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Uniform magnetic excitations in nanoparticles
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We have used a spin-wave model to calculate the temperature dependence of the �sublattice� magnetization
of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q
=0, is predominant in nanoparticles and gives rise to an approximately linear temperature dependence of the
�sublattice� magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and
antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic
excitations in nanoparticles. In nanoparticles of antiferromagnetic materials, quantum effects give rise to a
small deviation from the linear temperature dependence of the �sublattice� magnetization at very low tempera-
tures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with
deviations from antiparallel orientation of the sublattice magnetization vectors, results in a contribution to the
susceptibility, which increases with increasing temperature.

DOI: 10.1103/PhysRevB.72.024418 PACS number�s�: 75.10.Jm, 75.30.Ds, 75.50.Ee, 75.50.Tt

I. INTRODUCTION

Magnetic fluctuations in nanoparticles have been the sub-
ject of numerous studies; see, for example, Refs. 1–6 and
references therein. The most dramatic effect is superpara-
magnetic relaxation, by which the �sublattice� magnetization
direction is reversed due to thermal agitation. This can result
in, for example, a disappearance of the coercivity in magne-
tization measurements and a collapse of the magnetic hyper-
fine splitting in Mössbauer spectra. It is often assumed that
magnetic nanoparticles have uniaxial symmetry with mag-
netic energy given by

E��� = KV sin2 � . �1�

The temperature dependence of the superparamagnetic relax-
ation time is then given by the Néel-Brown expression7,8

� = �0 exp� KV

kBT
� . �2�

Here, K is the magnetic anisotropy constant, V is the volume,
� is the angle between the �sublattice� magnetization direc-
tion and an easy direction of magnetization, kB is Boltz-
mann’s constant, and T is the temperature. �0 is typically of
the order of 10−9–10−12 s.

The blocking temperature, TB, of a magnetic nanoparticle
is defined as the temperature at which the superparamagnetic
relaxation time is comparable to the time scale used to study
the magnetic properties. At temperatures well below TB the
magnetic properties may still be affected by magnetic fluc-
tuations, which can influence experimental data. Although
the magnetization vector cannot surmount the energy barrier
separating the energy minima at �=0° and �=180°, it may
still fluctuate in directions close to those corresponding to the
energy minima. These fluctuations, the so-called collective
magnetic excitations, can be described as a uniform preces-
sion of the magnetization vector around an easy direction of
magnetization in combination with transitions between these
precession states.9,10 In Mössbauer spectroscopy they result
in a reduction of the magnetic hyperfine splitting. Recently, it

has been shown that transitions between the precession states
can be studied by neutron scattering.11,12

The first calculations of the influence of collective mag-
netic excitations on the magnetic properties of
nanoparticles9,10 were carried out using a classical model in
which the magnetization direction of a particle fluctuates in a
potential given by Eq. �1�. For a ferromagnetic nanoparticle
with a very large total spin, this is a good approximation.
However, for a nanoparticle of an antiferromagnetic material
the magnetic excitations are much more complex, and it is
therefore not obvious that the results of the classical model
can be applied.

In this paper we use an alternative approach. We consider
the uniform precession states as spin waves with wave vector
q=0 and use a spin-wave model to derive expressions for the
decrease of the �sublattice� magnetization with increasing
temperature. In previous theoretical papers on spin waves in
nanoparticles,13–20 the magnetic anisotropy was not included
in the calculations, and the energy of the uniform mode was
therefore zero. This leads to unphysical results, and the uni-
form mode was omitted in the calculations. In our deriva-
tions we have included the anisotropy and we describe spin-
wave excitations with q=0, which have not been discussed
in previous papers, even though, as we point out, the uniform
excitations are the predominant magnetic excitations in
nanoparticles. In the calculations we neglect surface effects,
which may lead to a lowering of the magnetization, espe-
cially at temperatures which are not low compared to the
Curie or Néel temperature.13 It is shown that the results of
the classical model are identical to the first-order approxima-
tion of the spin-wave model for nanoparticles of both ferro-,
ferri-, and antiferromagnetic materials. As in bulk material
the �sublattice� magnetization, M�T�, of a nanoparticle de-
creases with temperature according to the expression

M�T� = M0�1 − BT�� , �3�

where B is a constant. In bulk materials �= 3
2 for ferromag-

nets and �=2 for antiferromagnets. However, for nanopar-
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ticles of both ferro-, ferri-, and antiferromagnetic materials
we find that ��1.

