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Reexamination of Hagen-Poiseuille flow: Shape dependence of the hydraulic resistance
in microchannels

Niels Asger Mortensen, Fridolin Okkels, and Henrik Bruus
MIC, Department of Micro and Nanotechnology, Bldg. 345 east, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
(Received 2 December 2004; published 5 May 2005

We consider pressure-driven, steady-state Poiseuille flow in straight channels with various cross-sectional
shapes: elliptic, rectangular, triangular, and harmonic-perturbed circles. A given shape is characterized by its
perimeterP and aread which are combined into the dimensionless compactness nuse?#/ A, while the
hydraulic resistance is characterized by the well-known dimensionless geometrical correction.fétofiind
that @ depends linearly or, which points outC as a single dimensionless measure characterizing flow
properties as well as the strength and effectiveness of surface-related phenomena central to lab-on-a-chip
applications. This measure also provides a simple way to evaluate the hydraulic resistance for the various
shapes.

DOI: 10.1103/PhysRevE.71.057301 PACS nuni®)erd7.60:+i, 47.10+9g

I. INTRODUCTION such as electro-osmosis, electrophoresis, and electro-viscous
The rapid development in the field of lab-on-a-chip sys—eﬁecﬁ" as well as co?tmuo?ﬁedge-source drllffus%on. Thc:ugh
tems during the past decade has put emphasis on studiestgfa pthgnomena are o .vtiry ! erer|1|t tnature,t g:y ave at feast
shape dependence in microfluidic channels. Traditionallyoﬂe Ing In cor&]mrcl)q, €y ar?]a do sgme_ egree Zuracg
capillary tubes would have circular cross sections, but toda enomena and their strength and effectiveness depends
trongly on the surface-to-volume ratio. It is common to

microfabricated channels have a variety of shapes dependin ? : : . .
on the fabrication technigue in use. Examples are rectangul antify this by the dimensionless compacinésgiven by

channels obtained by hot embossing in polymer wafers,

semi-circular channels in isotropically etched surfaces, trian- P?

gular channels in KOH-etched silicon crystals, Gaussian- C= e 2
shaped channels in laser-ablated polymer films, and elliptic

channels in stretched polydimethylsiloxafRDMS) devices

(see, e.g., Ref1]). whereP= [ ,nd¢ is the perimeter of the boundapnf) con-

The pressure-driven, steady-state flow of a liquid througtfining the fluid(see Fig. 1 For other measures ¢fwe refer
long, straight, and rigid channels of any constant crossto Ref. 3 and references therein. In this paper we demonstrate
sectional shape is referred to as Hagen-Poiseldiesimply  a simple dependence of the geometrical correction faetor
Poiseuillg flow, and it is often characterized by the hydraulic on the compactnes&and our results thus point out a unified
resistanceR,,,4=Ap/Q, whereAp is the pressure drop along dimensionless measure of flow properties as well as the
the channel an@ is the flow rate through the channel. In strength and effectiveness of surface-related phenomena cen-
Fig. 1 is shown an arbitrarily shaped cross-sectibin the  tral to lab-on-a-chip applications. Furthermore, our results
xy plane for a straight channel placed along thexis. A allow for an easy evaluation of the hydraulic resistance for
natural unit for the hydraulic resistance is given by dimen-elliptical, rectangular, and triangular cross-sections with the
sional analysis aR;ydE 7L/ A2 wherelL is the channel geometrical measur€ being the only input parameter.
length, » the dynamic viscosity of the liquid, andd  Above we have emphasized microfluidic flows because here
=[qdxdythe cross-sectional area. Typically, the fluid flow is a variety of shapes are frequently encountered. However, our
subject to a no-slip boundary condition at the wall$ and  results are generally valid for all laminar flows.
thus the actual hydraulic resistance will depend on the pe-

rimeter as well as the cross-section area. This dependence e
i i i =
can therefore be characterized by the dimensionless geo- /W/ﬂ\\\\i\\\
metrical correction factow given by / /;/j//?ﬁ;{///;?////ﬁ.:\\\ SN
Ry Q/( (LS o)
_ Riya < ' /)
a= . 1 \ T————— g |
R W =~ )
hyd &%,/\X&/// .

