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Abstract 

The topic of this Ph.D. thesis is optical characterization of surface structures on a 

nanometer scale.  When studying a sample with subwavelength features, the 

diffraction limit sets a lower bound to the resolution achievable using far-field 

microscopy.  In this work the possiblity of circumventing the diffraction limit by 

employing a scanning near-field optical microscope (SNOM) to perform the 

characterization is investigated. 

Experimental SNOM images of the optical field distribution above a deep grating are 

analyzed with the purpose of identifying the grating topography.  The inverse 

scattering problem is treated using an inversion procedure based on an optimization 

routine.  The advantages and limitations of this method are examined. 

The core of this work deals with the relation between the free-space optical field 

distribution in the vicinity of a nano-object and the experimentally measured SNOM 

image.  Transfer functions (TFs) describing the coupling of the free-space field to the 

guided mode of the SNOM fiber are determined using numerical simulations.  The 

TFs of uncoated tapered SNOM fiber tip of varying opening angle are analyzed and 

information about the relation between the free-space optical field and the SNOM 

image is obtained.  The optical resolution of uncoated SNOM fiber tips is quantitized, 

and the effective plane of detection approximation, which is commonly used to 

interpret a SNOM image, is examined.  The experimental SNOM measurement from 

the topography characterization is simulated, where the field-image relation is taken 

into account using the computed TFs, and the influence of imperfections in the tip 

geometry on the correspondence between modeling and experiment is analyzed. 

The numerical simulations are performed using the eigenmode expansion technique, 

and its performance in computing the TFs for both uncoated and metal-coated fiber 

tips is examined. 

Finally, a short independent study of the possibility of calculating the local density of 

states in a micropillar is presented. 
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Resumé 

Emnet for denne Ph.D. afhandling er optisk karakterisering af overflade strukturer på 

nanometer skala.  Ved et studie af et objekt med sub-bølgelængde karakteristika 

sætter diffraktionsgrænsen en nedre grænse for den opløsning, der kan opnås med 

fjernfelts-mikroskopi.  I dette værk undersøges muligheden for at omgå 

diffraktionsgrænsen ved at benytte et skannende nærfelt optisk mikroskop (SNOM) til 

at gennemføre karakteriseringen. 

Eksperimentelle SNOM billeder af den optiske feltfordeling over et dybt gitter bliver 

analyserede med henblik på at identificere gitterets topografi.  Det inverse 

spredningsproblem bliver behandlet vha. en inversionsprocedure baseret på en 

optimeringsrutine.  Fordelene og ulemperne ved denne metode bliver belyst. 

Hovedparten af værket omhandler relationen mellem det optiske felt i frit rum i 

nærheden af et nano-objekt og det eksperimentelt målte SNOM billede.  

Overførselsfunktioner (OFer) beskrivende koblingen af fritrumsfeltet til den bundne 

mode i en SNOM fiber bliver bestemt vha. numerisk simulation.  OF’erne for 

ubelagte graduerede SNOM fibertippe med varierende åbningsvinkel analyseres og 

information omkring relationen mellem det optiske fritrumsfelt og SNOM billedet 

opnås.  Den optiske opløsning for ubelagte SNOM fibertippe bliver kvantiseret, og 

den effektive detektionsplan-approksimation som almindeligvis benyttes til at fortolke 

et SNOM billede bliver undersøgt.  Den eksperimentelle SNOM måling fra topografi 

karakteriseringen bliver simuleret, hvor relationen mellem felt og billede bliver taget i 

betragtning vha. de beregnede OF’ere, og indflydelsen af imperfektioner i tip 

geometrien på overensstemmelsen mellem modelering og eksperiment bliver 

analyseret. 

De numeriske simulationer bliver gennemført vha. eigenmode ekspansions-teknikken, 

og dens evne til at beregne OF’ere for både ubelagte og metalbelagte fibertippe bliver 

undersøgt. 

Til sidst bliver et kort uafhængigt studie af muligheden for at udregne lokal 

tilstandstæthed i en mikrosøjle præsenteret. 
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Preface 

This Ph.D. project has taken place in the framework of the Center for Micro-Optical 

Structures (CEMOST).  The CEMOST was a consortium formed by six Danish 

companies, three institutes from the Danish advanced technology group (GTS) and 

two universities, and the objective of CEMOST was to meet the increasing demand 

for techniques allowing the characterization of structures having characteristic length 

scales in the nanometer scale. 