It is of particular interest that the two sublattices in nano-
particles of antiferromagnetic materials are not strictly anti-
parallel when the uniform mode is excited. We derive ex-
pressions for the average value of the absolute magnitude of
the resulting magnetic moment and the related initial suscep-
tibility.

II. THE CLASSICAL MODEL

In the classical model for collective magnetic
excitations9,10 it was assumed that the magnetic moment of a
nanoparticle can be considered as a classical macrospin, i.e.,
quantization was ignored. This may be a good approximation
for a ferromagnetic or ferrimagnetic particle with large total
spin. For a particle with magnetic energy given by �1�, the
average magnetization at temperatures well below TB can
then be calculated using Boltzmann statistics9

�M�T�� = M0

�
0

2�

d��
0

�/2

d� cos � sin � exp�−
E���
kBT

�
�

0

2�

d��
0

�/2

d� sin � exp�−
E���
kBT

� ,

�4�

where M0 is the saturation magnetization and � is the azi-
muthal angle. Here, it is assumed that superparamagnetic re-
laxation can be ignored, i.e., the magnetization vector re-
mains in directions close to �=0 �or �=�� and therefore the
integration over � is performed only up to �=� /2. A Taylor
expansion valid in the low-temperature limit gives9

�M�T�� � M0�1 −
kBT

2KV
� . �5�

Thus, the reduction in magnetization caused by collective
magnetic excitations is given by

�M

M0
=

kBT

2KV
. �6�

A generalized model, which is valid for arbitrary symme-
tries of the magnetic anisotropy10 and in the presence of
applied magnetic fields,21 has been published. The calcula-
tions showed that, irrespective of symmetry and applied
magnetic fields, the first-order approximation gives a reduc-
tion in magnetization due to collective magnetic excitations,
which increases linearly with temperature. If the fluctuations
are fast compared to the time scale of Mössbauer spectros-
copy, the magnetic hyperfine splitting of Mössbauer spectra
of magnetic nanoparticles will be proportional to �M�T��.
The model has been used to explain numerous Mössbauer
data for magnetic nanoparticles.

Both in bulk materials and nanoparticles, the magnetiza-
tion and the magnetic hyperfine field, Bhf, decrease with in-
creasing temperature because of thermal excitation of spin
waves with q�0. Far below the Curie or Néel temperature
this decrease is very small. For example, in bulk �-Fe,

�-Fe2O3, and �-Fe2O3 the decrease in �sublattice� magneti-
zation and magnetic hyperfine field up to about 100 K is well
below 1%. For comparison, the decrease in �M�T�� due to
collective magnetic excitations for a 5 nm particle with K
�105 Jm−3 is of the order of 10% at 100 K. Thus, the reduc-
tion in �sublattice� magnetization and Bhf due to collective
magnetic excitations will be predominant at low tempera-
tures in magnetic particles with dimensions of the order of a
few nanometers.

III. SPIN-WAVE MODEL FOR FERROMAGNETIC
NANOPARTICLES

For a cubic ferromagnet with lattice constant a, the dis-
persion relation for spin waves with aq	1 is given by22,23


�q = 2JSa2q2 + g�BBa, �7�

where �q is the angular frequency of a spin wave with wave
vector q, J is the exchange coupling constant, S is the spin of
the atom, g is the Landé factor, �B is the Bohr magneton,
and Ba=2K /M0 is the anisotropy field. In nanoparticles only
a finite number of q values are allowed. For example, in
a cubic particle of side d, it is a fair approximation to assume
that qi�i=x ,y ,z� can take the values qi=0,� /d ,2�
/d ,3� /d , . . . , 	�Nat−1��
 /d, where Nat is the number of at-
oms along the direction i. A more rigorous discussion of spin
waves in nanoparticles, including the influence of surface
effects on the magnetic excitations, has been published by
Hendriksen et al.13

For each spin-wave state, characterized by the wave vec-
tor q, the associated spin-wave energy is given by Eq

= ��nq�+ 1
2 �
�q, where nq is an integer. An increase of nq by 1

corresponds to a decrease of the magnetization by g�B. With
decreasing values of d, the energy difference between the
mode with q=0 and the modes with q�0 will increase.
Therefore, in nanoparticles the modes with q�0 will play a
smaller role at low temperatures than in bulk materials. Thus,
the spin wave with q=0 is predominant in nanoparticles as
was discussed in Sec. II. Therefore, in the following we ne-
glect the modes with q�0.

