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Fluxon modes in stacked Josephson junctions: The role of linear modes
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Plasma modes in stacked Josephson junctions are easily understood analytically from a linearization of the
coupled sine-Gordon equation describing the system. We demonstrate here by numerical methods that the
analytically derived symmetries of the plasma modes are carried over to the fluxon modes. Using this fact we
are, with a few exceptions, able to predict and construct a full family of Josephson fluxon modes without using
numerical methods. The nature of the locking mechanism needed to create the technologically important
in-phase fluxon modes is discussed.

DOI: 10.1103/PhysRevB.69.064507 PACS number~s!: 74.50.1r, 05.45.Yv, 85.25.Cp

I. INTRODUCTION

Fluxon dynamics in high-temperature cuprate supercon-
ductors is a topic of considerable interest in recent years.
One of the motivations has been the potential for applica-
tions both for high-frequency electronics and for large-scale
devices, and here the BSCCO family of superconductors has
been particularly investigated.1–7 In both cases the fluxon
dynamics of the Josephson fluxons are particularly important
to understand. As examples we mention that for electronic
applications understanding the mechanisms that lead to in-
phase fluxon motion in the different layers is essential, and
for power applications it is of utmost interest to understand
why the magnetic flux is pinned only at lower temperatures
in BSCCO material.

The dynamics of Josephson fluxons in a stack ofN
copper-oxide planes are governed by a system ofN coupled
sine-Gordon equations that are extremely nonlinear and,
apart from the simplest cases, only understandable by nu-
merical methods. For initial conditions with at most one
fluxon in each layer, we demonstrate below that a family of
fluxon modes can be easily predicted from the symmetries of
the plasma modes, which are easily obtained analytically
from a linearization of the system ofN coupled sine-Gordon
equations. A few exceptions to the predictions exist and will
be discussed separately.

We note that for BSCCO material, well-defined samples
can be made and microwave measurements on both plasma
and fluxon excitations can be done.8

The paper is organized in the following way. In Sec. II we
introduce the inductively coupled Josephson-junction model,
leading to the coupled sine-Gordon system. The plasma
modes are derived analytically in Sec. III. In Sec. IV we
attempt to understand analytically for the simplest nontrivial
case,N53, the nature of the locking mechanism leading to
in-phase motion of the fluxons in the different layers. In Sec.
V we show by numerical simulations thatN fluxon modes
with at most one fluxon in each layer can be predicted by the
symmetries of theN plasma modes obtained analytically. Fi-
nally a summary with the most important results concludes
the paper.

II. THEORY

The geometry of the system under consideration is
sketched in Fig. 1.

Assuming identical parameters for the layers, the equa-
tions for a stack withN11 superconducting layers andN
insulating layers can be written in the compact form9

J5S21wxx , ~1!

where thei th element ofw,w i , is the gauge-invariant phase
difference across insulating layeri, and theN3N coupling
matrix S has the following form:

S5S 1 S

S 1 S

S 1 S

� � �

D , ~2!

with Sbeing the coupling parameter between the layers. The
vectorJ is the current in thez direction, and has the follow-
ing components:

Ji5w tt
i 1aw t

i1sinw i2g i , ~3!

where thea term is a dissipative term, andg i is the bia-
current in thei th junction in thez direction. We will in this
paper only consider the case whereg i56g j .

Here Eqs.~1!–~3! have been written in appropriately nor-
malized units. Spacex is normalized to the Josephson pen-
etration depthlJ5A\/2em0Jcd8 and timet is normalized to
the inverse plasma frequencyv0

215A\C/2eJc, where the
symbols have their usual meaning. Using these units the con-

FIG. 1. The geometry of the stacked junctions. Black layers are
insulators.
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stants for damping,a, bias current,g i , and layer-to-layer
coupling,S, all come out in dimensionless units. See Ref. 10
for details.

It is well known that the system can be solved analytically
for the simplest casea5g i5S50; a particularly important
solution is the familiar 2p kink, often referred to as a soli-
ton:

w i~x,t !54 tan21 expS s i
x2v i t2x0

i

A12~v i !2 D , ~4!

wheres i561 and (1) corresponds to a soliton and (2) to
an antisoliton.v i is the soliton velocity andx0

i is the position
at t50. It is worth noting that for both low-Tc artificial
Josephson stacks and for high-Tc BSCCO-like systems real-
istic values of the three parameters are small,9 i.e., 0<a
<0.2, 0<ug i u<1, and20.5,S<0. Due to this fact, per-
turbation theory often works well for these systems.11,12 For
the superconducting systems discussed here, a soliton is a
~Josephson! fluxon containing one quantum of magnetic flux.
Correspondingly, an antisoliton corresponds to an antifluxon.