0 S/

In lab-on-a-chip applicationfl,2], where large surface-to-

volume ratios are encountered, the problem of the bulk Poi- FIG. 1. An arbitrary cross-sectional shafewith boundarys€)
seuille flow is typically accompanied by other surface-relatechf a straight fluid channel with pressure-driven steady-state flow.
physical or biochemical phenomena in the fluid. The list ofThe contours show the velocity(x,y) obtained numerically from
examples includes surface chemistry, DNA hybridization onEq. (3) by a finite-element method. The velocity is zero at the

fixed targets, catalysis, interfacial electrokinetic phenomen&oundary and maximal near the center-of-mass.
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BRIEF REPORTS

Il. POISEUILLE FLOW

Due to translation invariance along thexis the velocity
field of a Newtonian fluid in a straight channel is parallel to
the z axis, and takes the form=v(x,y)e,. Consequently, the
nonlinear term in the Navier-Stokes equation drops[diit
and, in steady state, given the pressure gradiéApH.)e,,
the velocityv(x,y) is thus given by the Poisson equation,

A
(& +Pwlxy) = =, &)
nL

with the velocity being subject to a no-slip condition at the
boundarys€). The relation between the pressure digp the
velocity v(X,y), and the geometrical correction facterbe-
comes

Ap = Rhde = aR:]de = aR:]ydf dXdW(Xay)a (4)
Q
whereQ is the volume flow rate.

lll. THE GEOMETRICAL CORRECTION FACTOR
VERSUS COMPACTNESS

Our main objective is to find the relation between the
geometrical correction facto and the compactness for
various families of geometries.

A. Elliptical cross section

The elliptical family of cross sections is special in the
sense that Eq.3) can be solved analyticallisee, e.g., Ref.

PHYSICAL REVIEW H1, 057301(2005

FIG. 2. The correction factor versus compactness for the ellip-
tical, rectangular, and triangular classes. The solid lines are the
exact results, and the dashed lines indicate E¥s(14), and(15).
Numerical results from a finite-element simulation are also included
(O, O, and A). Note that in the case of triangles all clasg$eght,
isosceles, and acute/obtuse scalene triangles—marked by different
grayscale trianglgdall on the same straight line.

«(0)= 2c- 2T v o((c- 4D, ©
3 3

and in Fig. 2 we compare the exact solutignlid line), from
a parametric plot of Eqs(6) and (7), to the approximate
result(dashed lingin Eqg. (9). Results of a numerical finite-
element solution of Eq(3) are also includedO pointg. As
seen, there is a close-to-linear dependence oh C as de-
scribed by Eq(9).

B. Rectangular cross section

For a rectangle with width-to-height ratig=w/h we

[4]) and we can get an explicit expression for the geometricasolve Eq.(3) using Fourier serieg5]

correction factor introduced in Edql). For an ellipse cen-
tered at the origin with semi-major and minor axeandb it
can be verified by direct insertion that

Ap (ab)? ( X2y )
V) =—"—F 5 |1-=S- 5
U(X y) 7]L 2(32 + b2) a2 b2 ( )
fulfills Eq. (3). From Eq.(4) it can now be shown that
a(y)=4n(y+y™h), (6)

where y=a/b. Furthermore, for an ellipse we have

_Ap4h®
vhey) = 7L 7
o 1 coshnmx/h) ) .
x > Zl1-—" "
n:1,3,5,.._”3< coshnmwi2h) sin(nmy/h)

(10)

is indeed a solution. Here, the coordinate system is chosen so
that -w/2<x<w/2 and 0<y<h. From Eq.(4) it follows
that