The possibilities for performing optical characterization on a subwavelength scale 

were explored by the universities.  The experimental work were performed at Aalborg 

University, and I was hired as a Ph.D. student at the Department of Communications, 

Optics & Materials (COM) at the Technical University of Denmark to investigate the 

theoretical and numerical issues.   

As it is often the case in research, the project did not quite follow the original plan.  It 

was initially expected that the main effort would go into topography reconstruction, 

but during the project it became clear that, before high-quality topography 

reconstructions could be performed, another issue needed addressing:  The relation 

between the images obtained using near-field microscopy and the actual optical field 

distribution had to be investigated, and the understanding of this relation is of 

fundamental interest in near-field optics (NFO).  For this reason the core of the Ph.D. 

thesis is devoted to the image-field relation. 

Even though a close collaboration with the CEMOST partners, in particular Aalborg 

University, was maintained, the project was somewhat isolated from the core 

activities at COM.  At a late stage, however, a collaboration with COM collegues was 

formed with the objective of calculating local density of states (LDOS) in a 

micropillar.  This activity has nothing to do with optical characterization, but was 

initiated as we realized that the numerical modeling tools used in my Ph.D. work were 

capable of performing this type of computation.  For this reason, a short independent 

chapter is included about micropillars. 

Even though the project was somewhat isolated, I received help and support from 

numerous people.  I would like to express my gratitude to my supervisor Jørgen 

Garnæs for his support and for selecting me for the position.  I am grateful to my 

external supervisor Steen G. Hanson, who always claimed not to understand what I 
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was doing, but always came up with useful suggestions anyway.  And I would like to 

thank Jesper Mørk for taking over as my main supervisor in the end of the project. 

Also, I would like to acknowledge the theoreticians at COM, in particular Andrei 

Lavrienko, for many useful discussions about the modeling of the optical field. 

Special thanks go to the NFO people at Aalborg University:  I am grateful to Valentyn 

S. Volkov and Ilya P. Radko for a fruitful collaboration, and I would like to 

acknowledge the strong support from Sergey I. Bozhevolnyi:  With his expertise in 

NFO, Sergey helped me understand the challenges of near-field microscopy, and his 

many useful suggestions during the Ph.D. work are greatly appreciated. 

I would like to express my appreciation to Bjarne Tromborg, my main supervisor:  I 

have difficulty imagining that I could have had a more experienced, more inspiring or 

more professional main supervisor.  When I was stuck, Bjarne always came up with 

useful suggestions to overcome the problem, and if I was approaching a sidetrack, he 

kept my work on course.  Bjarne was never too busy to discus my Ph.D. work, and 

made himself available for discussions even after his retirement. 

Finally, I thank my sister and my friends for their support while I was writing this 

thesis.   
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1 Introduction 

During the past decades, nano-technology has received ever increasing attention.  

Even though the length scale involved in order for a physical system to classify as 

nano-technology is not well-defined, the tendency towards reducing the size of 

existing components is clear.  This is particularly true in the electronics industry, as 

example the demand for increasing computer power has lead to a downscaling of gate 

lengths in Pentium CPUs to well below 100 nm1.  The interest in nano-technology, 

however, is not only due to the need to reduce sizes:  Within the field of quantum 

information, the length scale of a system of qubits may be tens of nanometers or less 

in order to achieve the quantum effects of interest.  In the field of optics, efforts are 

made to move data processing from the electrical into the optical domain.  Examples 

of devices with this functionality are Silicon-On-Insulator based Photonic-Crystal 

components.  The length scale of a design may be on the order of 100 nm or more, 

however, fabrication tolerances of 10 nm or less are required to keep scattering losses 

at an acceptable level.  In nano-technology, the design of a device with new 

functionalities requires, as in all fields, the ability to perform a topography 

characterization to verify that the device adheres to production specifications.  There 

is thus an increasing demand for characterization of devices and structures with 

lengths on the sub-micron scale. 