To completely define the dynamical state of the system,
Eqs. ~1! should be supplemented with boundary conditions.
The boundary conditions depend on the geometry of the sys-
tem; the geometry depicted in Fig. 1 is described by the
following boundary conditions:

wx
i ~2L/2,t !5wx

i ~L/2,t !50, i 51, . . . ,N. ~5!

These boundary conditions are often referred to as reflective,
because when a fluxon collides with the boundary, it can be
reflected as an antifluxon.13

Other types of boundary conditions are also possible. An
important example is the annular geometry giving rise to
periodic boundary conditions. These are frequently used in
numerical simulations, because they simulate somewhat a
Josephson junction of infinite length. In this work we always
use the reflective boundary conditions in our numerical
simulations, but assume infinite length in the analytical cal-
culations. It should also be noted that the annular geometry is
also of experimental interest.14,15

III. THE PLASMA MODES

The plasma modes, or the small-signal limit, of the sys-
tem ~1! have been derived previously in Refs. 5 and 16–19.
We will here quickly review the derivation. Let us start by
assuming that we have no loss term, i.e.,a50, and thatw i

can be written in the following form:

w i5ai cos~kx2vt !1sin21g i . ~6!

Assuming that the amplitudesai!1, i.e.,w i is a small oscil-
lation around the equilibrium valuew0

i defined by w0
i

5sin21 g i, we can then expand the sinwi term in Ji , and
obtain the linerarized form of the full system, Eq.~1!:

Sa5
k2

v22A12g2
a[lma, ~7!

where we have used the fact that (g i)25(g j )2[g2. The ex-
pressionA12g2 is called the~square of the! bias-dependent
plasma frequency, which is usually denoted byvp , i.e., vp

2

5A12g2.
Equation~7! is just a normal eigenvalue equation, and we

can find both the eigenvalueslm and the eigenvectorsam .
They are given by18

am
i 5A 2

N11
sinS i ~N2m11!p

N11 D ,

~8!

lm5122ScosS mp

N11D , m51, . . . ,N.

Using Eqs.~7! and ~8!, we getN dispersion relations

v25A12g21cm
2 k2, ~9!

wherecm is the group velocity of the mode, defined as

cm[ lim
k→`

dv

dk
5

1

A122ScosS mp

N11
D

. ~10!

We have now found that there areN different plasma modes
in the N stacked Josephson junctions, each satisfying a dif-
ferent dispersion relation and each moving with a different
velocity. We also know the exact form of the plasma oscil-
lations, which is trivial to write down. We will do this any-
way, because we shall use it later:

Am
i ~x,t !5A 2

N11
sinS i ~N2m11!p

N11 D cos~kx2vt !.

~11!

IV. BUNCHED MODE OF THE 3 JUNCTION STACK

Before proceeding to the fluxon modes of the coupled
long Josephson junction we will look into the mechanisms of
bunching by considering the simplest nontrivial case,N
53. This in-phase mode is particularly interesting for elec-
tronics applications such as generation of microwave
power.20 We will in the following take the bias currents to be
equal, i.e.,g15g25g3.

Let us first write down the equations explicitly:

J15
1

122S2
@wxx

1 2Swxx
2 1S2~wxx

3 2wxx
1 !#,

J25
1

122S2
@wxx

2 2S~wxx
1 1wxx

3 !#, ~12!

J35
1

122S2
@wxx

3 2Swxx
2 1S2~wxx

1 2wxx
3 !#.

It is easy to see from the symmetry of the equations that a
solution withw15w3 is possible, so we will try to find such
a solution. If the mode is bunched, there is not much differ-
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ence between layers 1 and 2 either, which leads us to the
following ansatzon the phases:

w15w1dw5w3,
~13!

w25w2kdw,

wherek is some, yet, unknown constant anddw represents a
~small! difference between the solutions. Introducing this
into Eqs.~12! yields the following equations:

J15
1

122S2
@~12S!wxx1~11kS!dwxx#,

J25
1

122S2
@~122S!wxx2~k12S!dwxx#. ~14!

