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Potential dominance of oscillating crescent waves in finite width tanks
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Recently, it has been proposed that the emergence of previously observed oscillating crescent water
wave patterns, created by class IIsthree-dimensionald instabilities which are in principle not
dominant, could in fact be explained as an artifact of a finite width tank, combined with a
suppression of the class IsBenjamin–Feird instability. Within this context, we investigate
quantitatively the dominance of class II deep water wave instabilities for particular transversal
wavenumbers, and it is shown that the regions where non-phase-lockedsoscillatingd crescent wave
patterns are locally dominant is surprisingly large, particularly for low to moderate wave steepness.
This is an important realization for both experimentalists and numerical modelers currently studying
these phenomena. ©2005 American Institute of Physics. fDOI: 10.1063/1.1852291g

The observation by Collard and Caulliez1 of oscillating
crescent waves in their physical experiments has puzzled sci-
entists, as these are due to what is, in principle, a nondomi-
nant class IIsRef. 2d wave instabilitysthe dominant instabil-
ity corresponds to the phase-locked crescents observed, e.g.,
by Su et al.3d. Indeed, Collard and Caulliez state that the
emergence of their oscillating crescents could not be ex-
plained using existing theories. Recently, however, Fuhrman
et al.4 have demonstrated that the emergence of oscillating
crescent wave patterns, very similar to those observed by
Collard and Caulliez, could in fact be explained directly
from the stability analysis of McLean,2 when effects from a
finite width tank were taken into account, combined with a
suppression of the class I instability. They discuss a single
example, fitting precisely within the actual tank width used
by Collard and Caulliez, and having perturbation frequencies
exactly matching those from the experiments. This finding
raises the previously unanswered question: How prevalent
are such regions in the instability plane where, for a given
transversal wavenumber, non-phase-lockedsi.e., oscillatingd
crescent wave patterns are in fact locally dominant? Hence,
there is an apparent need for a reinvestigation of the insta-
bility regions to examine this issue, which is the aim of the
present work.

In what follows, we work under the assumption that the
two-dimensional class IsBenjamin–Feir5d instability is sup-
pressed, in some way, so that it is weaker than the class II
instability for any given wave steepness. This is justified
within the current context, as Collard and Caulliez report
observing crescent waves forswaveheight divided by wave-
lengthd H /L<0.051, i.e., well belowH /L<0.10 where they
theoretically become dominant. This is most likely explained
in their case by the use of a plastic film, though wind6 and
randomness7 have also been reported to have a suppressive
effect on the class I instability, while their relative effects on
the class II instability remain open. Furthermore, we neglect
any potential effects of extraneous parametersse.g., the plas-

tic film, wind, etc.d on the instability regions themselves, as
there is currently no realistic way of incorporating them. In
other words, we limit our consideration to class II instabili-
ties, and we assume that the basic assumptions of potential
flow are valid.

To investigate quantitatively the dominance of various
class II instabilities, we use an analysis based on the seminal
work of McLean2 ssee also the relevant work of Kharif and
Ramamonjiarisoa8,9d, which considers the stability of finite
amplitude plane deep water waves having wavenumber vec-
tor k =sk,0d scomputed here using the stream function solu-
tion of Fenton10d, subject to infinitesimal three-dimensional
perturbations having wavenumber vectorsk1=sp+1,qdk and
k2=s2−p,−qdk. These wavenumbers satisfy the quintet reso-
nance condition

3k = k1 + k2, s1d

which is the physical mechanism responsible for the forma-
tion of such crescent patterns, as noted, e.g., by Shriraet al.11

As shown by McLean,2 the analysis leads to an eigenvalue
problem for the complex frequencys, where Ressd governs
the perturbation frequenciessin a frame of reference moving
with the unperturbed waved, while Imssd determines the
relative strength of the instability. Throughout this work, we
pay sole attention to the imaginary part, as this governs the
relative dominance of various unstable modes. Following
McLean,2 we here takek=g=1, whereg is the gravitational
acceleration. As this analysis has been described numerous
times in the literature, we do not provide additional details
here. Note that the analysis used here has been previously
validated against McLean’s results in Ref. 4, see their Table
III, where very minor differences can be seen. These differ-
ences have since been found to be from McLean apparently
using exactly the steepnesses, e.g.,ak=0.1, 0.2, 0.3, 0.35
swith a=H /2 the wave amplituded in his analysis, while cu-
riously reporting rounded values in terms of the steepness
H /L=ak/p swhen we use the exact values forak we arrive
precisely at his values forsd.