The objective of this Ph.D. thesis is to develop methodology for characterization of 

surface structures on a nanometer scale using optical microscopy.  Today, no 

technology exists that allows optical imaging of geometric features of length scales 

shorter than approximately the wavelength of light.  Subwavelength information is 

available in the optical field scattered by the structure, but it is contained in the 

evanescent part of the field, which is localized to the immediate surroundings of the 

sample and cannot be detected using conventional microscopy.  Measurement of the 

optical field at nanometer distances from the surface, the so-called near field, has been 

possible since the invention of the scanning near-field optical microscope (SNOM) 

twenty years ago.  However, the near field does generally not directly reflect the 

sample topography, and inversion routines must be employed to extract topographical 

information from the optical field distribution.  Much research activity2-4 has gone 

into the subject of topography reconstruction in the microwave regime, and the 

subject has also been treated in near-field optics.  The topography reconstruction 
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techniques available today, however, are limited to geometries for which certain 

restrictive assumptions can be made, and a well-established method which can be 

used to identify a completely general structure from knowledge about the optical field 

does not yet exist.  In this Ph.D. thesis a recently suggested method allowing 

topography characterization of a completely general sample has ben tested.  To my 

knowledge, this is the first time near-field imaging has been used to identify the 

topography of structure, here a deep grating, that violates the assumptions of existing 

perturbative methods. 

Even though detection of an evanescent field today is possible and subwavelength 

optical resolution can be achieved, it remains unclear what the optical image obtained 

using the near-field microscope actually represents.  The image is related to the 

optical field distribution near the sample under study, but the exact nature of the 

relation is currently not well understood.  The theoretical framework necessary to 

describe this relation has been around for some time, but, to my knowledge, the 

calculation of the transfer function (TF) necessary to correctly relate a near-field 

image to the optical field distribution has not previously been performed.  In this 

work, a technique to numerically determine the TF is presented, and the method is 

used to compute TFs of uncoated fiber tips.  An in-depth analysis of the TFs is made 

revealing new information about the relation between the free-space optical field and 

the optical SNOM images. 

The final activity, unrelated to the main objective of the Ph.D. thesis, is the 

determination of the local density of states (LDOS) in a micropillar.  In quantum 

optics, the LDOS is an important quantity as it describes the coupling strength of 

atomic transitions to the electromagnetic field.  The numerical determination of the 

LDOS, however, is very numerically demanding.  It has been performed in photonic 

crystals, but I am not aware of any calculations in the literature of the LDOS in a 

micropillar.  In this thesis, it is described how the LDOS in a micropillar can be 

computed, and a preliminary calculation is presented. 

The numerical method used in this work is the eigenmode expansion technique (EET).  

The EET is well-known, but it is only in recent years, that it has been put to use to 

simulate the optical field in large geometries.  In this work, its performance in 

handling a geometry including a metal layer is evaluated, and, to my knowledge, it is 

the first time the technique is used to simulate the scattering of light on a high-loss 

material. 
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This Ph.D. thesis is organized as follows:  An introduction to near-field microscopy is 

given in chapter 2.  The basics of optical imaging are discussed, and it is explained 

how the diffraction limit sets a lower boundary to the optical resolution achievable 

using conventional microscopy.  It is shown that topographical information about the 

structure on a subwavelength scale is available in the near-field, and that this can be 

detected using the SNOM.  The main classes of SNOM configurations are presented 

and the challenges in optical characterization using near-field microscopy are 

summarized. 

The subject of chapter 3 is the numerical simulation of the scattering of light on 

microscopic objects.  An overview of the modeling techniques, which are most widely 

used in electromagnetics, is given, and the choice of the EET is explained.  The 

details of this method, including three different schemes for determining eigenmodes, 

are described in detail.   

In chapter 4, the topic of topography characterization using optical imaging is 

presented.  A method for identifying the topography of a diffraction grating from 

experimental SNOM measurements is described, and the technique is used to 

determine the sample geometry.  The strengths and weaknesses of the method are 

discussed. 

