
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Fabrication and modeling of narrow capillaries for vacuum system gas inlets

Quaade, Ulrich; Jensen, Søren; Hansen, Ole

Published in:
Journal of Applied Physics

Link to article, DOI:
10.1063/1.1829377

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Quaade, U., Jensen, S., & Hansen, O. (2005). Fabrication and modeling of narrow capillaries for vacuum system
gas inlets. Journal of Applied Physics, 97(4), 044906. DOI: 10.1063/1.1829377

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13732627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.1829377
http://orbit.dtu.dk/en/publications/fabrication-and-modeling-of-narrow-capillaries-for-vacuum-system-gas-inlets(0b330d07-c4a6-4c3d-9fdc-80d044402839).html
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Micrometer-sized cylindrical capillaries with well-controlled dimensions are fabricated using deep
reactive ion etching. The flow through the capillaries is experimentally characterized for varying
pressures, temperatures, and diameters. For the parameters used, it is shown that the Knudsen
number is in the intermediate flow regime, and Knudsen’s expression for the flow fit the data well.
The flow properties of the capillaries make them ideal for introducing gas into vacuum systems and
in particular mass spectrometers. ©2005 American Institute of Physics. fDOI: 10.1063/1.1829377g

I. INTRODUCTION

Controlled introduction of gas into vacuum systems is
important in studies and applications such as catalysis, mo-
lecular beams, and interaction of molecules with pure sur-
faces. For gas composition analysis, introduction of gas from
a high-pressure region to a mass spectrometer working at a
pressure below 10−7 Pa is necessary.

Kasemo1 produced quartz tube orifices with diameters of
5–7 mm and lengths of about 150mm by melting a quartz
capillary tube in a hydrogen/oxygen flame. The quartz tubes
are ideal for sampling gas to mass spectrometers with fast
response time and minimum perturbation of the measured
gas sample, and have been used for a variety of
experiments.2–5 Despite the applicability, the quartz tube ori-
fices suffer from limited reproducibility and knowledge
about the exact geometry of the orifice, which prevents a
detailed understanding and modeling of the flow. Especially
for trusting the orifices as tools for gas analysis, for example,
it is important to have a detailed understanding of the flow in
the orifices and how it depends on for example gas compo-
sition and temperature.

In Refs. 6–8, long narrow channels are shown to have
the possibility to affect the gas flow through gas–wall inter-
actions. Both transient flow and separation effects are seen.
The overall effect of gas–wall interactions is proportional to
the number of wall-collisions suffered by a molecule travers-
ing the channel, and is of the ordersl /dd2, where l is the
length andd is the diameter.8 For use as gas probes, the
gas–wall interactions should be minimized, and a small nar-
row capillary with a low value ofl /d is desirable.

In this article, deep reactive ion etchingsDRIEd9 is used
to produce narrow capillaries with well-controlled dimen-
sions through silicon wafers. Each wafer can hold hundreds
of capillaries, which can be separated after fabrication, and
the method thus has obvious batch fabrication perspectives.
The capillaries are perpendicular to the surface, andl /d is
between 5 and 25. The flow through the capillaries is experi-
mentally characterized for varying diameters, temperatures,
and pressures. The flow is modeled by Knudsen intermediate

flow. Due to the simple geometry of the capillaries and the
limited gas–surface interaction, the model describes the flow
very well.

II. EXPERIMENTS

The capillaries are produced by employing the DRIE
process in two steps, as illustrated in Fig. 1. First, the narrow
capillary of diameter 2–5mm is etched from one side of the
wafer to a depth larger than the final length. Second, the
wafer is turned over and a large hole is etched from the other
side until it meets the narrow capillary. When the etch rate is

FIG. 1. Fabrication sequence for the capillaries:sad photoresist mask is
defined on one side of the wafer,sbd a narrow hole is etched,scd the wafer
is turned over and another etch mask containing a large hole is defined on
the other side,sdd the large hole is etched until it meets the narrow hole,
which then becomes the desired capillary, andsed SEM image of the result-
ing silicon structure. The edge of the large hole is seen as the bright ring.
The capillary, indicated by the arrow, is visible as a black dot in the bottom
of the big hole.
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known, the etch can be continued until the narrow capillary
has the desired length. The final structure is shown in
Fig. 1sed.

The etch rate is not constant over the wafer but varies by
about ±5%, giving a variation in the length of the capillaries
of about 15mm if the wafer thickness is 300mm. This is a
significant uncertainty given that the produced capillaries
usually have lengths between 10 and 75mm. In an improved
process using silicon-on-insulator substrates this variation
can be completely eliminated.

