3, ~9!

wherel',1
(2) andl',2

(2) are the largest and the second transverse
Lyapunov exponents for the chaotic motions in the two-
cluster planessx ,sy , andsz . Using the expression~6! for
the transverse Lyapunov exponents for two-cluster states and
the formula~7! for three-cluster states, we come to the ap-
proximate formula~9!.

FIG. 7. Variation of the exponenta in the power lawl'
(2)

;u«bl2«ua with the asymmetry parameterp. For symmetric clus-
ters (p50.5), a'2, anda→1 asp→0. Parametera54.
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To conclude our considerations, we note that the numeri-
cal calculation ofl'

(3) has required the introduction of small
noise of the order of 10222. Without this noise, trajectories
are captured by the two-cluster dynamics because of final
precision in the calculations. The average capturing times are
shown in Fig. 10 for single (1028), double (10216), and
triple (10224) precisions, respectively. We suppose that this
capturing phenomenon can explain why high-dimensional
chaotic motions arising after desynchronization of the coher-
ent phase have not previously been reported. Indeed, any
regular calculation~without noise! gives evidence of two-
cluster dynamics even though this is actually transversely
unstable as soon as it is chaotic.

It was shown in@21# that cluster states arising after blow-
out bifurcation of a coherent attractor@see Fig. 2~b!# cannot
be asymptotically stable in the wholeN-dimensional phase
space of the globally coupled map system~1!. As we can see
now, the lack of a parameter region of asymptotic stability
may cause these clusters states to also be unstable on the
average.

V. CONCLUSION

In order to refine the original phase diagram presented by
Kaneko @1# we investigated in detail the bifurcations in-
volved in the loss of complete synchronization and the for-
mation of clusters of partially synchronized oscillators in a
system of globally coupled logistic maps. We found that the
loss of complete synchronization and the formation of stable
two-cluster states are two distinct processes. Moreover, de-
pending sensitively on the nonlinearity parametera of the

FIG. 9. Synchronization errors calculated on a typical trajectory
for the chaotic three-cluster state@considering system Eq.~5! with
K53 andpj51/3, j 51,2,3)#. We have added a small noise of the
maximal amplitude 10222. The first 104 iterations are skipped, and
the next 1.23105 iterations are plotted. The trajectory spends most
of its time near the two-dimensional planessz5$x5y,z%,sy5$x
5z,y% andsx5$x,y5z%, and it switches between these planes in
an apparently random manner. Parametersa54 and«50.495.

FIG. 10. Average~over 8000 initial conditions! capturing time
in a two-cluster state as calculated with single (1028), double
(10216), and triple (10224) precisions and shown by dotted-dashed,
solid, and dashed curves, respectively. By iterating system~5! with
K53, pj51/3, j 51,2,3, anda54, we find that all trajectories are
captured by transversally unstable two-cluster states in a finite time.
The capturing phenomenon and the associated spurious stability
with positive transverse Lyapunov exponents can be avoided by
adding a small amount of noise to the numerical computations.

FIG. 8. Transverse Lyapunov exponentl'
(3) ~shown by circles!

for a symmetric three-cluster state as a function of the coupling
parameter«. The largestl',1

(2) and the secondl',2
(2) transverse

Lyapunov exponents for the two-cluster state with 2:1 (p51/3)
variable distribution between clusters are also shown. The value
(2l',1

(2)1l',2
(2))/3 is represented by the bold dashed curve that fits the

values ofl'
(3) . We conclude thatl'

(3) becomes positive immediately
after the blowout bifurcation («50.5) and grows in accordance
with a power law. Here,a54.
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logistic map, the stabilization of symmetric~or nearly sym-
metric! two-cluster states may occur before or after the blow-
out bifurcation, leading to very different behaviors.

The loss of complete synchronization proceeds via a rid-
dling bifurcation~in which the fixed point loses its transverse
stability in a period-doubling bifurcation! and a blowout bi-
furcation ~in which the transverse Lyapunov exponent for a
typical trajectory on the synchronized chaotic set becomes
positive!. If the blowout bifurcation occurs before the forma-
tion of stable two-cluster dynamics becomes possible, the
synchronized chaotic state explodes into a high-dimensional
hyperchaotic state. The reason why this type of transition has
not previously been observed appears to be related to spuri-
ous numerical effects that cause the computed trajectories to
be captured in low-dimensional chaotic states, even though
these states are transversely unstable. We showed that cha-
otic two- and three-cluster states are transversely unstable
immediately after the blowout bifurcation and obtained the
scaling relations relating to the variation of the maximal
transverse Lyapunov exponent with the distance to the bifur-
cation point.

Formation of the two-cluster states takes place via the
stabilization of asynchronous periodic cycles. For coupled
logistic maps~with the considered coupling structure! only
the asynchronous period-2 and period-4 cycles are involved
in the initial stage of the formation of the symmetric two-
cluster state. We proved that if any of these cycles are stable
in the phase space of the symmetric two-cluster state, then
they are also stable in the wholeN-dimensional phase space.

We also considered the influence of a small asymmetry in
the distribution of oscillators between the clusters of the two-
cluster state. While stabilization of the symmetric two-cluster
state takes place via an inverse, subcritical pitchfork bifurca-
tion, stabilization of asymmetric two-cluster states occurs via
a saddle-node bifurcation off the main diagonal. With further
reduction of the coupling parameter, the asynchronous cycles
forming the two-cluster state may undergo additional bifur-
cations in which more complex behaviors arise. Chaotic two-
cluster dynamics may occur in relatively small regions of
parameter space when the two-cluster attractor lies away
from the main diagonal. In the phase space of the two-cluster
state, this type of behavior continues to be attracting until it
is destroyed in a boundary crisis. In the fullN-dimensional
phase space, however, the chaotic two-cluster dynamics
tends to be transversely unstable.

We described a simple general algorithm of finding stable
cluster states based on the form of transverse Lyapunov ex-
ponents. Considering only a low-dimensional reduced sys-
tem of coupled maps and calculating the corresponding
transverse Lyapunov exponents, one can evaluate the stabil-
ity of the cluster states for a very large lattice of globally
coupled maps.
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