Figure 1 shows four computed regions of class II insta-
bility for waves having steepnessesH /L=0.05, 0.064,
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0.0708, and 0.085scorresponding toak<0.157, 0.201,
0.222, and 0.267d. These regions are computed by finding
upper and lower bounds forq swithin ±0.001d for selected
discrete values ofp. As these regions are symmetric about
p=0.5, onlyp.0.5 is shown here for simplicity. Within each
instability region the dot corresponds to the location of glo-
bal maximum instabilitysp,qd=s0.5,q̂d, whereas the dotted
line follows the location of the locally dominant class II
instability for various constant values ofq. The threshold
where this dotted line leavesp=0.5 will be denotedqthresh, as
indicated in Fig. 1sdd. In constructing these dotted lines, for
each q considered the locally dominantp is determined
within ±0.01. In each caseqthresh is likewise determined
within ±0.001.

Consideration ofqÞ q̂ is particularly relevant when fi-
nite width tanks are consideredsas was used, e.g., by Collard
and Caulliezd, where the transversal components are then
limited to the discrete possibilities,

q = Uky

k
U =

pn

bk
, s2d

wheren is a positive integer specifying the number of half
transverse wavelengths spanning the width of the tankb, as
described, e.g., in Refs. 1 and 4.sPhotographs of crescent
patterns in, e.g., Suet al.3 as well as Melville,12 support the
validity of this assertion, which basically implies symmetry
about the tank side walls.d Hence, generally speaking, the

more narrow a tank is, the less likely one of the possible
transverse modes is to land atsor neard the globally dominant
valueq̂, thus making the entire instability region of practical
interest.

Of particular interest in this plot is Fig. 1scd with H /L
=0.0708, which corresponds precisely to the case discussed
by Fuhrmanet al.4 They showed that by taking into account
amplitude dispersion in a primary wave of this steepness, the
q=1.480 transversal mode fits precisely within the tank used
in the experiments, while also having a dominant class II
instability atp=1 sit should be noted, however, than Collard
and Caulliez actually reportq=1.32d. This is marked by the
crossing of the dashed lines atsp,qd=s1,1.480d in Fig. 1scd.
This local dominance is shown quantitatively in Fig. 2,
where Imssd is shown along cross sections having constantq
values of 1.480, 1.491, andq̂=1.505. Clearly, from the full
line in this figure the strength of the class II instability at the
local maximum sp,qd=s1,1.480d is significantly stronger
than ats0.5, 1.480d. The other two lines are also rather inter-
esting. The trace withq=1.491 is just slightly belowqthresh

=1.494, and it can be seen that for a rather wide range ofp
the relative strength of the class II instability is nearly con-
stant. Moving slightly upward in thep-q plane toq̂=1.505,
the picture changes significantly, and the strength of the in-
stability now decreases asp deviates from 0.5. Figure 2 is a
good example of what generally happens as one variesq
within a given instability region.

FIG. 1. Selected class II instability regions for plane deep water wave trains having steepnesssad H /L=0.05,sbd 0.064,scd 0.0708, andsdd 0.085. On each
plot the dot marks the location of maximum instability, occurring atsp,qd=s0.5,q̂d, whereas the dotted line indicates the variation of the locally dominant
instability for various constant values ofq. In scd the crossing of the dashed lines atsp,qd=s1,1.480d corresponds to the locally dominant point found by
Fuhrmanet al. sRef. 4d to match closely the oscillating crescent waves observed by Collard and CaulliezsRef. 1d.
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By further examination of Fig. 1 some rather interesting
trends can be seen. In each of the plots, it is first seen that for
qù q̂ the dominant class II instability unsurprisingly occurs
at p=0.5, corresponding to symmetric perturbations. These
lead to the well-known phase-lockedL2 crescent wave pat-
terns, which are always dominant when the full continuous
range ofq is allowedse.g., in very wide wave tanksd. Alter-
natively, forq, q̂ this is not necessarily the case. In Fig. 1sad
with H /L=0.05 it is seen, quite remarkably, that forq, q̂ the
dominant class II instability isneverwith p=0.5! Rather, it
deviates from this axis immediately below the location of
global maximum instability, that isqthresh= q̂. As discussed,
e.g., by Fuhrmanet al.,4 such class II instabilities withp
Þ0.5 will in fact result quite generally in oscillating crescent
waves, with cases havingp=1 closely resembling those ob-
served by Collard and Caulliez1 si.e., having crescents ar-
ranged in straight rowsd. We find thatqthresh= q̂ is generally
the case forH /Lø0.51. It is interesting to mention that in
this particular case, Fig. 1sad, where the nonlinearity is rela-
tively weak sand the instability region relatively thind, theq
value where thep=1 mode is locally dominant is actually
stable atp=0.5 fsee the dashed horizontal line in Fig. 1sadg,
which is also typical for weakly nonlinear cases. This dem-
onstrates that there are physical circumstances wheresdomi-
nantd oscillating crescents similar to those observed by Col-
lard and Caulliez exist, which are entirely free of
competition from any phase-locked modes, which may help
explain the described sharp selection in the experiments.

