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Potential dominance of oscillating crescent waves in finite width tanks

David R. Fuhrman® and Per A. Madsen®”
Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Received 9 September 2004; accepted 16 November 2004; published online 2 February 2005

Recently, it has been proposed that the emergence of previously observed oscillating crescent water
wave patterns, created by class (three-dimensionalinstabilities which are in principle not
dominant, could in fact be explained as an artifact of a finite width tank, combined with a
suppression of the class (Benjamin—Feir instability. Within this context, we investigate
quantitatively the dominance of class Il deep water wave instabilities for particular transversal
wavenumbers, and it is shown that the regions where non-phase-l@@iiating crescent wave
patterns are locally dominant is surprisingly large, particularly for low to moderate wave steepness.
This is an important realization for both experimentalists and numerical modelers currently studying
these phenomena. @005 American Institute of PhysidDOI: 10.1063/1.1852291

The observation by Collard and Caullfeaf oscillating  tic film, wind, etc) on the instability regions themselves, as
crescent waves in their physical experiments has puzzled sdirere is currently no realistic way of incorporating them. In
entists, as these are due to what is, in principle, a nondomither words, we limit our consideration to class Il instabili-
nant class I(Ref. 2 wave instability(the dominant instabil- ties, and we assume that the basic assumptions of potential
ity corresponds to the phase-locked crescents observed, e.tiow are valid.
by Su et al®). Indeed, Collard and Caulliez state that the To investigate quantitatively the dominance of various
emergence of their oscillating crescents could not be exclass Il instabilities, we use an analysis based on the seminal
plained using existing theories. Recently, however, Fuhrmagork of McLearf (see also the relevant work of Kharif and
et al* have demonstrated that the emergence of oscillatinfkamamonijiarisd), which considers the stability of finite
crescent wave patterns, very similar to those observed b§mplitude plane deep water waves having wavenumber vec-
Collard and Caulliez, could in fact be explained directly tor k=(k,0) (computed here using the stream function solu-
from the stability analysis of McLeahwhen effects from a  tion of Fentor9), subject to infinitesimal three-dimensional
finite width tank were taken into account, combined with aperturbations having wavenumber vectkis(p+1,q)k and
suppression of the class | instability. They discuss a singl&2=(2-p,—q)k. These wavenumbers satisfy the quintet reso-
example, fitting precisely within the actual tank width usednance condition
by Collard and Caulliez, and having perturbation frequencies 3Kk =k + K, (1)
exactly matching those from the experiments. This finding '
raises the previously unanswered question: How prevalenwhich is the physical mechanism responsible for the forma-
are such regions in the instability plane where, for a givertion of such crescent patterns, as noted, e.g., by Séiriah™
transversal wavenumber, non-phase-lockeal, oscillating  As shown by McLead, the analysis leads to an eigenvalue
crescent wave patterns are in fact locally dominant? Hencegroblem for the complex frequeney, where Réo) governs
there is an apparent need for a reinvestigation of the instahe perturbation frequenciém a frame of reference moving
bility regions to examine this issue, which is the aim of thewith the unperturbed wayge while Im(o) determines the
present work. relative strength of the instability. Throughout this work, we

In what follows, we work under the assumption that thepay sole attention to the imaginary part, as this governs the
two-dimensional class (Benjamin—Feft) instability is sup- ~ relative dominance of various unstable modes. Following
pressed, in some way, so that it is weaker than the class McLean? we here tak&k=g=1, whereg is the gravitational
instability for any given wave steepness. This is justifiedacceleration. As this analysis has been described numerous
within the current context, as Collard and Caulliez reporttimes in the literature, we do not provide additional details
observing crescent waves fowaveheight divided by wave- here. Note that the analysis used here has been previously
length H/L=~0.051, i.e., well belowH/L~0.10 where they validated against McLean’s results in Ref. 4, see their Table
theoretically become dominant. This is most likely explainedlll, where very minor differences can be seen. These differ-
in their case by the use of a plastic film, though Wimthd  ences have since been found to be from McLean apparently
randomnesshave also been reported to have a suppressivesing exactly the steepnesses, e.gk=0.1, 0.2, 0.3, 0.35
effect on the class | instability, while their relative effects on (with a=H/2 the wave amplitudein his analysis, while cu-
the class Il instability remain open. Furthermore, we neglectiously reporting rounded values in terms of the steepness

any potential effects of extraneous parameterg., the plas- H/L=ak/m (when we use the exact values fak we arrive
precisely at his values far).

