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Progress on erbium-doped waveguide components 

Anders Bjarklev, Martin Ole Berendt, Jes Broeng, Jacob Philipsen, and Martin Schuster Pedersen 

Department of Electromagnetic Systems, Technical University of Denmark, Building 348, DK-2800, 
Lyngby, Denmark, Tel: + 45 45 88 14 44, Fax: + 45 45 93 16 34, e-mail: ab@emi.dtu.dk 

Abstract: The recent development on erbium-doped fiber amplifiers, and fiber lasers is reviewed. Also the 
latest results on planar erbium-doped waveguide amplifiers and high erbium concentration characterisation 
methods are presented. 

Introduction: Only few technolo$es have had a more profound impact on-the development of optical 
communication systems than the erbium-doped fiber amplifer (EDFA), and since the first demonstration of 
a practical EDFA in 1987 [ 11, the EDFA has due to a huge international research and development effort 
become the key element in optical communication systems. Several text books have been published on the 
subject [2-51 in the past few years, and the basic properties of rare-earth-doped (RED) waveguide devices 
are thoroughly described in these, but because of a tremendous development of EDFA applications, new 
system related challenges continue to appear. 
It is the aim of this presentation to provide an overview of the most recent progress on the development of 
erbium-doped waveguides (i.e., fibers and planar integrated RED waveguides). Special focus is on the 
system application aspects of the EDFA, and in relation to this, we have also chosen to discuss some of the 
latest research results within the areas of fiber lasers, integrated planar erbium-doped devices, and 
characterisation of high concentration erbium-doped waveguides. 

Fiber amplifiers in optical communication systems: It has for decades been understood that 
optical communication systems offer a very large transmission bandwidth, and in the process of bringing 
this potential to practical use, the EDFAs play an increasingly important role. This is reflected in the fact that 
most commercial communication systems installed today include one or more EDFAs, and the amplifiers are 
key elements both in future digital optical networks (in contrast to the point-to-point transmission systems), 
and in amplitude-modulated (AM) frequency division multiplexed W M )  systems for video transmission. 
Most of the recent high capacity experiments, however, employ wavelength division multiplexing (WDM). 
techniques, which in addition to obvious capacity improvement offer higher flexibility of future optical 
communication networks. Figure 1 illustrates the increase in transmission capacity for long distance optical 
communication systems by showing the bitrate-distance product as a function of publication year for the 
transmission experiment. It is obvious, how the inclusion of EDFAs has resulted in a capacity increase of 
more than two orders of magnitude over a period of less than 10 years. 
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Figure 1 

In the present and future WDM applications of EDFAs, the gain nonuniformity (or gain tilt) is one of the 
most important problems, and several techniques for equalizing the nonuniform EDFA gain have been 
proposed. Among the methods for gain flattening are the use of htemal or external f d t e ~ g  [9], requiring 
accurate fdter tuning and resulting in pump power loss, or the clamping of inhomogeneous gain [lo] by 
incorporating the ampldjer into a ring laser. Altemative methods for obtaining gain flatness are the 
application of short and highly pumped erbium-doped fibers [l 13, suffering from low power conversion 
efficiency, or changing the fiber host material such as in the case of fluoride-based EDFAs [ 121. 
To overcome some of the problems in the reliability and the complexity of the mentioned EDFA 
configurations, a hybrid-amplifier approach has also been suggested [13-141, in which erbium-doped fibers 