As the steepness is gradually increased, as in Figs.
1sbd–1sdd, qthreshgradually moves downward in thep-q plane
si.e., belowq̂d, indicating a relative increase in the fraction of
existing phase-locked instabilitiesswith p=0.5d that will be
dominant. This can be more clearly seen in Fig. 3, which
shows the variation of the upper and lower bounds of the
class II instability regionsat p=0.5d, denoted here respec-
tively as qmax and qmin, as well as the locations ofq̂ and
qthresh versus wave steepnessH /L. This figure clearly dem-
onstrates the manner in whichqthreshgradually shifts fromq̂
to qmin as the steepness is increased.

We will now attempt to quantify the relative dominance
of the symmetric class II instability as a function of wave
steepness. We here define byg the fraction of all possible
symmetric class II instabilitiesswith p=0.5d that are locally
dominant, i.e., having the maximum value of Imssd for their

respectiveq. This is simply computed using the previously
defined variables by

g =
qmax− qthresh

qmax− qmin
. s3d

Under the assumption that a finite width tank is such that
exactly one of the discreteq values froms2d lies within the
rangeqminøqøqmax swith equal likelihood given to the en-
tire ranged, this defines the probability of having theoretically
dominant phase-locked crescent waves at a given steepness.
The variation ofg versus the wave steepness is shown in Fig.
4. Here, as expected, it is seen that forH /Lø0.051 only half
of all existing symmetric class II instabilities are in fact
dominant for their respectiveq values, consistent with Fig.
1sad. This fraction steadily increases untilH /L<0.09, after
which g is seen to gradually approach unity. Figure 4 should
serve as a useful guide as tosroughlyd how likely it might be
to observe dominant class II modes that are non-phase-
lockedsat a given incident steepnessd in an arbitrary tank of
finite width, provided that the before-mentioned assumptions
are satisfied.

This work demonstrates that there is a surprisingly large
number of possible symmetric class II deep water wave in-
stabilities si.e., with p=0.5, corresponding to the classical
phase-lockedL2 patterns of Suet al.3d which are in fact not
dominant for a given transversal mode. This is an important
consideration when finite width tanks are used. The details
presented here also more clearly demonstrate the specific

FIG. 2. Strength of instability withH /L=0.0708 corresponding tosfull lined
q=1.480,sdotted lined q=1.491, andsdashed lined q̂=1.505.

FIG. 3. Transition ofstop full lined qmax, sbottom full lined qmin, sdotted lined
q̂, andsdashed lined qthreshvs wave steepness.

FIG. 4. Fractiong of existing symmetric class II instabilitiessi.e., with p
=0.5d that are locally dominant for their respectiveq values vs wave
steepness.
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case originally discussed by Fuhrmanet al.,4 which could
explain the emergence of oscillating crescent waves closely
resembling those observed by Collard and Caulliez in their
actual wavetank. From this analysis it is also clear that nu-
merous other, similar, examples could be found by combin-
ing tanks of varying width with waves of variable steepness.
We reiterate, however, that these only appear likely at low to
moderate wave steepness, hence this explanation inherently
relies on a suppression of the class I instability.

A remaining issue is the question of why Collard and
Caulliez observed the specific case with exactlyp=1, again
corresponding to the arrangement of the oscillating crescent
waves in straight rows. Based on the current analysis, this
specific example would be no more likely to appear than
other oscillating cases withpÞ0.5. Those instabilities with
p=1 would certainly be the most visually striking, however,
and it is easily conceivable that the precise order of those
crescent waves corresponding to instabilities with neitherp
=0.5 norp=1 might be difficult to distinguish in real time
physical experiments. Thus, it is possible that this arrange-
ment in particular “caught the eye” of the experimenters. It is
also worth emphasizing that in weakly nonlinear cases, e.g.,
as demonstrated in Fig. 1sad, it is possible for all existing
instabilities for a givenq to indeed havep<1, which would
seem to be an equally valid explanation. Alternatively, per-
haps the presence of the plastic filmscombined with the
windd somehow favors the growth of modes having even
multiples of the carrier wavenumber. Finally, it is also pos-
sible that some othersas yet unexplainedd external excitation
could also have played a role. More knowledge of the effects

of external parametersse.g., those of the plastic film and
wind on the instability regionsd is apparently necessary be-
fore this issue can be resolved.

The authors wish to thank the Danish Technical Re-
search CouncilsSTVF Grant No. 9801635d for financial sup-
port and the Danish Center for Scientific Computing for
computational resources.
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