Electronic mail: dri@mek.dtu.dk N Figure 1 shows fogr computed regions of class Il insta-
PElectronic mail: prm@mek.dtu.dk bility for waves having steepnessdd/L=0.05, 0.064,
1070-6631/2005/17(3)/038102/4/$22.50 17, 038102-1 © 2005 American Institute of Physics
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FIG. 1. Selected class Il instability regions for plane deep water wave trains having ste@ri¢ss=0.05,(b) 0.064,(c) 0.0708, andd) 0.085. On each
plot the dot marks the location of maximum instability, occurringtg) =(0.5,§), whereas the dotted line indicates the variation of the locally dominant
instability for various constant values gf In (c) the crossing of the dashed lines(gtg)=(1,1.480 corresponds to the locally dominant point found by
Fuhrmanet al. (Ref. 4 to match closely the oscillating crescent waves observed by Collard and C4R&&z1).

0.0708, and 0.085corresponding toak=0.157, 0.201, more narrow a tank is, the less likely one of the possible
0.222, and 0.267 These regions are computed by finding transverse modes is to land(at neaj the globally dominant
upper and lower bounds fay (within £0.001) for selected valueq, thus making the entire instability region of practical
discrete values op. As these regions are symmetric aboutinterest.
p=0.5, onlyp>0.5 is shown here for simplicity. Within each Of particular interest in this plot is Fig.(d) with H/L
instability region the dot corresponds to the location of glo-=0.0708, which corresponds precisely to the case discussed
bal maximum instability(p,q)=(0.5,d), whereas the dotted by Fuhrmanet al* They showed that by taking into account
line follows the location of the locally dominant class Il amplitude dispersion in a primary wave of this steepness, the
instability for various constant values of The threshold g=1.480 transversal mode fits precisely within the tank used
where this dotted line leavgs=0.5 will be denotedy,.sp @S in the experiments, while also having a dominant class Il
indicated in Fig. 1d). In constructing these dotted lines, for instability atp=1 (it should be noted, however, than Collard
each g considered the locally dominant is determined and Caulliez actually repog=1.32. This is marked by the
within +0.01. In each cas@q, is likewise determined crossing of the dashed lines @t q)=(1,1.480 in Fig. 1(c).
within £0.001. This local dominance is shown quantitatively in Fig. 2,
Consideration ofg+ q is particularly relevant when fi- where In{o) is shown along cross sections having constant
nite width tanks are consideréds was used, e.g., by Collard values of 1.480, 1.491, arfj=1.505. Clearly, from the full
and Caulliez, where the transversal components are thenine in this figure the strength of the class Il instability at the

limited to the discrete possibilities, local maximum (p,q)=(1,1.480 is significantly stronger
k. n than at(0.5, 1.480. The other two lines are also rather inter-
q=|7|= bk’ (2)  esting. The trace witly=1.491 is just slightly belovesh

K =1.494, and it can be seen that for a rather wide range of

wheren is a positive integer specifying the number of half the relative strength of the class Il instability is nearly con-
transverse wavelengths spanning the width of the tards  stant. Moving slightly upward in the-g plane tog=1.505,
described, e.g., in Refs. 1 and @hotographs of crescent the picture changes significantly, and the strength of the in-
patterns in, e.g., Sat al? as well as Melville*? support the  stability now decreases gsdeviates from 0.5. Figure 2 is a
validity of this assertion, which basically implies symmetry good example of what generally happens as one vayies
about the tank side wallsHence, generally speaking, the within a given instability region.
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FIG. 2. Strength of instability witit /L =0.0708 corresponding téull line) FIG. 3. Transition oftop full line) day, (bottom full lin€) dmr, (dotted ling
=1.480, (dotted ling q=1.491, anddashed ling §=1.505. @, and(dashed ling Gyyesh VS Wave steepness.