The relation between the free-space optical field and experimental image obtained 

with the SNOM is analyzed in chapter 5.  The theoretical framework necessary to 

describe this relation is presented, and the concept of transfer function (TF) is 

introduced.  The ability of the EET to compute TFs of uncoated fiber tips is 

demonstrated in a convergence study, and the challenges related to the handling of 

complex refractive index profiles are examined.  TFs of uncoated fiber tips are 

presented, and an in-depth analysis of the TFs is performed with particular focus on 

optical resolution and on the effective plane of detection approximation, which is 

widely used in the interpretation of SNOM images throughout the near-field 

community.  A simulation of the experimental SNOM measurements from chapter 4 

is made, and the influence of imperfections in the fiber tip geometry on the field-

image relation is analyzed. 

The possibility of calculating the local density of states (LDOS) in a micropillar is 

addressed in chapter 6.  The concept is defined, and the EET is used to determine the 

LDOS in a test structure. 

Finally, the work is summarized and conclusions are given in chapter 7. 
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2 Near-field microscopy 

Optical characterization is an easy, reliable, cheap and non-destructive way to obtain 

geometric information about an object under study.  Unfortunately, as the diffraction 

limit sets a fundamental lower boundary of approximately the wavelength of the 

illuminating light to the achievable resolution, we cannot visualise objects of length 

scales below ~ 1 µm using conventional far-field microscopy. 

Alternative techniques, such as atomic force microscopy (AFM) and scanning 

electron microscopy (SEM), exist that allow characterization of objects on a 

nanometer scale, but these do not feature all the advantages inherent of regular optical 

characterization.  It is therefore of interest to examine whether optical microscopy can 

be pushed into the sub-wavelength nanometer region without compromising the many 

advantages of regular optical characterization. 

2.1 The diffraction limit 

The most basic imaging system, illustrated in Fig. 2.1, consists of a light source, an 

object, a lens and an image.  The light source illuminates the object, and light is 

reflected in all directions from the object.   

 

 
Fig. 2.1:  Sketch of the basic imaging system. 

 

IMAGE OBJECT 
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The lens system refocuses the light resulting in a depiction of the object in the image 

plane.  The size of the image may be enlarged (or reduced) compared to the object, 

depending on the geometry of the lens system. 

For large objects, with length scales above ~ 1 mm, no sophisticated technology is 

needed; the human eye acts as the lens.  When structures become smaller, we turn to 

conventional optical microscopy, and with a few lenses objects of length scales down 

to ~ 1 µm can effectively be visualized. 

These imaging systems can be described entirely using geometrical optics.  Here the 

wavelength of light is set to zero, an approximation which is very good in optical 

systems, where all characteristic lengths are large compared to the wavelength.  The 

diffraction limit, however, sets in when the characteristic lengths are comparable to 

the wavelength, and thus it cannot be explained using geometrical optics.  Rather, an 

exact wave theory is necessary. 

The origin of the diffraction limit can be understood by examining the scattering of 

laser light of wavelength λ on the diffraction grating.  For simplicity we consider a 2D 

geometry with uniformity along the y axis and study the propagation of the light 

polarized along this axis in absence of free charges and currents.  In this case, the 

component Ey of the electrical field strength E is described by the Helmholtz equation 

valid in the frequency domain: 

 0),(),( 2
0

2 =+∇ zxEkzxE yry ε . (2.1) 

Here, λπω /2/0 ≡≡ ck , rε  is the dielectric constant, ω is the angular frequency, c is 

the speed of light, and the time dependence is given by )exp( tiω− .  The general free-

space solution to the Helmholtz equation is then of the form  

 )exp(),( zikxikCzxE zxy += ,  (2.2) 

where the coefficients of the wave vector k are related by 2
0

22 kkk zx =+ .  We can now 

identify two distinct classes of solutions depending on the value of kx:  When 0kkx < , 

kz is real-valued and the wave is propagating along the z axis.  On the other hand, 

when 0kkx > , kz takes an imaginary value, the z dependence is of the form 

)exp( zkz− , and the wave is decaying along the z axis.  These two classes of solutions 

belong to the propagating (or homogenous) regime and the evanescent (or 

inhomogeneous) regime, respectively. 
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Now, the diffraction condition describing the scattering of an incoming wave of k 

vector ki to an outgoing wave of k vector kd on a grating is given by 

 Pnkk ixdx /2,, π±= .  (2.3) 

In this equation n is the diffraction order, and P is the grating period.   