Now by using that sin(w1dw)'sinw1dw cosw and calculat-
ing the differenceJ12J2, we get the following equation:

dw tt1adw t1cos~w!dw

5
1

~11k!~122S2!

3@Swxx1„112S1~11S!k…dwxx#. ~15!

This equation is coupled to an equation forw, and a general
solution of these two coupled equations will probably be
quite complicated. But we may look at the solution where
sinw5wxx50. If the solution forw is some form of a 2p
kink, then this corresponds to looking at solutions away from
the center, located atx5vt1x0. Doing this, we end up with
the following differential equation fordw:

dwjj2
1

v22
112S1~11S!k

~11k!~122S2!

~avdwj2dw!50, ~16!

where we have introduced the self-coordinatej defined by
j5x2vt2x0. If we restrict ourselves to the intervalj,0,
the solution of this type of equation has an exponential de-
caying term and an exponential growing term. The exponen-
tial growing term contradicts our assumption thatdw is small
and is discarded. The nature of the remaining term depends
on the magnitude ofv2. Thus, if

v2.
112S1~11S!k

~11k!~122S2!
, ~17!

we get an oscillating solution~discarding terms of second
order and higher ina). From Ref. 21 we know that we get
oscillations~Cherenkov radiation! above the lower character-
istic velocity,c251/A12A2S, so by equating the left-hard
side and the right-hand side in Eq.~17! and insertingv
5c2, we can determinek, and we findk5A2. It is inter-
esting to note that we also getA2 when we take the ratio of
the amplitudes for the in-phase mode of the plasma oscilla-
tions in layers 1 and 2, i.e.,A3

2/A3
15A2. Thus the relative

amplitudes of oscillating parts of the fluxon solution are car-

ried over from the plasma oscillations, but the phase oscilla-
tions are antiphase to lock the fluxons.22

Summarizing the characteristics of the bunched state, the
amplitude in layer 2 is aboutA2 times bigger than the am-
plitude in layers 1 and 3, and the oscillations in the two
layers are antiphase and exponentially decaying with a decay
constantk given by k5av/2(v22c2

2 ). Finally, the angular
frequencyv of the oscillations is given byv51/Av22c2

2 .
Explicitly, we have forj,0 andv.c2,

dw5ekj
„A1cos~vj!1A2 sin~vj!…, ~18!

whereA1 andA2 are some unknown constants. A plot show-
ing the above formula together with a numerical solution of
the full system can be seen in Fig. 2.

It is also worth noting that almost the same argument
applies to the 2 junction stack~except we getk51). But
here it does not represent the bunched state, because in the
bunched state of the 2 junction stack, which corresponds to
the ansatz~13!, the phases are exactly equal, i.e.,w15w2. So
the method in that case rather shows what happens when we
have the bunched state, and then introduces some small dif-
ference between the two layers. The system responds with
antiphase oscillations trying to preserve fluxon locking, for
example, ifw2 were trapped in a local minimum ofw1. Sev-
eral authors have investigated this scenario, see, for example,
Ref. 22.

The role of the oscillations discussed forN53 ~and partly
for N52) are generic for the locking mechanism leading to
in-phase fluxon motion. We note that the method should be
usable for the casesN.3 also, but for the lack of space, we
do not discuss this here. Nevertheless, the in-phase fluxon
motion for N53 shows the close correspondence between
the fluxon modes and the corresponding plasma modes that
can be obtained analytically.

FIG. 2. Plot showing a numerical solution of the bunched mode
of the 3 junction stack which clearly shows the oscillating tail. Also
plotted is the analytical expression, Eq.~18!, and the exponential
decay curve is shown separately. The constantsA1 and A2 have
been fitted numerically. Parameters in the numerical solution are
a50.1, g520.48, v51.13, andS520.2. w3 is not shown, be-
cause it is indistinguishable fromw1. We see that the analytical
expression fits well away from the fluxon center, which is expected
from the assumptions made in the derivation of Eq.~18!.
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We also note from Eq.~11! for theN53 system~with the
bias currents we have chosen in this section! that in addition
to the in-phase plasma oscillations there are two other
plasma modes. Both of these are characterized by antiphase
plasma oscillations. As we will discuss in the following sec-
tion, this symmetry will suggest antiphase fluxon modes with
little interaction and no antiphase oscillating tails. This will
be demonstrated numerically in the following section.