By further examination of Fig. 1 some rather interestingrespectiveq. This is simply computed using the previously
trends can be seen. In each of the plots, it is first seen that felefined variables by
g=q the dominant class Il instability unsurprisingly occurs
at p=0.5, corresponding to symmetric perturbations. These vy
lead to the well-known phase-lockéd crescent wave pat- Omax ™ Gmin
terns, which are always dominant when the full continuousunder the assumption that a finite width tank is such that
range ofq is allowed(e.g., in very wide wave tanksAlter-  exactly one of the discretg values from(2) lies within the
natively, forq<{ this is not necessarily the case. In Fig@)l  rangeq,<q< 0 (With equal likelihood given to the en-
with H/L=0.05 it is seen, quite remarkably, that tpr g the  tire rangs, this defines the probability of having theoretically
dominant class Il instability imeverwith p=0.5! Rather, it  dominant phase-locked crescent waves at a given steepness.
deviates from this axis immediately below the location of The variation ofy versus the wave steepness is shown in Fig.
global maximum instability, that isines=0. As discussed, 4. Here, as expected, it is seen thattbi. < 0.051 only half
e.g., by Fuhrmaret al,* such class Il instabilities wittp  of all existing symmetric class I instabilities are in fact
# 0.5 will in fact result quite generally in oscillating crescent dominant for their respectivg values, consistent with Fig.
waves, with cases having=1 closely resembling those ob- 1(a). This fraction steadily increases until/L~0.09, after
served by Collard and CaulliéZi.e., having crescents ar- which y is seen to gradually approach unity. Figure 4 should
ranged in straight rowsWe find thatgys=0 is generally  serve as a useful guide as(toughly) how likely it might be
the case foH/L=<0.51. It is interesting to mention that in to observe dominant class Il modes that are non-phase-
this particular case, Fig.(d, where the nonlinearity is rela- |ocked (at a given incident steepn@sa an arbitrary tank of
tively weak (and the instability region relatively thintheq finite width, provided that the before-mentioned assumptions
value where thgp=1 mode is locally dominant is actually are satisfied.

— Omax~— chresh. (3)

stable atp=0.5[see the dashed horizontal line in Figay, This work demonstrates that there is a surprisingly large
which is also typical for weakly nonlinear cases. This dem-number of possible symmetric class Il deep water wave in-
onstrates that there are physical circumstances wlderei-  stabilities (i.e., with p=0.5, corresponding to the classical

nanp oscillating crescents similar to those observed by Colphase-locked., patterns of Siet aI.3) which are in fact not
lard and Caulliez exist, which are entirely free of dominant for a given transversal mode. This is an important
competition from any phase-locked modes, which may helgonsideration when finite width tanks are used. The details
explain the described sharp selection in the experiments. presented here also more clearly demonstrate the specific
As the steepness is gradually increased, as in Figs.
1(b)-1(d), giresngradually moves downward in theq plane
(i.e., belowq), indicating a relative increase in the fraction of
existing phase-locked instabiliti€gith p=0.5 that will be
dominant. This can be more clearly seen in Fig. 3, which 09
shows the variation of the upper and lower bounds of the
class Il instability region(at p=0.5), denoted here respec-
tively as Qmax and gn,in» @s well as the locations df and 07
Oinresh VEIsus wave steepnebl L. This figure clearly dem-

1

0.8

onstrates the manner in whicf,espgradually shifts from( 06
to gmin @s the steepness is increased. 05

We will now attempt to quantify the relative dominance 04 : 3 i : : : HL
of the symmetric class Il instability as a function of wave 005 006 007 008 009 0.1

steepness. We here define pythe fraction of all possible FIG. 4. Fractiony of existing symmetric class Il instabilitieg.e., with p