3,2 * n -1
16 2 —— 2 =Y =Y 2 tanKnmyl2
Cly = ;y< fo d6\T— (1 -y D)sir? 9) N©) V=" n%&.,‘__,ms e 2NTT2)
(11)
The relation betweern and C can now be investigated d for th h
through a parametric plot. In order to get an approximatean or the compaciness we have
expression fow(C) we begin by inverting Eq(6). By select- C(y) =8+ 4y+4ly. (12)
ing the proper root we geji(«) which we then substitute into )
Eq. (7) such that Using that tanfx) =1 for x>1 we get
127%92
1 T ’ 2 _— >1, 13
c(a):ﬁ“ dova + Va? - (8m)? cosﬁ) . (8 a(y) >y — 186/(5) Y (13
0

Expanding aroundv=87 and inverting we get

and substitutingy(C) into this expression and expanding
aroundC(y=2)=18 we get

057301-2
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alC) = Zc-L+0(Cc-18P). (14)

For the two Taylor coefficients we have used the first three
terms in the continued fraction. In Fig. 2 we compare the
exact solution, obtained by a parametric plot of E44) and
(12), to the approximate result, EGL4). Results of a numeri-

cal finite-element solution of E(3) are also included™ b=
points. As in the elliptical case, there is a close-to-linear Z = pcosf r = ap[l + esin(kf)]
dependence o on C as described by Ed14). = psind © = ap|1 + esin(kp)] cos

Y= ap[l + esin(ké))} sin #

C. Triangular shape FIG. 3. (@) The geometry of the unperturbed and analytically

For the equilateral tr|ang|e it can be shown analyticallysolvable cross section, the unit circle, described by coordinates
that a=20\3 andC=12\3 (see, e.g., Ref4]). However, in XY or (p,6). (b) The geometry of the perturbed cross section
the general case of a triangle with side lengihb, andc we described by coordinatés,y) or (r, ¢) and the perturbation param-
are referred to numerical solutions of E®). In Fig. 2 we  etere. Herea=1,k=5, ande=0.2.
show numerical resultg\ points, from finite-element simu-
lations, for scaling of right triangles, isosceles triangles, and<1. Fore=0 the shape is unperturbed. The boundary of the
acute/obtuse scalene trianglésr the definitions we refer to  perturbed shape is described by fixing the unperturbed coor-

Ref.[6]). The dashed line shows dinatep=1 and sweeping i,
25 40V3 aQ: (xy) = (x[1,6],y[1,6)). (18
al0)=" 0+ =, s -
17 It is desirable to formulate the perturbed Poiseuille problem

where the slope is obtained from a numerical fit and subse- using the unperturbed coordinates. To obtain analytical re-

quent use of the first three terms in the continued fraction O?UItS it is important to make the appearance of the perturba-
this value. As seen, the results for different classes of tr|tlon parameter explicit. When performmg a perturbation cal-

angles fall onto the same straight line. Since we have culation to orderm all terms containinge’ with |>m are
discarded, while the remaining terms containing the same

8(a+b+c)? power of e are grouped together, and the equations are
C(a,b,0) (16) solved power by power. To carry out the calculation the ve-
\/ (@+b?+c?)?—(a*+b*+ct locity v(x,y) is written as

Xa = X 3 0 y y 6
the result in Eq(15) allows for an easy evaluation &, for v(y) =0(p, 6. ¥1p. 6]

triangular channels. =09, 0 + eV (p,0) + v@(p,0) + -+ . (19
) ) Likewise, the Laplacian operator in E¢@3) must be ex-
D. Harmonically perturbed circle pressed in terms of, 6, and e. The starting point of this