Bitrate-Distance product as a function of year of publication. Most of the data points origin from papers listed in 
[4], and details of the most recent results may be found in [6-81. 
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with different glass compositions are serially cascaded. The basic idea behind this hybrid-amplifier 
configuration is the constructive use of the opposite signs of the gain slopes of shea erbium-doped fibers 
(EDFs) with different codopants (in the speclfic case of [13-141 the Al-codoped EDF has a positive gain 
slope and the P-AI-codoped fiber has a negative gain slope in the 1550 nm wavelength range). It has also 
been suggested to combine the opposite gain slopes within one single fibre [15], resulting in improved 
stability towards longitudinal pump power redistribution. 
As lightwave systems move towards higher bitrates, higher powers, longer span lengths, and even all- 
optical networks, another possibility for system upgrade exists in time division multiplexing (TDMJ 
techniques. These are especially interesting for very highspeed systems (bitrates 2 40 Gbit/s) and may make 
use of soliton techniques. In such systems optical signal processing [ 161 becomes an interesting possibility. 
However, most of the present development is directed towards WDM systems,- and although soliton based 
TDM may play an important role in future communication systems, the remaining part of this section will 
address WDM related issues. 
The results on Figure 1 specifically represent the progress on long distance communication systems, where 
many (up to several hundred) EDFAs are coupled in cascade. However, also intermediate or short distance 
distribution systems are developing rapidly due to the EDFA. One subject of specific interest has been the 
realisation of communication links of a few hundred kilometers length, where the property of remote 
pumping of erbium-doped fibers have been applied. Hereby, inline (e.g., submarine) placement of optical 
pump sources may be avoided. Such solely end-pumped systems have been demonstrated to transmit 2.5 
GbiVs signals over more than 500 km [ 171. In order to make this system work, a number of properties must 
be considered; Stimulated BrilloUiTl Scattering (SBS) suppression, application of Stimulated Raman 
Scattering (SRS), high power Raman pump lasers (fiber laser pumped), dispersion compensation, forward 
error correction (FEC), and fiber grating pump reflectors. 
The low noise amplification provided by the EDFA has already resulted in a revolution in optical 
communication technologies, and high power WDM optical networks seem to be a reality in very near 
future. For such systems, new technological and scientific challenges have to be met, and we will here 
finally mention some of the important considerations at this stage of the development: 

- Dispersion management (Need for fibers with low and well controlled dispersion) 
- Modulation formats (Forward error correction) 
- Polarisation sensitivity (Need for polarisation scrambling) 
- Four Wave Mixing (Need for unequal or larger channel spacing, and some dispersion) 
- Self Phase Modulation (Careful consideration in systems applying high powers) 
- Stimulated Brillouin Scattering (Need for carrier broadening - Signal dither) 
- Cross Phase Modulation (Relevant for high power systems, and optical signal processing) 
- Gain cross saturation (Need for automatic gain control, or inversion clamped amplifiers) 