V. NUMERICAL SIMULATIONS

In this section we will look numerically at a relationship
between the plasma modes and the fluxon modes. We will
first consider what we shall call ‘‘unnatural biasing.’’ This is
the case whereg i can be6g j . We refer to this as ‘‘unnatu-
ral,’’ because it is hard, if not impossible, to realize this in an
experimental setup forN.2. For N52 it has been done
experimentally, see Ref. 23. After this, we will focus on
‘‘natural biasing’’ (g i5g j ) and go into considerably more
detail, because this is of greater practical interest. The results
presented in this section should be regarded as ‘‘experimen-
tal’’ numerical observations and not as exact results.

For the 2 junction stack, there are two plasma modes:~a!
the antiphase oscillations and~b! the in-phase oscillations.
Following Ref. 23, there are, however, more fluxon modes
than two. If the bias current has the same direction in both
junctions, then there are~i! an in-phase fluxon-fluxon mode
with characteristic velocityc1 and ~ii ! an antiphase fluxon-
antifluxon mode with characteristic velocityc2. If the bias
current has opposite directions in the two junctions~see
Refs. 23 and 19!, there are in addition~iii ! an in-phase
fluxon-antifluxon mode with characteristic velocityc2 and
~iv! an antiphase fluxon-fluxon mode with characteristic ve-
locity c1. The latter is not discussed, but~i!–~iii ! are shown
in Figs. 3 and 4.

We will now investigate two types of mappings of the two

plasma modes into the four fluxon modes. First, we choose
the bias current as it suits our needs and next we change to
the natural way of choosing the bias current. We will in the
two following sections also see what happens when the map-
ping is generalized toN.2.

A. Unnatural biasing

For the 2 junction stack, we can map the two plasma
modes into two in-phase fluxon modes. We thus state that the
antiphase plasma oscillations map into the in-phase fluxon-
antifluxon mode~iii ! and the in-phase plasma oscillations
map into the in-phase fluxon-fluxon mode~i!. This requires
us to choose the bias current in different ways for the two
modes, i.e., in opposite directions for~iii ! and in same direc-
tions for ~i!. We will expect the velocities of the two modes
to be smaller than the characteristic velocity for each mode.
We know this is true from Ref. 23. The mapping is illustrated
in Fig. 3. Note that the plasma oscillations in this and all
other plots have been multiplied by 3 in order to show them
more clearly.

The above illustrates the mapping for the 2 junction stack.
We will generalize this, so that a mode consists of at most
one fluxon~or antifluxon! in each junction, and the polarity
of the fluxons is determined by the relative phases of the
plasma oscillations. To be more precise, we use the following
scheme to generate the fluxon/antifluxon configuration in
modem:29 ~a! am

i .0, junction i contains a fluxon;~b! am
i

,0, junction i contains an antifluxon;~c! am
i 50, junction i

has no 2p phase shift, and the velocity of the fluxons of
modem should be in the interval@0,cm#, becausecm is the
maximum velocity of the mode.

Next, we choose the bias current such that it drives all the
fluxons and antifluxons in the same direction. One may say
that we ‘‘fit’’ the bias current to suit our need for in-phase
fluxon/antifluxon motion. The careful reader will here notice

FIG. 3. Illustration of the could-be relationship between the plasma oscillations and the soliton modes of the 2 junction stack with
unnatural biasing. The top plots are mode 1 (g152g2) and the bottom plots are mode 2 (g15g2). The rightmost figures are the trajectories
of the fluxons. Parameters area50.1, S520.2, g520.2 ~top!, 20.44 ~bottom!, andv50.75 ~top!, 1.07 ~bottom!.
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that for the highest mode (m5N), where all solitons have
the same polarity, this unnatural way of choosing the bias
current actually becomes the natural way. We will, neverthe-
less, refer to this way of choosing the bias current as unnatu-
ral, although it is only unnatural inN21 modes out of a total
of N modes.

As we have already seen, these kinds of modes are pos-
sible in the 2 junction stack. We have carried this further, and
found solutions according to the above construction of a
mode for a stack with up to seven junctions.

To search for a given mode, we have used a standard
procedure to solve the coupled non-linear equations~1!. The
equations have been discretized in thex direction by a sym-
metric second-order finite-difference method, and the~large
number of! resulting coupled ordinary differential equations
have then been solved with a fifth-order Runge-Kutta
method with error estimation valid to fourth order. The
boundary conditions have been taken to be of the reflective
type, Eq.~5!.

