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The Airy gas model is used to derive an expression for the local kinetic energy in the linear potential
approximation. The expression contains an explicit Laplacian term2

5 (\2/2m)¹m
2 (r ) that, according to jellium

surface calculations, must be a universal feature of any accurate local description. Applied to the noble gases
the expression reduces the errors by a factor of 50 over previous results obtained by the linear potential
approximation.

PACS number~s!: 31.15.Ew, 71.15.Mb

During the last two decades density-functional theory@1#
has played a decisive role in the calculation of physical prop-
erties of atoms, molecules, and solids. In this context it is
important to note that all available ground-state energy den-
sity functionals lead to deficient results on account of an
inappropriate representation of the kinetic-energy contribu-
tion. This deficiency may, of course, be overcome by apply-
ing the approach of Kohn and Sham@2# as it is in most
density-functional calculations. The appoach, however, is
based on animplicit functional that requires a complete self-
consistent solution to the Kohn-Sham equations. As a result,
the determination of the kinetic-energy contribution becomes
the time-limiting step in density-functional calculations. An
explicit kinetic-energy functional is therefore of crucial im-
portance in future applications of density functional theory.
Furthermore, the knowledge of a kinetic energy functional
for the noninteracting particles has become one of the pri-
mary aims within density-functional theory as formulated
within the metageneralized gradient approximation to the
exchange-correlation density functional@3#.

Starting from thehomogeneouselectron gas including,
e.g., gradient corrections, there have been many attempts to
develop explicit kinetic-energy functionals@4#. In general
these functionals have been developed and tested for use in
atomic calculations, and they have proven to be inadequate
in the treatment of, for instance, surfaces of solids@5#. Of
particular relevance for the present purpose is the explicit
kinetic-energy functional derived in the pioneering work by
Baltin @6# on the basis of the Wigner-Kirkwood approach@4#
and the linear potential approximation. It has the form

ts
lin~r !5ts

TF~r ! f S u¹n~r !u1/2

n~r !2/3 D , ~1!

where ts
TF is the Thomas-Fermi kinetic-energy density, and

the functionf of the scaled gradient is tabulated in Ref.@6#.
The functional was subsequently applied in calculations of
the kinetic energy of the noble gases, and it was found to

overestimate the Hartree-Fock results by as much as a factor
of 2 @7#. As a result of this failure further developments of
the approach appear to have been abandoned.

Recently, Kohn and Mattson@8# put forward the concept
of the edge electron gas as an appropriate starting point for
the treatment of systems with edge regions. The simplest
realization of the edge electron gas is the Airy gas model,
and in the present paper we use this model to derive an
explicit expression for the kinetic-energy density. Since the
Airy gas model is based on the linear potential approxima-
tion, the resulting expression is equal to that obtained by
Baltin @6# except for the fact that we isolate an explicit La-
placian term of the form

a
\2

2m
¹2n~r !, wherea5

2

5
, ~2!

which we exclude when the functional is inverted to obtain
an explicit expression for the kinetic-energy density in terms
of the scaled gradient. That is, we write the kinetic-energy
density in the form of Eq.~1!, but with a differentf, plus
Laplacian~2!. Since the contribution from the Laplacian to
the total kinetic energy of a confined system must vanish the
present functional yields kinetic energies which differ con-
siderably from those obtained by a functional in which also
the Laplacian is expanded in terms of the scaled gradient. As
a result, the error in the kinetic energy of the rare gases is
reduced in the present approach by approximately a factor of
50 relative to previous calculations by the linear potential
approximation@7#.

The starting point for the derivation of the Airy gas
kinetic-energy functional is the potential

ve f f~z!5H ` for z<2L

Fz for 2L,z,`,
~3!
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which is linear inz, independent ofx andy, and has a hard
wall at 2L far from the electronic edge atz50. The slope of
the effective potentialF5dVe f f /dz leads to a characteristic
length scale

l[S \2

2mFD 1/3

, ~4!

and the electron and kinetic-energy densities are then given
by

n~z!5 l 23n~z!, ~5!

ts~z!5
\2

2m
l 25t~z!, ~6!

wherez5z/ l , ts5(\2/2m)(occ(¹c)2, andc are the Kohn-
Sham orbitals. Further,

n~z!5
1

2pE0

`

Ai2~z1z8!z8dz8, ~7!

ts~z!5
1

2pE0

`F d

dz
Ai ~z1z8!G2

z8dz81
1

4p

3E
0

`

Ai2~z1z8!z82dz8. ~8!