In Fig. 2, a test structure of holes with diameter
d=2 mm are etched to a depth of 30mm. The holes are
almost cylindrical and close inspection of different test struc-
tures gives an upper limit of the difference in diameter from
top to bottom of about 0.5mm. Scanning electron micros-
copy sSEMd investigations reveal that the larger capillaries
have circular cross section, while the smaller capillaries may
be slightly distorted. The SEM used gives accurate measure-
ments of lateral dimensions within 5%.

To characterize the flow through the capillaries, the chips
are mounted on an aluminum interface block. On one side of
the interface block, the chip containing the capillary is
mounted by squeezing it onto a Viton o-ring. On the other
side, the block is connected to a mass spectrometer. The
mass spectrometer has a background pressurep,10−10 Pa
and is pumped with a turbo pump with pumping speed
S=56 l /s. When the valve between the mass spectrometer
and the tube is opened, the pressure rises until the amount of
gas flowing through the capillary and the amount pumped by
the turbo pump are the same. The amount of gas pumped by
the turbo pump is proportional to the pressurep and the
pumping speed and is given by

dn

dt
=

pS

RT
s1d

in terms of mole/second.R is the gas constant andT the
temperature.

Since the pumping speed and the pressure gauge’s sen-
sitivity vary with gas composition, it is difficult to directly
compare flow measurements for different gases. In the mea-
surements presented here, the high-pressure side is atmo-
spheric air at a pressure of 105 Pa. The pressure gauge used
scold cathode gauged is calibrated for air. It is linear in the
pressure range investigated in the present work and the sta-
tistical error is below 5% on subsequent measurements.
However, a systematic error might vary from +60% to −50%
according to the manufacturors specifications. This means
that we have to allow for a corresponding calibration factor
for the flow obtained from Eq.s1d.

The diameters of the capillaries are measured from SEM
images and the molar flow is obtained from Eq.s1d. Capil-
laries of different diameters give different molar flows. In
Fig. 3, the flow through 13 different capillaries is displayed
for diameters 1.6mm,d,5.2 mm. The flow increases
strongly with increasing diameter.

To measure the dependence of flow on temperature, the
chip containing the hole is mounted with a heater element on
top. The heater element is a piece of low-resistances
,0.025V cmd silicon that is resistively heated. The tem-
perature is measured with a thermocouple located between
the heater element and the chip and the heating is controlled
by a proportional integral differentiation algorithm imple-
mented on a computer. The flow is again measured using Eq.
s1d. In Fig. 4, the dependence of the flow on temperature for
a capillary withd=3.1 mm is shown. As the temperature is
decreased from 430 to 325 K with a rate of 0.2 K/s, the mo-
lar flow increases by about 20%. Similar behavior is ob-
served for quartz tube orifices in Ref. 10.

Finally, the flow dependence on inlet pressure is inves-
tigated. For that purpose the capillary is mounted to allow
flow from a fixed volume to a vacuum chamber. The pressure
in the fixed volume is continuously measured using an abso-
lute pressure gauge with accuracy better than 1%. As gas
flows through the capillary the pressure in the fixed volume
decreases and the flow is obtained from

FIG. 2. Test structure showing an array of almost cylindrical holes etched
into a silicon substrate:sad cleaved across the holes andsbd cleaved parallel
to the holes.

FIG. 3. Flow through the capillaries as function of diameter. The points
show experimental flow data for different diameters of the capillary. The
curve is a plot of Eq.s4d for l =45 mm.
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dn

dt
=

V

kT

dp

dt
, s2d

wherep is the pressure in the fixed volume,V the volume,
andt is time. In this measurement there will be no systematic
error on the flow. The result is displayed in Fig. 5 for a
capillary with diameterd=2.9 mm, as measured with SEM.

III. DISCUSSION

Gas flow in a tube of diameterd can be characterized by
the Knudsen numberl /d, wherel is the mean free path of
molecules in the gas. Ifd/l.110, the flow is viscous, and if
d/l,1, the flow is molecular. In between, the flow is de-
noted intermediate.11 Expressions for the flow in a circular
tube exist for all three regimes. For air at room temperature,
the mean free path is given by

l = 6.73 10−3fPa mg/p, s3d

where p is the pressure.11 This means that at atmospheric
pressure the flow will be in the intermediate range for diam-
eters 100 nm,d,7 mm. For realistic diameters of the cap-
illary sd.1 mmd, the pressure at which the flow changes
from intermediate to molecular is below 73103 Pa. In Fig.
6, the capillary is shown with the two flow regimes. The inlet
pressure isp1, and at the pressurep2, the flow changes from
intermediate to molecular. The pressure in the vacuum cham-
ber is denotedp3.