In order to find the modes, we constructed an initial
fluxon configuration using the above scheme. We choose
some values ofa, ugu, L, andS and observed how the con-
figuration evolved in time. If we did not find a satisfactory
steady-state solution, we then tried to change the bias current
ugu, while holding a, L, and S fixed. We started with the
lowest-order mode, and a low value ofugu. From knownIV
curves of small stacks we know that the modes will probably
only exist for some finite range ofugu, and that the lowest
value of ugu where a mode is stable is increasing with the
mode number.13 This is why we begin searching for the low-
est mode to get an idea of whatugu we can use to find the
mode. Also, the soliton velocity is increasing with the mode
number, so it is also fair to assume that we must increase the
bias current to achieve this.

We have been able to find all the modes, but with some
minor discrepancies, which we will now point out. For stack
sizes of more than three junctions, we have observed that the
modes with the highest mode numberm5N, the outer junc-
tions are switching to the McCumber curve~finite voltage!,
but everything else is as expected. We will comment more on
these modes in the section with natural biasing. In addition to
this, we have found four other modes, which also only
showed the expected behavior if some of the junctions had
switched to finite voltage. We observed the following, in
addition to the switchedm5N modes.

N m Expected Found

4 3 ↑↑↓↓ ↑MM↓
6 4 ↑↑↓↓↑↑ ↑M↓↓M↑
6 5 ↑↑↑↓↓↓ ↑↑MM↓↓
7 5 ↑↑↓↓↓↑↑ ↑↑M↓M↑↑

where↑ meansam
i .0, ↓ meansam

i ,0, andM means that
the junction has switched to the McCumber curve. Junction
number 1 is the leftmost arrow in each row, and the junction
number is increasing as we move to the right. The results
were calculated withS520.2 anda50.1, but we have also
tried other values, and believe it to be valid for a wide range
of parameters.

We thus see that the scheme predicts, rather reliably, a
number of different fluxon configurations.

B. Natural biasing

For the case of natural biasing, it was recently proposed in
Ref. 24 that there also, in this case, could exist a relationship
between the linear modes and the fluxon modes of a Joseph-

FIG. 4. Illustration of the could-be relationship between the plasma oscillations and the soliton modes of the 2 junction stack with natural
biasing. The top plots are mode 1 and the bottom plots are mode 2. The rightmost figures are the trajectories of the fluxons. Parameters are
a50.1, S520.2, g520.3 ~top!, 20.44 ~bottom!, andv50.87 ~top!, 1.07 ~bottom!.
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son stack. For a 2 junction stack it was noted that the an-
tiphase plasma oscillations with characteristic velocityc2

could correspond to the mode~ii ! which has an antiphase
fluxon motion, and the in-phase plasma oscillations with
characteristic velocityc1 could correspond to the mode with
in-phase fluxon motion~i!. The similarity of the plasma os-
cillations and the soliton mode is illustrated in Fig. 4 for the
2 junction stack. For the antiphase mode in Fig. 4, the
smaller peak is not a fluxon but the trace of the fluxon in the
other junctions. This was also observed in Ref. 9.

We note that this behavior is expected if we assume the
relationship proposed in Sec. V A. The relative polarities of
the fluxons are the same as in Sec. V A, so the only differ-
ence is the bias current. If the bias current is chosen to be the
same in all junctions, then fluxons and antifluxons will be
driven in different directions. It is therefore expected that for
a 2 junction stack modem51 will translate into fluxons
moving in an antiphase pattern, i.e., we get the situation~ii !
discussed in the beginning of this section.

We will in this section try to elaborate on the proposal
from Ref. 24 by searching for similar modes in stacks with
more than two junctions. The procedure is simply to see if
there is a soliton mode which corresponds to a given plasma
mode. The idea is to generalize the observation by Ref. 24 of
the 2 junction stack. To be more precise, there should exist a
steady-state soliton configuration in modem, where the rela-
tive polarities are chosen according to the scheme in Sec.
V A. We should expect that solitons should move in an anti-
phase manner with antisolitons, since the bias current drives
them in opposite directions. Finally, the velocityv of the
fluxons shoulda priori belong to the interval@0,cm#. We do

not expect the upper bound to be exactly valid, because it is
known even for the one-junction case that, when examined
carefully, it does not hold exactly.