For a nanoparticle with its magnetization direction in the
energy well close to �=0, n0 can assume the values
0 ,1 ,2 , . . . ,N−1. For a particle with magnetic moment �
=M0V, N=� /g�B. The average value of n0 is given by

�n0� =
�n=0

N−1
n exp�− n


�0

kBT
�

�n=0

N−1
exp�− n


�0

kBT
� �8�

Introducing

x = exp�−

�0

kBT
� , �9�

one finds
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�n0� =
d ln��n=0

N−1
xn�

dx
, �10�

which leads to

�n0� =
1

exp�
�0

kBT
� − 1

−
N

exp�N

�0

kBT
� − 1

. �11�

The reduction in magnetic moment of a particle due to the
spin wave state q=0 equals

�� = ��n0� +
1

2
�g�B. �12�

In a nanoparticle well below TB, the last term in Eq. �11� is
small and we therefore neglect it. The anisotropy field, Ba, is
typically of the order of 0.1 T or smaller. Therefore, even
around liquid helium temperature 
�0=g�BBa will be much
smaller than the thermal energy, and one can replace the
exponential in the first term of Eq. �11� with the first terms of
a Taylor expansion. Equation �12� can then be written as

�� �
kBT

Ba
. �13�

This implies that the reduction in average magnetization due
to excitations of the uniform mode to a good approximation
is given by the classical result, Eq. �6�. The calculations in
this section also apply to nanoparticles of ferrimagnetic ma-
terials.

IV. SPIN-WAVE MODEL FOR NANOPARTICLES OF
ANTIFERROMAGNETIC MATERIALS

The magnetic excitations in an antiferromagnetic material
are more complex than those of a ferromagnetic material.
This is related to the fact that the sublattice magnetization
directions are not strictly antiparallel in the excited
states.24,25

The dispersion relation for the spin waves in an antiferro-
magnet is given by23


�q = g�B��BE + BA�2 − BE
2�1 −

2q2a2

z
�1/2

, �14�

where BE is the exchange field, BA=K /MS is the anisotropy
field, MS is the sublattice magnetization, and z is the number
of nearest-neighbor magnetic atoms.

Again, we will specifically investigate the mode with q
=0, because it is predominant in nanoparticles. Usually BA
	BE, and one then finds for the uniform mode24–26


�0 � g�B
�2BEBA. �15�

This has been confirmed by numerous high-frequency ac
susceptibility measurements22 and neutron scattering
experiments.11,12

In several studies it has been found that nanoparticles of
antiferromagnetic materials can show anomalous features.
Their magnetic moments may be quite large and may show a

temperature dependence which is not in accordance with the
expected behavior.27–32 Néel33 suggested that the large mag-
netic moments could be explained by uncompensated mag-
netic moments, but the anomalous temperature dependence
has been a puzzle.

In the following, for simplicity we consider particles of
antiferromagnetic particles without an uncompensated mag-
netic moment. We also neglect the possibility of canted sur-
face spins. For such particles we calculate how much the
sublattice magnetization is reduced at a given temperature
because of the uniform mode in nanoparticles of antiferro-
magnetic materials. In an excited state, the two sublattice
magnetization directions will form different angles �A and �B
with the easy direction of magnetization,24–26 as illustrated in
Fig. 1. With BA	BE, we have the following relation between
the two angles:24–26

sin �A

sin �B
� 1 +  , �16�

where

 = ±�2
BA

BE
. �17�

Averaging over the fast precession around the easy direc-
tion of magnetization ��0�1012 s−1�,22 one finds that the
particle will have a nonzero magnetic moment with an abso-
lute value given by

��AF� = MSV�cos �A − cos �B� . �18�

At a transition between two neighboring precession states,
the total magnetic moment of the particle is changed by the
amount

��AF = MSV	��cos �A� − ��cos �B�
 , �19�

where the terms in brackets represent the difference in cosine
of the precession angles of neighboring precession states.