Fiber lasers: Erbium-doped fiber lasers may be viewed as EDFAs operating in the particular regime, 
where coherent oscillation of amplified spontaneous emission (ASE) occurs due to some means of 
feedback. Among the basic advantages of RED fiber lasers are: they can be pumped with compact efficient 
laser diodes, they are compatible with optical fibers giving negligible coupling losses, connecting by 
splicing alleviates any mechanical alignment of parts and provides superior environmental stability, they 
offer wide tunability covering the third telecommunication window (around 1.55 pm). Laser cavities may 
be categorized according to the means of feed back. In ring cavities the EDF is spliced in an endless loop, 
eliminating the need for laser mirrors. Furthermore, the ring cavities may be designed to operate 
unidirectionally by introducing an optical isolator in the loop. Output power of 4.2 mW, a tuning range of 
61 nm, a threshold of absorbed pump power of 2.9 mW, and a slope efficiency of 15 % was reported in 
1991 [IS]. Ring configurations have proven especially promising for short pulse generation. Pulse-duration 
of 8 ns has been demonstrated in Q-switched EDF ring lasers [19]. Loop lengths are typically several 
meters making these lasers sensible to temperature drift. A second category are Fabry-Perot cavities, that 
relay on some sort of mirror to provide the feedback. The first reported EDF laser had a bulk rnirror butt- 
coupled to one fiber end facet, and a bulk reflection grating as a wavelength selective mirror at the opposite 
end[20]. The development of the UV-induced fiber Bragg reflection grating [21] allowed for all-fiber-laser 
cavities. Fibers with highly wavelength selective Bragg-reflection gratings [22] were spliced to the EDF to 
form the laser cavity [23]. The core of the EDF itself can be made UV-sensitive by hydrogen loading, and 
Bragg reflection gratings may be imprinted directly in the ampXier fiber, thereby, producing a distributed- 
feedback (DFB) laser [24]. Hydrogen loading introduces excess losses, making this procedure less 
desirable. The most promising laser configuration is the DFB laser made by W phase-mask side-writing 
and a UV induced permanent d 2  phase shift [25]. Here, the fiber is made W-sensitive by Ge-codoping. 
This is a true all-fiber laser. It shows robust single-mode operation over a wide temperature range. The 
grating in the EDF is 25 mm long and the Er-concentration is 1.5.1ds m-3. This yields a pump power slope 
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efficiency of 0.6 5% due to the low absorption in the EDF. The performance is illustrated in Figure 2. 
Present development is focused on increasing the p i n  per length and pump efficiency by increasing Er- 
concentrations and codoping with ytterbium (Yb). Smce it seems unhkely to achieve optimal gain and high 
UV-sensitivity in the same glass (as codoping with Ge and Yb causes phase separation in the glass), 
separation of Erbium-doped and UV-sensitive glass in the fiber cross section is a design possibility that 
could increase output power. Several DFB lasers with closely spaced lasing wavelengths may be written in 
the same EDF. This would produce a robust “monoblock” multiwavelength source that might be the choice 
for emitters in future WDM networks. 
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Figure 2 Output CharacLenstic of erbium-doped fiber 
DFB laser. 
Insert shows result of delayed self-heterodyne 
linewidth measurement. From [25]. 
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Planar erbium-doped waveguides: Planar waveguides doped with erbium show great potential for 
making integrated optical devices for the 1550 nm region. Er-doped planar waveguides were first presented 
in 1990 [26-271 opening possibilities for lasers and amplifiers. Since then Er-doped waveguides and 
amplifiers have been realised in a variety of host materials using different fabrication and erbium- 
incorporation techniques. Figure 3 gives a review of erbium-doped planar waveguide amplifiers. Among 
the best results are a total gain of 27 dB [33] and gain per length of 3.33 &/cm [31]. In the references, 
there is no common standard for whether the gain is internal, net, or fibre-to-fibre. As can be seen, very 
high pump powers are often needed to achieve high gain with a few exceptions such as [29], [36], [37], 
and [40]. From Figure 3, two different approaches for making amplifiers appears, distinguished by the 
waveguide length, i.e. long waveguides (>lo0 mm) and short waveguides (400 mm). To fabricate 
integrated devices, the ideal situation is to obtain short waveguides, since the physical size of the substrate 
is limited. This problem is overcome (or limited) with the long waveguides by shaping it in a spiral 128, 32- 
331. As seen from Figure 3, the long waveguides are needed to achieve high gain, because the gain per 
length in the different materials is limited by degrading effects limiting the erbium concentration. Lossless 
1x2 splitters [41] and ampEers integrated with pump/signal WDMs have already been demonstrated [33, 
361. The lossless splitter in [41] is fabricated in an ErNb-codoped substrate, so the splitting region is 
active. Another way to combine functions is to integrate passive sections with an amplifying section on the 
same substrate, thereby, achieving a separation of functions. In this way simple, straight, or curved 
amplifiers may be used. This is done by end-to-end coupling of erbium-doped and undoped planar 
waveguides on the same substrate [42]. 
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Figure 3 
Review of planar erbium-doped 
wave,@des showing the gain per 
