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Conductance switching in a molecular device:
The role of side groups and intermolecular interactions
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We report first-principles studies of electronic transport in monolayers of Tour wires functionalized with
different side groups. An analysis of the scattering states and transmission eigenchannels suggests that the
functionalization does not strongly affect the resonances responsible for current flow through the monolayer.
However, functionalization has a significant effect on the interactions within the monolayer, so that monolayers
with NO2 side groups exhibit local minima associated with twisted conformations of the molecules. We use our
results to interpret observations of negative differential resistance and molecular memory in monolayers of
NO2 functionalized molecules in terms of a twisting of the central ring induced by an applied bias potential.

DOI: 10.1103/PhysRevB.68.121101 PACS number~s!: 71.15.Mb, 73.63.2b, 85.65.1h

An important goal in the study of molecular electronics is
to identify molecules that can be combined to perform logi-
cal functions.1 In particular, Reed and co-workers2–5 have
studied the electrical properties of a set of phenyl-ethylene
oligomers @known as Tour wires ~TW’s!6# functionalized
with different side groups, and demonstrated that such mol-
ecules can show negative differential resistance~NDR!2,3 and
a ‘‘molecular memory’’4,5 effect, in which case molecules
can be switched from a low conductance state to a high con-
ductance state by application of a voltage pulse. A funda-
mental understanding of the microscopic mechanisms gov-
erning the NDR and memory effects in these systems is still
lacking.

Complementary studies, by Weiss and co-workers,7 of
isolated or small bundles of TW’s embedded in a monolayer
of spacer alkyl molecules, demonstratedspontaneouscon-
ductance switching. While Reed and co-workers only ob-
served switching effects for TW’s with NO2 side groups,
Weiss and co-workers reported spontaneous switching of all
the molecules in their study but had limited success ininduc-
ing switching by using a voltage pulse.7

Theoretical studies of functionalized TW’s, have so far
been restricted to isolated molecules. Based on such studies,
Seminarioet al. proposed that charging of the molecule and
subsequent localization/delocalization of molecular orbitals
is the microscopic mechanism behind NDR,8,9 while Cornil
et al. have found that bias-induced alignment of molecular
orbitals on the first and last phenyl rings of twisted TW’s can
lead to NDR.10

In this paper we present the first studies of the electrical
properties of functionalized TW’s covalently bound to gold
surfaces. Most prominent previous studies of related systems
include the IV characteristics of a functionalized benzene
ring13 and a bare TW.14 Our calculations are based on the
TRANSIESTA package,11 which is a nonequilibrium Greens-
function-based electronic transport program founded on
density-functional theory.12 It treats the entire system self-
consistently under finite bias conditions.

The nanopore structures in which NDR and memory ef-
fects have been observed are formed by evaporating the mol-
ecules onto a small Au surface inside a Si3N4 structure, and
then evaporating another Au electrode onto the molecular

monolayer.2 There is no detailed information about the struc-
ture of the monolayer, and the purpose of this study is not an
accurate numerical model of the nanopore experiment. We
will form an idealized model of an electrode/monolayer/
electrode system and use the insight from our studies to
make general statements about the effect of functionalization
on the electron-transport properties of TW’s. We will show
that while DeVentraet al. found intrinsic NDR for a func-
tionalized benzene ring, the ground-state geometry of a func-
tionalized TW does not show any NDR, and has anIV char-
acteristics similar to the unfunctionalized TW. Instead, our
calculations show that functionalization stabilizes twisted
conformations within the monolayer, and we propose that
NDR and memory effects are related to such conformational
changes.

We use an Au~111! surface in a 333 unit cell for the
electrodes and assume that the TW’s are chemisorbed to the
surfaces through strong thiol bonds,15 as illustrated in Fig. 1.
MonolayerA consists of a bare TW with thiol end groups,
while monolayersB and C have been functionalized with
NH2 and NO2 side groups, respectively.

We first investigate the effect of the side groups on the
electrical properties of the monolayers. The current through
the monolayers is determined by the quantum-mechanical
probability for electrons to tunnel from one electrode to the
other, and is calculated using the Landauer formula16 I
5*mL

mRT(E,Vb)dE, wheremL/R56eVb and T(E,Vb) is the

transmission probability for electrons incident at an energyE
through a device under a potential biasVb ~n.b Vb.0 corre-
sponds to hole injection from the right electrode!. The gen-
eral shape of the zero-bias transmission spectra, shown as
T(E,Vb50V) in Fig. 2~a!, is similar for all three systems.
The zero-bias conductanceG5(e2/h)T(E5m l /r ,Vb50),
given by 2.0mS, 2.3mS, and 1.9mS, for monolayersA, B,
and C, respectively, is dominated by the tail of a broad
highest-occupied-molecular-orbital~HOMO! resonance~at
EHOMO520.84, 20.65, and20.85 eV for monolayersA,
B, and C). The narrower lowest-unoccupied-molecular-
orbital ~LUMO! resonance~at ELUMO51.56, 1.59, and
1.14 eV forA, B, andC respectively! contributes less to the
conductance, and thus holes are the dominant carriers. The
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NH2 group is electron donating, so thatEHOMO,B2EHOMO,A
'200 meV while the NO2 group is electron accepting so
ELUMO,C2ELUMO,A'2400 meV.