Knudsen’s expression for the flow in a circular tube in
the intermediate flow regime is:11

dn

dt
=

p1 − p2

RT
c, s4d

with

c =
p

128

p̄d4

hl
+

1

3
Îp

2

d3

lvsTd
1 + dvsTdp̄/h

1 + 1.24dvsTdp̄/h
, s5d

where p̄=sp1+p2d /2 andvsTd=ÎM / sRTd. In the molecular
flow regime

dn

dt
=

p2 − p3

RT

1

3
Îp

2

1
ÎvsTd

d3

l
. s6d

Using Eq.s3d, the expressions Eqs.s4d and s6d can be com-
bined to obtain an analytical expression for the flow that
includes both the intermediate and the molecular flow re-
gime. Assumingp1=105 Pa andp3=0, it turns out that inter-
mediate flow is dominating in more than about 95% of the
length of the capillary for the dimensions in question. Thus,
for the dimensions, temperatures, and pressures in this ar-
ticle, the molecular flow regime can be neglected and the
flow is described by Eq.s4d, settingp2=p3.

As noted earlier, there is an uncertainty in the measured
value of the pressure in the mass spectrometer and the length
of the capillaries. The flow predicted from Eq.s4d depends
on the length asl−1 and the measured flow depends linearly
on the pressurep in Eq. s1d. Thus, when comparing the mea-
sured and predicted flows the combined uncertainty in the
length l and pressurep reduces to an overall scaling factor
between the measured flow from Eq.s1d and the flow pre-
dicted by Eq.s4d. In the following fits the fitted values ofl
are based on thesarbitraryd assumption that the measured
pressurep is correct. The obtained values forl lie within the
expected interval, but cannot be trusted as the true length of
the investigated capillaries.

In Fig. 3, Eq.s4d is plotted as function of the diameter of
the capillary for air withM =29 g/mole andT=300 K. The
lengthl =45 mm is an average length of the capillaries and is
used for the fitted curve. Within the uncertainties, the curve
fits the data.

In Fig. 4, Eq.s4d is plotted as function of temperature for
l =50 mm. The diameterd=3.16mm is chosen within the
uncertainty to make the best fit to data.

Finally, in Fig. 5, Eq.s4d is plotted as function of the
inlet pressurep1 for l =15.3mm andd=2.9 mm. Again, these
values are chosen within the uncertainty to make the best fit
to the data. In all cases, good agreement between the pre-
dicted and the measured flows is obtained.

FIG. 4. Measured flow dependence on temperature: The fit curve is a plot of
Eq. s4d. The inset shows a log-log plot of the same data.

FIG. 5. Measured flow as function of the pressure. The fit curve is a plot of
Eq. s4d.

FIG. 6. Model of the capillary showing the high-pressure side and the
vacuum side. The regions with intermediate flow and molecular flow are
indicated. The inlet pressure isp1 andp3 is the pressure at the vacuum side.
At the pressurep2, the flow changes from intermediate to molecular.
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In Ref. 10, it is found for quartz tube orifices that in the
temperature range 300 K,T,600 K, a log-log plot of the
flow against temperature gives an approximate straight line.
This indicates a power-law relationship of the formbT−a

between temperature and flow. Different quartz tube orifices
give different values ofa. The inset in Fig. 3 shows a log-log
plot of the temperature dependence. A straight line is ob-
tained with a=0.83. However, when analyzing Eq.s4d an
approximate power-law is found only for temperatures close
to absolute zero witha=0.5 and for very high temperatures
with a=1. For realistic temperatures, a straight line in a log-
log plot can be found only for a sufficiently small tempera-
ture interval. The value ofa is between 1 and 0.5 depending
on the dimensions of the capillary, the pressures, and the
temperature interval.

In conclusion, it is possible to produce micrometer-scale
capillaries for introduction of gas into vacuum systems using
deep reactive ion etching. In particular, it is possible to in-
troduce gas to pressures compatible with mass spectrom-
eters. Further, it is shown that for the parameters in question,
the flow through the fabricated capillaries is described accu-
rately by Knudsen intermediate flow. Based on this under-
standing, it is concluded that no transient flow or separation
effects are present in the capillaries, so that the gas sampled
with the capillary has the same composition as the gas to be
analyzed.

The capillaries presented here might be particularly use-
ful for gas analysis in combination with microfabricated
chemical reactors.12 They can be directly integrated in the

reactor design, and the very small amount of gas flowing to
the mass spectrometer is compatible with the small quantities
flowing in the microreactors. Further, the response time be-
tween changes in the reactor and measurements in the mass
spectrometer will be minimized, enabling real-time measure-
ments of reaction rates with rapidly changing reaction
conditions.13
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