 

 
Fig. 2.2:  Illustration of the diffraction of light on a grating of period P.   

P is longer than the wavelength. 

 

The scattering of an incoming wave with normal incidence is sketched in Fig. 2.2 

when P is longer than the wavelength.  The x components of the diffracted wave 

vectors are given by Eq. (2.3), and since 0/2 kP <π  the orders -1 and 1 have 0kkx < .  

The diffracted waves of first order will thus be propagating along the z axis. 

 

 
Fig. 2.3:  Illustration of the diffraction of light on a grating of period P.   

Here, P is shorter than the wavelength. 
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In Fig. 2.3, the situation, when P is shorter than the wavelength, is illustrated.  This 

time 0/2 kP >π , the first order diffracted waves have 0kkx > , and these are thus 

evanescent along the z axis. 

The diffraction limit can now be understood by comparing the optical fields detected 

by an observer positioned far from the grating.  When λ>P , the diffracted waves are 

propagating, and they will be detected by the observer even though, he is positioned 

many wavelengths from the scatterer.  The waves carry the necessary information 

about the grating geometry for the observer to perform a characterization.  However, 

when λ<P , the diffracted waves are all evanescent, and they do not reach the 

remote observer.  The optical field close to the scatterer is perturbed, but the field 

detected by the observer is identical to that in absence of corrugation, and the observer 

thus cannot detect the sub-wavelength period grating. 

We conclude that information about the topography of the sub-wavelength period 

grating is available in the optical field, but it decays exponentially and can thus only 

be detected in close vicinity of the scatterer. 

2.2 Near-field optics 

The branch of physics that focuses on localized perturbations of the optical field, that 

can only be detected in close proximity of the object under study, is near-field optics 

(NFO).  The near field is the optical field in close proximity of the object.  In the near 

field, the evanescent waves have not yet decayed below the noise floor, whereas in the 

far field only propagating waves can be detected. 

Historically, the pursuit of subwavelength optical resolution or “super-resolution” was 

the driving force behind NFO becoming a major field in optics.  The first time, a 

principle of improving the resolution of an optical system beyond the diffraction limit 

was suggested, was by Synge5 in 1928.  His basic idea consists of discarding the 

traditional microscope objective and instead illuminating the sample under study with 

a spot of subwavelength diameter.  The setup is sketched in Fig. 2.4.  The spot is 

obtained by illuminating a thin metal film with an aperture in it using a strong light 

source.  The aperture couples the propagating waves of the illuminating light to both 

homogenous and inhomogeneous waves with the evanescent waves quickly decaying 

away from the aperture.   
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Fig. 2.4:  Original design to achieve super-resolution by Synge. 

 

However, if the sample is placed in close vicinity of the film, within the near-field 

generated by the hole, the sample scatters the evanescent components and coupled 

them into propagating waves, that can be observed in the far field.  The optical 

resolution of the setup then only depends on the aperture diameter, and, by decreasing 

the diameter below the wavelength, super-resolution is achieved. 

It should be emphasized that, the important physical mechanism allowing 

subwavelength optical resolution is the interaction of evanescent waves between a 

sample and a nano-probe of sub-wavelength size placed in close proximity of each 

other:  Super-resolution is only achieved, when a propagating wave is scattered on a 

first object and generates an evanescent field, which reaches the second object and 

then couples to a propagating field that can be detected in the far field.  A few years 

after his original publication, Synge, for practical reasons, actually proposed another 

scheme, where the spot in the aperture in the metal film was replaced by a far-field 

light source, but this setup would never have resulted in super-resolution as no 

scatterer is present in close proximity of the sample under study. 

Unfortunately, when Synge presented his ideas, the technology necessary to build the 

experimental setups was not available, and his work was until recently largely 

ignored. 

2.3 Scanning Near-Field Optical Microscopy 

The first near-field microscope built by Ash and Nicholls6 in 1972 operated in the 

microwave regime.  Realizations of super-resolution at optical frequencies, however, 
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were performed for the first time simultaneously and independently in 1984 by Pohl7 

et al. in Switzerland and by Lewis8 et al. in the United States.  Pohl described his 

setup as an “optical stethoscope”, but today the names scanning near-field optical 

microscope (SNOM) or near-field scanning optical microscope (NSOM) are generally 

used for optical microscopes capable of achieving subwavelength resolution. 