To calculate the I -Vb spectrum we performed self-
consistent calculations for biases in the range22.8 to 2.8 V
in steps of 0.2 V. We note that the charge on the molecule is
not fixed11 and adjusts itself to minimize the free energy17 as
the left/right electrochemical potentials are changed. For all
three systems we find that the molecules are close to charge
neutrality, and the charge on the functionalized molecules
QM , as determined by a Mulliken population analysis,
change by less than 0.03e as the bias voltageVb is varied.18

The I -Vb spectra, shown in Fig. 2~b!, are very similar, in-
creasing slowly at first but then increasing rapidly around 2V
where the resonances come into alignment with the bias win-
dow. The main effect ofVb on T(E,Vb) is to sample more
and more of the resonance while resonant peak height and
position vary slowly withVb .14

When the molecules interact with the Au~111! electrodes,
the molecular levels broaden into a continuum.16 The eigen-
states of the whole metal/monolayer/metal system consist of
scattering states,19,20 which are molecular-orbital-like in the
molecule, and Bloch-wave-like in the metal slabs. If an or-
bital is delocalized across the molecule, an electron that en-
ters the molecule at the energy of the orbital has a high
probability of reaching the other end, and thus there is a
corresponding peak in the transmission probabilityT(E,Vb),
as illustrated in Fig. 2~a!. By calculating the continuum
eigenstates at the resonance energies (EHOMO,ELUMO), the
orbitals that are responsible for current flow through the mol-
ecule can be analyzed. The HOMO resonances, illustrated in
Fig. 2~c!, resemble the HOMO of the isolated molecules
while the narrower LUMO resonances, illustrated in Fig.
2~d!, resemble the LUMO of the isolated molecules. There
are minor differences between the orbitals: the NH2 side
group participates in the HOMO resonance but not in the
LUMO resonance, while the NO2 group participates in the
LUMO resonance and not the HOMO resonance, consistent
with their respective donating/accepting characters. It is,
however, clear from both the shape of the transmission

curves in Fig. 2~a! and the orbitals in Figs. 2~c! and 2~d! that
the resonant transmission peaks in monolayersA, B, andC
are related to the delocalized nature of thep orbitals of the
bare TW’s and is not strongly affected by the functionaliza-
tion.

The energetics of the monolayers are, however, strongly
affected by the functionalization. The triple bond between
the phenyl rings is rotationally symmetric and thus consti-
tutes an easy axis about which the middle ring can rotate.
The differences in total energy as a function of the rotation
angle of the middle ring,u, for the molecules arranged in the
333 unit-cell of Au~111! are shown in Fig. 3~a!. The inter-
molecular interaction energy is strongly dependent on the
functionalization: there is a cost of 60 meV (180 meV) to
rotate the ring by 90° in monolayerA (B), and the flat mol-
ecule is clearly favored. MonolayerC shows a quite different
behavior, it acquires a local minimum atu560° and 120°.
Separate calculations show that if we double the distance
between the molecules these minima disappear, thus they
must be related to intermolecular interactions. Figure 3~b!
shows the effective potential within the monolayer, and it
reveals the formation of a hydrogen bond between the NO2
group and a hydrogen atom on the neighboring TW. Similar
hydrogen bond formation involving NO2 groups has also
been observed in other molecular layers.22 From Fig. 3~b! it
is also clear that the minima at 60° and 120° can be attrib-
uted to bond formation with a new neighboring molecule,
and these particular angles arise from the symmetry of the
monolayer.

There is a barrier for rotation of the middle ring fromu
50 to u560° of ;150 meV, while the barrier from 60° to
0° is ;65 meV. We postulate that, as a voltage pulse is
applied, these barriers may change, and a transition to a new

FIG. 1. ~Color online! Geometry of monolayers A–C connected
with two Au ~111! surfaces. Color codes: C~dark gray or green!, H
~white!, O ~black or red!, N ~black or blue!, S ~light gray or yellow!,
and Au ~light gray or gold!.