The properties of the Airy function and its derivatives may
be used to transform the kinetic energy density function~8!
into

ts~z!52
3

5
zn~z!1

2

5
n9~z!, ~9!

which upon application of the scalings of thei th derivative

n( i )~z!5 l 2 i 23n( i )~z!, i 50,1,2, . . . , ~10!

characteristic of the Airy gas model, leads to the local Airy
gas ~LAG! expression for the kinetic-energy density of the
real electron gas:

ts
LAG~z!52

3

5
n~z!F \2

2m

z

l 3G1
2

5

\2

2m
n9~z!. ~11!

According to Eq.~3! and ~4!, the term in the square bracket
on the right-hand side of Eq.~11! is equal tove f f(z), and the
kinetic-energy density then reads

ts
LAG~z!52

3

5
n~z!ve f f~z!1

2

5

\2

2m
n9~z!. ~12!

Alternatively, one may insert the Thomas-Fermi kinetic-
energy density

ts
TF~z!5

3

5

\2

2m
~3p2!2/3n5/3~z! ~13!

into the first term of Eq.~11! to obtain

ts
LAG~z!5ts

TF~z!P„s~z!…1
2

5

\2

2m
n9~z!, ~14!

where the scaled gradient

s@n~z!#[
u¹n~z!u

2~3p2!1/3n~z!4/3
5

n8~z!

2~3p2!1/3n~z!4/3
[s~z!,

~15!

on account of scaling relations~10!, is conserved when going
from the real electron gas to the Airy gas. Finally, we have
used the properties of the Airy function to derive an explicit
expression forz/ l 3 in terms of the density and its derivative.
We thereby find the expression

ts~z!5
3

5

\2

2m
n~z!

n-~z!

4n9~z!

3n~z!n-~z!22n8~z!n9~z!

2@n8~z!#223n~z!n9~z!

1
2

5

\2

2m
n9~z!. ~16!

for the kinetic-energy density of the Airy gas which avoids
the numerical inversion of the scaling function. However,
this explicit expression is only useful in cases where the real
potential is close to the linear form assumed in the Airy gas
model. Note that, for an Airy gas, the three expressions~12!,
~14!, and ~16! are, of course, equivalent. However, in the
application to real systems Eq.~12! is the most accurate and
Eq. ~16! the least accurate of the three forms.

The scaling functionP(s) which appears in Eq.~14! may
be calculated in the Airy gas model from

P~z!5
2z

~3p2!2/3n~z!2/3
~17!

and s(z) defined in Eq.~15!. In Fig. 1 we have plotted
„P(z),s(z)… and this function provides the connection be-
tween the real system and the Airy gas through the local
scaled gradients5s@n(z)# which is conserved in the trans-
formation to the Airy gas model. The inversion procedure is
the same as that used by Baltin@6#, except that here it is
applied only to the first termts

TF(z)P„s(z)… in the kinetic-

FIG. 1. The scaling functionP(s) of Eq. ~14! obtained for the
Airy gas and the second-order gradient expansions.
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energy density expression while the Laplacian term is kept
unchanged. Below we shall justify this approach.

A comparison of the kinetic energy functionals available
in the literature shows that in most cases a Laplacian term of
the form of Eq.~2! with varying prefactorsa is included;
see, e.g., Ref.@4#. @Here we do not refer to12 (\2/2m)¹2n(r ),
which is the trivial difference between the two natural defi-
nitions of the local kinetic-energy density.# In want of a the-
oretical principle by which a unique value of the prefactor
may be found, we have used the jellium model of a metal
surface@9# for which accurate numerical solutions may be
found to determinea. That is, we have calculated the local
difference between the exact Kohn-Sham kinetic-energy den-
sity ts

KS(z)5(\2/2m)(occ(¹c)2 for a jellium surface of in-
termediate densityr s53.0, and that obtained by a number of
kinetic-energy functionals including Laplacian terms with a
range of prefactors, i.e.,

d~a!5
1

gs
E Uts

a~z!1a
\2

2m
n9~z!2ts

KS~z!Udz, ~18!