From Eq. �16� one finds that d�A��1+�
��cos �B / cos �A�d�B, and thereby

FIG. 1. Schematic illustration of the uniform mode in nanopar-
ticles of antiferromagnetic materials. The two sublattice magnetiza-
tion vectors, MS

A and MS
B, precess with different precession angles,

�A and �B, around the easy axis of magnetization. For clarity, the
difference between �A and �B is exaggerated.
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��AF � MSV�− sin �A��A + sin �B��B� � 2MSV��cos �A� .

�20�

The smallest allowed change in the total magnetic moment is
��AF=g�B. We find from Eq. �20�

��cos �A�min � � �
g�B

2MSV
. �21�

Thus, the number of precession states with q=0 in the energy
well around �=0 is

N �
2MSV

g�B
, �22�

i.e., the number of precession states is reduced by the factor
 compared to the case of ferromagnetic nanoparticles.

The reduction in sublattice magnetization due to the uni-
form mode is given by

�MS = 2��n0� +
1

2
��MS, �23�

where a factor of 2 has been included to take into account the
degeneracy of states with positive and negative values of .
Using a relation analog to Eq. �10�, we then find

�MS =
g�B

V � 1

exp�
�0

kBT
� − 1

−
2MSV

g�B

1

exp�4KV

kBT
� − 1

+
1

2� .

�24�

The relative reduction in the sublattice magnetization is
given by

�MS

MS
=


�0

2KV� 1

exp�
�0

kBT
� − 1

+
1

2� −
2

exp�4KV

kBT
� − 1

.

�25�

As in the case of ferromagnetic nanoparticles, the last term is
negligible well below TB.

Neglecting quantization effects �see Sec. V�, we find for

�0	kBT

�MS

MS
�

kBT

2KV
, �26�

which is equivalent to Eq. �6�.

V. THERMOINDUCED MAGNETIZATION

The large magnetization of nanoparticles of antiferromag-
netic materials, which has been found in many studies, may,
at least partly, be explained by uncompensated magnetic mo-
ments, but this does not explain the anomalous temperature
dependence of the magnetic moments. It has recently been
suggested that the increase of the magnetic moment with
increasing temperature, which has been reported in several
publications,28–30,32,34 may be explained by thermoinduced
magnetization, which is related to the magnetic moment with

the absolute value given by Eq. �18�.35 It should be empha-
sized that the states with magnetization up and down are
degenerate in zero applied field and the average magnetiza-
tion is therefore zero. When a magnetic field is applied the
degeneracy will be lifted, resulting in a nonzero contribution
to the magnetization. Here, we derive expressions for the
thermal average of the absolute value of the magnetic mo-
ment in zero applied field and the initial susceptibility of
nanoparticles of antiferromagnetic materials. For simplicity,
we perform the calculations for particles without an uncom-
pensated moment, and we assume that there is no spin cant-
ing of surface spins. The derivations show that both quanti-
ties increase with temperature in contrast to the
magnetization of normal bulk materials.

The absolute value of the thermoinduced magnetic
moment is given by Eq. �18�. Replacing cos � j by
�1−sin2 � j�1/2 �j=A ,B� in Eq. �18� we find, by use of Eq.
�16�, for 	1

��AF� � MSV
sin2 �B

cos �B
� MSV sin2 �B, �27�

where the last approximation is valid at low temperatures
such that only states with small values of �A and �B are
populated. The precession states are characterized by the
angles cos �B=1,1−� ,1−2� , . . . ,1−n� , . . . ,1− �N−1��,
where � is defined in Eq. �21�. At low temperatures n�	1
and sin2 �B�2n�. With �=KV /kBT, we find, by using a pro-
cedure similar to that used in Sec. III, that the thermal aver-
age of ��AF� is given by

���AF�� = MSV
�n=0

N−1
2n� exp�− 2�n��

�n=0

N−1
exp�− 2�n��

�
MSV

�

� 2g�B
kBT


�0
. �28�

For �0�1012 s−1 we find that ���AF���200 �B at 300 K. It
is remarkable that ���AF�� is independent of the particle size.
With increasing particle size a larger number of atoms will
contribute to the magnetic moment. However, concurrently,
the higher excited states of the uniform mode will be less
populated, because of the larger particle size 	see, e.g., Eq.
�26�
. The net result is a size-independent magnetic moment.