FIG. 2. ~Color online! ~a! Zero-bias transmissionT(E,Vb

50V) vs incident E for monolayersA, B, and C. HOMO and
LUMO resonances are indicated.~b! I -Vb characteristics for mono-
layersA, B, andC. ~c! Isosurface of transmission eigenchannel at
the HOMO resonance for monolayersA, B, and C (E520.84,
20.65, and20.85 eV, respectively! ~d! Isosurface of transmission
eigenchannel at the LUMO resonance for monolayersA, B, andC
(E51.56, 1.59, and 1.14 eV respectively!.
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molecular conformation with the middle ring twisted may be
induced. We have selected a candidate conformation, which
we designate monolayer C@60, formed by twisting the
middle ring of molecules in monolayerC by 60°, for pos-
sible stabilization under applied bias. The transmission spec-
tra for monolayer C@60 is shown in Fig. 4~a! and its I -Vb
characteristics in Fig. 4~d!. The conductanceG'0.12mS is
roughly 16 times smaller than monolayerC, and the current
at Vb52V is approximately five times smaller than inC. To
lowest order,G is proportional to the product of the matrix
elements betweenp orbitals on neighboring phenyl rings so
that a rotation of the middle ring will reduceG by a factor
;cos4(u)51

8, in rough agreement with the calculated values.
The transmission eigenstates for electrons traveling from left
to right at EHOMO520.85 eV andELUMO50.99 eV are il-
lustrated in Fig. 4~b!. The HOMO resonance is localized on
the phenyl ring nearest to the left electrode while the LUMO
state corresponds to an orbital of the middle ring, weakly
coupled to the first and last rings.

To investigate whether monolayer C@60 could be stabi-
lized with respect to monolayerC as the bias voltage is in-
creased, we show in Fig. 4~b! the Kohn-Sham total energy of

monolayersC and C@60. AtVb50, monolayerC is lower
in energy than monolayer C@60. However, when the bias is
increased above 2 V, monolayer C@60 becomes lower in
energy, leading to an expected conformational change. While
there are issues surrounding the evaluation of total energies
for such systems,17,23Fig. 4~b! serves to illustrate that differ-
ent conformations may be stabilized with respect to each
other by an external bias. In this case, the calculation sug-
gests a transformation of monolayerC to monolayer C@60
at around 2V. The exact value of the switching voltage will
depend on the coverage, detailed structure, and size of the
monolayer, as well as how the potential drops across the
molecules, which can be affected by electrode coupling.14

The local minima in Fig. 3~a! are stabilized by the NO2
side group, which correlates well with that the molecular
memory effect is only observed in monolayers with NO2 side
groups.4 We find an energy barrier for rotation within an
ideal (333) monolayer of 65–150 meV. This energy barrier
will depend on the distance between the molecules in the
monolayer, and we found that when doubling the distance
between the molecules the barrier disappears. Most likely,
the distance between the molecules in the nanopore experi-
ments is smaller than for our ideal system,24 and since the
energy barrier for the (333) monolayer is in rough agree-
ment with the 80 meV barrier height extracted from bit re-
tention times,4 conformational changes stabilized by inter-
molecular interactions is a good candidate for explaining
such phenomena.

Because the minima emerge from interactions within the
monolayers, the above effects may only be observed in nan-
opore experiments2–5 and not in experiments of single mol-
ecules. In the scanning tunneling microscopy experiments of
Weiss and co-workers7 on single or small bundles of mol-
ecules, the conductance switching may be related to different

FIG. 3. ~Color online! ~a! Energy vs rotation angle for mol-
eculesA, B, andC in Au~111! 333 unit-cell. The energy is calcu-
lated within the Perdew, Burke, and Ernzerhof approximation for
the exchange-correlation functional~Ref. 21!. ~b! Contour plot of
the effective potential between TW’s with NO2 side groups. Note
the bond formation between the O atom and the H atom on the
neighboring TW.

FIG. 4. ~Color online! ~a! Zero-bias transmissionT(E,Vb50)
for monolayer C@60.~b! Transmission eigenchannels correspond-
ing to HOMO and LUMO resonances of C@60.~c! Total energy of
monolayer a C~dark gray or blue! and monolayer C@60~light gray
or magenta! as a function of bias potential.~d! I -Vb characteristics
of monolayer C~dark gray or blue! and monolayer C@60~light
gray or magenta!.
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conformations formed by steric interactions between the
TW’s and the insulating alkyl molecules. This could explain
why the observed switching behavior was independent of the
functionalization of the molecules.

In conclusion, we find that functionalization of TW’s has
a stronger effect on the energetics of the monolayers than on
the orbitals responsible for current transport, and a better
understanding of the intermolecular interactions in such

monolayers could hopefully be exploited in order to design
molecular electronic devices with specific properties.
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