length, the length of the waveguide, 
the host material, and the applied 
pump power. In [36] and 1401, the 
pump wavelength is 1480 nm, and in 
the remaining references the pump 
wavelength is around 980 nm. 
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Characterisation of high-concentration erbium-doped materials: To obtain sufficient gain over 
the short device length of a planar waveguide amplifier or a fiber laser, high Er-concentrations are needed. 
However, at high Er-concentrations, interaction between Er-ions will lead to excitation quenching through 
energy transfer upconversion (ETU) between erbium ions in the upper laser level 41,3,2 for the 1530 nm 
transition [43-4.41. The reduction in quantum efficiency due to quenching will be particularly strong in 
materials (such as e.g. silica glasses), in which Er-ions tend to form clusters [44-471. 
Various methods have been used for characterizing high concentration Er-doped materials with respect to 
ETU. An important class of methods is time-resolved spectroscopy including studies of the non-exponential 
component of the 1530 nm fluorescence decay [43,45,48-501 and studies of the decay of the 980 nm or 800 
nm upconversion fluorescence [43,45,50-5 13, usually after cutoff of a steady-state pump. These techniques 
are suitable for examining ETU between homogeneously distributed ions [48,52] and (provided sufficient 
time resolution) for evaluating quenching times for clustered erbium ions [51], but not for estimating the 
fraction of clustered erbium ions, since only very few clustered ions will be in the upper laser level at pump 
cut-off. If, on the other hand, short, strong pump pulses are used, an even excitation of clustered and 
unclustered erbium ions may be assumed. In [53], this principle is used for a simultaneous extraction of the 
fraction of clustered ions and a determination of an extremely short quenching time of 50 ns. 
A more common way of determining the fraction of clustered Er-ions is through transmission 
measurements, where the quasi-unbleachable Er-ions within clusters result in a nonsahu-able absorption of 
pump light [46,54-561. Such measurements, though easily obtainable, lack from the fact that no insight in 
the population of the energy levels of the Er-ions is gained. In [57], a method is presented by which 
information about the populations of the two first excited energy levels may be extracted. This is 
accomplished by observing the 1530 nm infrared fluorescence and the 550 nm green fluorescence resulting 
from excited state absorpbon of a 980 nm pump. Due to quenching, the infrared and green fluorescence 
show different saturation behaviours with respect to pump power. The method allows the estimation of the 
fraction of quasi-unbleachable Er-ions as well as an effective quenching time for these ions. Figure 4 shows 
the estimated fraction of quasi-unbleachable ions for various high concentration EDFs as reported in [57- 
581. The fraction of quasi-unbleachable ions is seen to grow with the Er-concentration and to be reduced by 
lanthanum co-doping. Figure 5 shows the corresponding estimated quenching times. These are seen to 
increase with the erbium concentration, which may presumably be attributed to the presence of larger 
clusters at higher concentrations [ S I .  The quenching times in Figure 5 are seen to be several orders of 
magnitude longer than the above mentioned value of 50 11s reported in [53], which may partly be explained. 
by different experimental conditions. In the green fluorescence setup, the Er-ions are - like in an optical 
amplifier - cw pumped and due to quenching only very few erbium ions per cluster wiU simultaneously be 
in the upper laser level. This will in large clusters lead to relatively slow quenching, because the excitations 
have to meet through intra-cluster energy migration. In the pulsed pump setup reported in [53], many Er- 
ions may be excited within the same cluster, which will lead to an ultra-fast quenching-component. 
If other quenching mechanisms than ETU are present, the transmission measurements and the green 
fluorescence setup will not be able to distinguish between them. ETU may, however, be studied separately 
by observation of the 980 nm or 800 nm upconversion fluorescence [50,59]. In [59], this principle is 
combined with studies of the frequency response of the fluorescence in order to investigate separately the 
contributions to ETU from homogeneously distributed and clustered erbium ions. 
Finally, non-spectroscopic characterisation methods include component oriented approaches, where the 
performance of amplifiers and lasers are used for extracting information about the degree of clustering [60- 
611, as well as approaches oriented towards basic physics, such as the application of transmission electron 
microscopy [62] for studying clusters directly. The latter method has confirmed the assumption of the 
existence of large clusters in high concentration Er-doped glasses [62]. 
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Conclusions: The review of the development status- on erbium-doped waveguide components shows that 
not only has the erbium-doped fiber amplifier become a key element in optical transmission systems, but 
erbium-doped fiber lasers do also indicate large potential for the realisation of efficient fiber lasers. 
Although a relatively young technology, many exciting results must be expected in the near future, 
including practical application of planar erbium-doped waveguides, and optimization of waveguide (and 
fiber) structures based on a more detailed knowledge of high erbium concentration effects in waveguides. 
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