By use of shape perturbation theory it is possible to extransformation is the transformation of the gradients

tend the analytical results for Poiseuille flow beyond the few -

cases of regular geometries that we have treated above. In 9 = (5:p) 3y + (3, 0)9p, (209
shape perturbation theory the starting point is an analytically _
solvable case, which then is deformed slightly characterized 94 = (94p)dp + (040) 3. (20b)
by some small perturbation parameteAs illustrated in Fig.  The derivatives(d,p), (4,6), (dgp), and (d,0) are obtained
3 the unperturbed shape is described by parametric coordjrom the inverse transformation of E¢4.7a and(17b). The
nates(X,y) in Cartesian form or(p, 6) in polar form. The  expansion in Eq(19) can now be inserted into E¢3) and
coordinates of the physical problem we would like to solveusing the derivatives, Eq§20a and(20b), we can carry out

are(x,y) in Cartesian form andr, ¢) in polar form. the perturbation scheme. The calculation of the velocity field
As a concrete example we take the harmonic perturbatioto fourth order is straightforward, but tedious. With the ve-
of the circle defined by the transformation locity field at hand we can calculate the flow rate and from
b=, (173 Eq. (4) we get
_g 1+2(k_1)62+47—78<+36k2 4k3 L O,
r=ap[1+esink)], arp 477 8 ¢
(21
X(p, 0) =ap[1 + e sin(kh)]cos¥, (170

where we have used the exact restitt(1+3e)ma? for the
0) = ap[1 + e sin(k)sin 6, 17 area. The_ result only involves even povv_ersaxtlnce €—

Y(p,0) =apl1 +esintko)] (7d —€ is equivalent to a shape rotation, which should leave

where a is length scalek is an integer(>2) defining the invariant. From a perturbative calculation of the perimé®er
order of the harmonic perturbation,<0¥<2m, and O<p  we get the following expression fal to second order ir,
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C=4m+2m(k°-1)é. (22) channel(see Fig. 1 If the boundary is smooth, the velocity
) _ o _ in general goes to zero in a convex parabolic manner
Since « is also quadratic ire this means thatr depends  \yhereas a concave parabolic dependence is generally found

linearly onC to fourth order ine, if the boundary has a sharp cornghis can be proved ex-
8 —K plicitly for the equilateral triangld4]). Since the concave
a(C) = mc - 8m77+ O(e). (23)  drop is associated with a region of low velocity compared to

the convex drop, geometries with sharp changes in the

Note that although derived fdk>2 this expression coin- boundary tend to have a higher hydraulic resistance com-
cides with that of the ellipse, Eq9), for k=2. Comparing Pared to smooth geometries with equivalent cross-sectional

Eqg. (21) (to second order i) with exact numerics we find area.

that for e up to 0.4 the relative error is less than 0.2% and We believe that the explicit and simple link betweRgq
0.5% fork=2 andk=3, respectively. andC is an important observation since at the same ftihie

also central to the strength and effectiveness of various
surface-related phenomena. We note that in micro-channels
IV. DISCUSSION AND CONCLUSION the flow properties and electrokinetic phenomena may be

We have considered pressure-driven, steady-state I:,Os'_omewhat connected and substantial deviations from classi-

. . X ) . al Poiseuille flow have been reported receiitige Ref[7]
seuille flow in straight channels with various shapes, an ; o
. . . and references therginNevertheless, our observation is an
found a close-to-linear relation betweanandC. Since the

hydraulic resistance iRy,q= aR;yd, we conclude thaR, important first step with relevance to the use of micro-fluidic

depends linearly odR.. - Differont classes of shape all dis- channels in lab-on-a-chip applications. Furthermore, our re-
pends ! Y 00Rqyq o pe al sults allow for an easy evaluation of the hydraulic resistance
play this linear relation, but the coefficients are nonuniversal

. for elliptical, rectangular, and triangular cross sections with
However, for each class only two points need to be calcu; P 9 g

lated to fully specify the relation for the entire class. Thethe geometrical measutebeing the only input parameter.
difference is due to the smoothness of the boundaries. The
elliptical and harmonic-perturbed classes have boundaries
without any cusps whereas the rectangular and triangular We thank J. Kutter for stimulating discussions. N. A. M.
classes have sharp corners. The overall velocity profile tendsnd F. O. are supported by The Danish Technical Research
to be convex and maximal near the center-of-mass of th€ouncil (Grants No. 26-03-0073 and No. 26-03-0037
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