We have already seen in Fig. 4 that the 2 junction stack
behaves just as proposed. In Fig. 4 we have also included a
plot of the trajectories of the fluxons. These are found nu-
merically by determining the position of a fluxon in layeri
by finding the lowest value ofw t

i . In order to get the value as
good as possible, without too large a number ofx-mesh
points, we had to approximate the shape ofw t around the
minimum by a second-order polynomiad. Doing this at sev-
eral times and plotting the positions as a function of time, we
end up with the rightmost plot in Fig. 4. It is easy to see the
fluxon motion of the two modes in this type of plot.

After being encouraged by the 2 junction stack we, natu-
rally, analyzed the 3 junction stack. The 3 junction stack has
been investigated by several groups,22,25–27 since it repre-
sents the lowest-order nontrivial system. For the expected
in-phase fluxon mode, the fluxon-plasma relations were dis-
cussed perturbatively in the preceding section.

The results from the 3 junction stack is presented in Fig.
5. This figure shows that the lowest mode~top! has the
plasma oscillations of layers 1 and 3 in-phase and layer 2
antiphase with layers 1 and 3. We have then found a soliton
mode where layers 1 and 3 are moving together and layer 2
is moving in an antiphase manner with these two layers. The
magnitude of the velocity of the solitons is the same, namely;
v50.79 for the parameters used in the figure. This velocity is
indeed in the range@0,c1# where, from Eq.~10!, c1'0.88
whenS520.2.

FIG. 5. The plasma oscillations and the soliton modes of the 3 junction stack with natural biasing. We see that the scheme also carries
through for the 3 junction stack. The middle parts have no fluxon in the middle layer, thus only the first and second layers are present in the
trajectories plot. Parameters for the figures area50.1, S520.2, g520.2 ~top!, 20.375~middle!, 20.44~bottom!, andv50.79~top!, 0.89
~middle!, 1.12 ~bottom!.
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Although the present paper is considered as an empirical
observation of a plasma mode–fluxon mode relationship, we
note that a careful calculation of the trajectory in the top
right of Fig. 5 shows that thew2 velocity is slightly different
from the w1 and w3 velocity, and may even exceed thec1
velocity. Such subtleties~mostly not visible to the naked eye!
are sometimes observed, but beyond the empirical scope of
the present paper.

The second mode of the 3 junction stack is seen as the
middle plots of Fig. 5. Here the plasma oscillations tell us
that we should look for a soliton mode where layers 1 and 3
are moving in antiphase and layer 2 contains no soliton. This
is indeed found, and we get the magnitude of the velocities
of the solitons in layers 1 and 3 to bev50.89, which is well
belowc2 whenS520.2, and therefore in the desired range.

The third mode predicted by the proposal was also found,
and it is the well known and very desirable in-phase mode of
the 3 junction stack, which was also discussed in Sec. IV. It
is shown in the bottom plots of Fig. 5. We again find that the
mode conforms to the proposal, and that the velocity is in the
desired range.

A very interesting question is now how well the proposal
predicts the soliton modes when there are more than three
junctions. We have found that it can predict most of the
fluxon modes, but not all. We will here just explain the ones
which deviate from the proposed behavior. It must be noted,
though, that in the nonpredicted modes the basic symmetries
of the plasma modes are still preserved.

For the 4 junction stack we find that the second mode
deviates from what is expected. From the plasma oscillations
we would expect that layers 1 and 4 should bunch and so

should layers 2 and 3. This is also true, but we would also
expect that layers 1 and 4 are antiphase with respect to layers
2 and 3, which is not what we observed. Instead, we find that
all the layers are, more or less, bunched. Layers 1 and 4 are
moving together very closely and so are layers 2 and 3,
which are also moving a little behind layers 1 and 4. All
solitons are moving with the same velocity, which is in the
desired interval@0,c2#. The mode can be seen in Fig. 6.

We have also found that the fourth mode of the 4 junction
stack deviates from the expected behavior, which was also
noted in Sec. V A. This is the mode which should be totally
bunched, but we find that the solitons in the two outer layers
have disappeared, and instead the layers have switched to the
McCumber curve (w t;g/a). Although there is no soliton in
the outer layers, we still have an image in the outer layers
from the solitons in the middle layers. This means thatwx

i

looks more or less like there is a soliton in all the layers, as
can be seen in Fig. 7. Interest in this mode is usually due to
the fact that it can be used as a microwave oscillator, where
we get pulses at the edges when the solitons arrive. These
pulses depend on the voltage across the junction, which is
proportional tow t . Judging from Fig. 7, it should not matter
that much if the outer layers have switched to the McCumber
curve, because the pulsed microwave output is of the same
order. For cases similar to Fig. 7 we have confirmed from
numerical simulations of the available total power from all
the junctions that this is indeed the case.28