As there is no energy barrier between states with �0
and �0, the size and direction of the thermoinduced mag-
netic moment will fluctuate rapidly such that ��AF�=0 in
zero applied field. We now consider the situation where a
magnetic field, Bext, is applied parallel to the easy direction
of magnetization. We then have different probabilities, p+

and p− for the magnetic moment to be parallel or antiparallel
to the applied field, respectively, and a nonzero magnetiza-
tion is induced. The thermal average of the magnetic moment
is then given by

��AF� = �
n=0

N−1

��AF�n��p�n�	p+ − p−
 , �29�

where ��AF�n�� is given by

S. MØRUP AND B. R. HANSEN PHYSICAL REVIEW B 72, 024418 �2005�

024418-4



��AF�n�� � 2MSVn� . �30�

The probability, p�n�, that the precession state n is occupied
is

p�n� =
exp�− 2�n��

�n=0

N−1
exp�− 2�n��

, �31�

and

p± =

exp�±
��AF�n��Bext

kBT
�

exp� ��AF�n��Bext

kBT
� + exp�−

��AF�n��Bext

kBT
�

�
1

2
�1 ±

��AF�n��Bext

kBT
� , �32�

where the last approximation is valid for small values of Bext.
Introducing

F��� = ln��
n=0

N−1

exp�− 2�n��� , �33�

one finds

��AF� �
�MSV�2

kBT
�d2F���

d�2 + �dF���
d�

�2Bext. �34�

For small values of n� we find that F����−ln�2���, and we
obtain the initial susceptibility

�i =
�0��AF�

VBext
�

8�0kBT

V
�g�B


�0
�2

. �35�

Equations �28� and �35� show that both the average of the
absolute value of the magnetic moment and the initial sus-
ceptibility due to the thermoinduced magnetic moment in-
crease linearly with temperature. This is in accordance with
experimental studies of the magnetic properties of
ferrihydrite28 and ferritin nanoparticles.29

Using Eq. �25�, we find for T→0

�MS

MS
=


�0

4KV
. �36�

Thus, the sublattice magnetization at T=0 K will be reduced
in nanoparticles compared to the bulk value. The temperature
dependence of �MS /MS is shown in Fig. 2.

It is noteworthy that at T=0 K the uniform mode will
give a zero-point contribution, ��0�= 1

2g�B, to the magnetic
moment. The precession angles in the ground state of the
uniform mode are given by

cos �B � 1 −
g�B

4MSV
, �37�

and

cos �A � 1 −
g�B

4MSV
�1 + 2� . �38�

In bulk materials this contribution to the magnetization can
be considered negligible. However, in nanoparticles it may
be significant. Thus, antiferromagnetism is, strictly speaking,
nonexistent even in nanoparticles with zero uncompensated
magnetic moment.

VI. SUMMARY

Using a spin-wave model to calculate the influence of
uniform magnetic excitations on the magnetic properties of
nanoparticles, we find that the classical model, which gives a
linear temperature dependence of the �sublattice� magnetiza-
tion, is a fair approximation for nanoparticles of both ferro-,
ferri-, and antiferromagnetic materials. For nanoparticles of
antiferromagnetic materials, we find that excitation of the
uniform mode gives rise to a deviation from the linear tem-
perature dependence at low temperatures. In nanoparticles of
antiferromagnetic materials the two sublattices are not
strictly antiparallel, and in an applied field this gives rise to a
contribution to the magnetization, which increases with tem-
perature. We have calculated the numerical value of this ther-
moinduced magnetic moment and the related initial suscep-
tibility.
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FIG. 2. The temperature dependence of the normalized sublat-
tice magnetization in a nanoparticle of an antiferromagnetic mate-
rial, calculated by use of Eq. �25� for KV=5�10−21 J.
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