Symmetricldass Il .inStabi“tieS’_\’ith p=0.9 that are |0cal_|y =0.5 that are locally dominant for their respective values vs wave
dominant, i.e., having the maximum value of(bm for their  steepness.
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case originally discussed by Fuhrmah al,* which could  of external parameterée.g., those of the plastic film and
explain the emergence of oscillating crescent waves closelwind on the instability regionsis apparently necessary be-
resembling those observed by Collard and Caulliez in theifore this issue can be resolved.

actual wavetank. From this analysis it is also clear that nu-

merous other, similar, examples could be found by combin-  The authors wish to thank the Danish Technical Re-
ing tanks of varying width with waves of variable steepnesssearch CouncifSTVF Grant No. 9801635or financial sup-

We reiterate, however, that these only appear likely at low tort and the Danish Center for Scientific Computing for
moderate wave steepness, hence this explanation inherentymputational resources.
relies on a suppression of the class | instability.

A remaining issue is the question of why Collard and *F. Collard and G. Caulliez, “Oscillating crescent-shaped water wave pat-
Caulliez observed the specific case with exaptlyl, again ~tems,” Phys. Fluidsll, 3195(1999. . .
corresponding to the arrangement of the oscillating crescentfv'le‘(’:\ﬁ '\ﬁ"f;"fé ( l'gztgb"'“es of finite-amplitude water waves,” J. Fluid
Wave.S_ In Stra'ght rows. Based on the _current anaIyS|s, thls‘M. Y. Su, M. Bergin, P. Marler, and R. Myrick, “Experiments on nonlinear
specific example would be no more likely to appear than instabilities and evolution of steep gravity-wave trains,” J. Fluid Mech.
other oscillating cases with# 0.5. Those instabilities with 124 45 (1982. _ '
p=1 would certainly be the most visually striking, however, D- R- Fuhrman, P. A. Madsen, and H. B. Bingham, *A numerical study of

L il . le th h . f th crescent waves,” J. Fluid Mecth13 309 (2004.
and it is easi y conceivab e_ that t_ € pre_(_:l_se or_der 0_ t 0S&7 B, Benjamin and J. E. Feir, “The disintegration of wave trains on deep
crescent waves corresponding to instabilities with neither  water. Part 1. Theory,” J. Fluid Mect27, 417 (1967.
=0.5 norp=1 might be difficult to distinguish in real time °L. F. Bliven, N. E. Huang, and S. R. Long, “Experimental study of the

; ; o ; ; _influence of wind on Benjamin-Feir sideband instability,” J. Fluid Mech.
physical experiments. Thus, it is possible that this arrange 162 237 (1986.

ment in particular “(fa.Uth the.eye" of the experimenters. ItiS 7| g aper, “The effects of randomness on the stability of two-dimensional
also worth emphasizing that in weakly nonlinear cases, e.g.,surface wavetrains,” Proc. R. Soc. London, Ser383 525 (1978.
as demonstrated in Fig.(d), it is possible for all existing 8C. Kharif and A. Ramamonjiari_soa, “Deep water gravity wave instabilities
instabilities for a giverg to indeed havey~1, which would &t 'arge steepness,” Phys. Flui@d, 1286(1988. .

to b n v valid explanation. Alternativel ; C. Kharif and A. Ramamonijiarisoa, “On the stability of gravity waves on
seem 1o be an equally valia e p.a a on. ) € a' €ly, PEI~ deep water,” J. Fluid Mech218 163 (1990.
haps the presence of the plastic fillpombined with the °3. D. Fenton, “The numerical solution of steady water wave problems,”
wind) somehow favors the growth of modes having even Comput. Geoscil4, 357(1988.
multiples of the carrier wavenumber. Finally, it is also pOS-nV' I. Shrira, S. I. Badulin, and C. Kharif, “A model of water wave ‘horse-

. T ’ . shoe’ patterns,” J. Fluid Mech318 375(1996.

sible that some otheas yet unexplaingcexternal excitation 12w, g Melville, “The instability and breaking of deep-water waves,” J.
could also have played a role. More knowledge of the effects Fluid Mech. 115, 165(1982.
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