where ts
a(z) is the ‘‘Thomas-Fermi part’’ of the actual

kinetic-energy density, e.g.,ts
TF(z)P„s(z)…, andgs the total

Kohn-Sham surface kinetic energy.
The results of the jellium calculations shown in Fig. 2

point to a50.4 as a unique value, where the asymptotic

linear behavior of all three functionals included in the figure
extrapolate to zero error. It is further seen that ata50.4 the
Airy gas functional~12! provides the best overall description
of the kinetic-energy density while Baltin’s functional, i.e.,
a50, leads to a considerable error in the local description.
Sincea50.4 is also the value found in the real-space deri-
vation of the Airy gas functional we suggest that a Laplacian
with the prefactor25 must be a universal feature of any local
kinetic energy functional. Note that there is noa priori rea-
son why the kinetic-energy density calculated from the
Kohn-Sham orbitals for a jellium surface should correspond
exactly to the prefactor25 for the Laplacian term.

The accuracy of the Airy gas functional~12! is demon-
strated in Fig. 3, where we show the kinetic-energy density

TABLE I. The difference~in percent! in the atomic kinetic en-
ergies evaluated from the self-consistent LDA@11# Kohn-Sham
densities relative to the exact Kohn-Sham results. GEA(0), GEA(2),
LAG, and LLP label results obtained using the Thomas-Fermi ap-
proximation, the second-order gradient expansion@4#, the Local
Airy gas approximation,@10# and the locally linear potential ap-
proximation@6,7#.

Atom GEA(0) GEA(2) LAG LLP

Ne 28.6 20.8 22.3 68.3
Ar 26.8 20.4 21.2 53.8
Kr 25.1 0.2 20.1 38.9
Xe 23.3 1.6 1.4 31.9

FIG. 2. The integrated local errors@Eq. ~18!#, of the kinetic-
energy densities for a self-consistent jellium surface (r s53) as
functions of the prefactora of the Laplacian term. In the figure
GEA(2) refers to the second order gradient expansion functionalts

a

5tTF1(\2/2m) 1
9 tW , where tW is the von Weizsa¨cker functional,

LAG~a! refers tots
a52

3
5 nve f f @cf. Eq. ~12!#, and LAG~b! refers to

ts
a(z)5ts

lin ,a(z), wherets
lin ,a(z) reduces to Eq.~1! for a50.0 and to

ts
TF(z)P(s) of Eq. ~14! for a50.4. In the inset the integrated local

errors of LAG~b! for physically interesting density ranger s52 –6
are shown.

FIG. 3. The kinetic-energy densities for a self-consistent jellium
surface (r s53) as a function of the distance from the surface~in
units of Bohr radius,a0) obtained from the Airy gas expression
@Eq. ~12!# compared to the exact Kohn-sham results. It is seen that
the airy gas expression@Eq. ~12!# is almost exact forx,23 and
x.0. In the inset are shown errors in percent for the zeroth
~Thomas-Fermi!, the second-order gradient expansion, and the low
gradient limit of Eq.~14!.
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of the jellium surface model calculated in four different ap-
proaches. The only significant deviation between the Airy
gas functional~12!, and the exact Kohn-Sham result is seen
to occur just below the jellium edge where the effective po-
tential has a large positive curvature which cannot be cap-
tured by the linear potential approximation. In contrast, the
Thomas-Fermi and second-order gradient functionals have
significant errors even far from the jellium edge. It is clear
that an accurate local description also leads to an accurate
total kinetic energy. In fact, the Airy gas functional and the
second-order gradient expansion functional yield total ki-
netic energies for the jellium surface which, however, are of
the same order of magnitude because the oscillations in the
local gradient expansion lead to a cancellations of errors.

Since the contribution from a Laplacian term on account
of Green’s theorem vanishes for a confined system, it fol-
lows that only the Thomas-Fermi part of the kinetic-energy
density~14! is important in calculations of the total kinetic
energy. Consequently, one should not expand the Laplacian
of the density in terms of the scaled gradient because such an
expansion will lead to a nonvanishing contribution to the
total kinetic energy from the expanded Laplacian term. That

this is in fact the case is clearly shown by the results of the
atomic calculations for the noble gases presented in Table I.
Here we find that the Airy gas functional@10# has the accu-
racy of the second-order gradient expansion, as in the case of
the jellium surface calculations, in contrast to the previous
calculations by the linear potential approximation@6,7#
which show significant errors. We conclude, that the Airy
gas model and the equivalent linear potential approximation
may in fact form an appropriate and well-defined starting
point for density-functional theories of the kinetic energy
density of the inhomogeneous electron gas.
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