We have summarized our results in Table I. For up to a 7
junction stack we discuss in Table I the validity of our initial
proposal that it is possible to predict a family of fluxon

FIG. 6. Top plots are the plasmaoscillations of the second mode of the 4 junction stack with natural biasing. The bottom-left plot is for
the phasesf i of this mode and the bottom-right is for the trajectories of the solitons. Parameters for the plots area50.1, g520.35, S
520.2, and the velocity isv50.92.
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modes by just looking at the analytical expression of the
plasma modes. We note that we use a different short-hand
notation than in the preceding section. We do this to empha-
size the fluxon motion and not the fluxon polarity.

In this generic prediction scheme, an upward pointing
plasma excitation leads to a fluxon, a downward pointing
plasma excitation leads to an antifluxon, and zero-amplitude
plasma excitation leads to no fluxon.

In Table I the horizontal direction gives the number of
junctions in the stack,N, and the vertical direction gives the
order of the mode, with mode 1 always being the clean an-
tiphase mode and modeN being the in-phase mode~at least
for the plasma excitation!. In each square, the right-hand side
shows the plasma-mode prediction and the left part shows
the fluxon-mode obtained from numerical simulations. The

trivial case N51, which has both a plasma mode and a
fluxon mode in agreement with the prediction, has been
omitted in Table I.

Moving horizontally, we see in the first set of squares the
predicted antiphase fluxon modes with every fluxon moving
in opposite direction to that in the neighboring layer. If we
follow the squares in the direction of the diagonal, the
plasma-mode prediction method suggests in-phase fluxon
modes. This is also found, except for higherN. Here the two
outer layer fluxons are replaced by a similar looking pulse
~in-phase with the other fluxons! but on top of the voltage
corresponding to the McCumber curve. A different value of
the layer-to-layer couplingS could presumably convert the
outer pulses back to clean fluxon pulses; however, as dis-
cussed above, the predicted pulse geometry is preserved, and

FIG. 7. The top four plots arefx of the fourth mode of the 4 junction stack with natural biasing together with the plasma oscillations of
this mode. We see that it is hard to tell that there is no soliton present in the first and fourth layers fromfx . The bottom plot is the
trajectories of the ‘‘solitons.’’ Parameters for the plots area50.1, g520.54, S520.2, and the velocity isv51.17.
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TABLE I. Summary of what we have found with natural biasing. An arrow means a fluxon, a line means no fluxon, a dashed line means
the layer is on the McCumber curve, a dashed arrow means McCumber with a clear image of a fluxon,3 means that something isnot
according to the proposal,M means that some layers have switched to the McCumber curve but otherwise okay, andA means that everything
is according to the proposal. The arrows to the left of the symbols,A, M and3, show the mode we have found, and the ones to the right
show the mode according to the proposal. A small horisontal shift between arrows implies that the fluxon distance~away from the
boundaries! in x space is greater thanlJ , and no spacing means that the distance is much smaller thanlJ .
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the change is not essential for the total power output from the
in-phase pulses, as we have confirmed in numerical
simulations.28

Even the squares with crosses, which indicate discrepan-
cies, show that the numerically obtained fluxon mode has a
majority of the features in common with the prediction from
the linear plasma modes.

We note that the plasma modes and fluxon modes have
not only their geometry in common, but also their velocity.
For the plasma modes this velocity is easily obtained analyti-
cally, or can be taken from the dispersion relation. Finding
the same approximate velocity in the fluxon modes just con-
firms the validity of our prediction.

We point out that our method should be applicable also
for more complicated modes, for example, with more than

one fluxon in each layer, or if the stack is subject to an
in-plane magnetic field.

VI. CONCLUSION

We have considered a stack of inductively coupled Jo-
sephson junctions with particular emphasis on the symme-
tries of the plasma modes, which can be derived analytically.
We demonstrated empirically, by numerical methods, that the
properties of the fluxon modes can be rather reliably pre-
dicted from the symmetries of the plasma modes. This al-
lowed us to numerically find a family of soliton modes, using
only knowledge from the plasma modes. Other authors noted
that the plasma modes enter the soliton modes in the form of
Cherenkov radiation. As a side result, we were able to cal-
culate the decay profile of this radiation analytically.

TABLE I. ~Continued!.
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