SNOM microscopes exist in varying configurations, but they all feature a nano-probe, 

which may act as an emitter, a collector or simply a scatterer, scanning in close 

proximity above the sample under study.  Two main classes of configurations are the 

apertureless SNOM and the transmission SNOM:  

2.3.1 Apertureless SNOM 

The operating principle of the apertureless SNOM9, or a-SNOM, is sketched in Fig. 

2.5(a).  As the focus of this Ph.D. thesis is topography characterization on a 

nanometer scale, the near-field in this figure and in the following is illustrated as 

being generated by illumination of a sample with sub-wavelength features. However, 

it should be stressed that in the a-SNOM and the collection-mode SNOM setups (see 

next paragraph) the near-field could equally well be e.g. the evanescent tail of a 

surface plasmon polariton10 or of the guided mode in a photonic crystal waveguide11. 

 

 
Fig. 2.5:  The a-SNOM is sketched in (a).  An experimental setup from  

King’s College, London is depicted in (b). 

 

As the name implies, the a-SNOM does not feature the small aperture of the original 

design by Synge, but rather a sharp metallic tip, usually a standard AFM tip, acting as 

the nano-probe.  The evanescent components of the near-field are scattered by the 

(b) (a) 
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metallic tip and are coupled to propagating waves, that can be detected in the far field.  

A photo of an experimental a-SNOM setup is shown in Fig. 2.5(b). 

An advantage of the a-SNOM setup is the possibility of using very sharp metal tips 

and thus potentially reaching a very high resolution.  However, when the detection 

takes place in the far field, the signal measured may contain a background field,12 

which is not related to the near field under study, even when separate external light 

sources are completely suppressed.  A possible source12 of this background field is 

e.g. the propagating waves generated by the scattering of illuminating light on the 

metal tip, which do not interact with the sample and thus contain no near field 

information. 

2.3.2 Transmission SNOM 

This class of microscopes9 features a tapered tip of an optical single-mode fiber acting 

as the nano-probe.  The transmission SNOM may be operating either in illumination-

mode or in collection-mode as sketched in Fig. 2.6. 

 

 
Fig. 2.6:  Illustrations of transmission SNOM microscopes in illumination-mode (a)  

and collection-mode (b). 

 

The illumination-mode SNOM setup was the first to appear7.  Here the fiber tip is 

used as a nano-source of radiation.  The tip is usually coated with a metal except at 

the very apex, where light can pass through a subwavelength sized hole, effectively 

reproducing the tiny illuminating spot from Synge’s original idea.  The propagating 

(a) (b) 
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guided mode of the fiber is scattered by the fiber tip and couples into evanescent 

waves.  These interact with the sample under study and are scattered into propagating 

waves, that can be detected in the far-field. 

The transmission SNOM in collection-mode works in a similar fashion, except the 

other way around.  The near field is generated by illumination of the sample from the 

far field.  The near field is scattered by the fiber tip, acting as a nano-collector, and is 

coupled to the guided fiber mode.  The signal transmitted by the fiber is then detected 

remotely.  The experimental collection SNOM setup used at Aalborg University, 

Denmark, to image the propagation of guided modes in photonic crystal waveguides 

is illustrated in Fig. 2.7.  Today, new heterodyne experimental setups also exist,13 that 

allow detection of not only the amplitude, but also the phase of the guided mode. 

 

 
Fig. 2.7:  The collection-mode SNOM at Aalborg University is sketched in (a) and depicted in (b).  

Sketch and photo by Valentyn S. Volkov. 

 

Although the illumination-mode setup has been popular for historic reasons, the 

operating principle of near-field imaging of the collection-mode SNOM is perhaps 

more straight-forward:  In illumination-mode, the detected signal consists of 

propagating waves generated by the scattering of the near field on the sample.  The 

relations between the near field, the sample properties and the output signal are all 

highly nontrivial, whereas in the collection-mode, the signal measured can be almosta 

directly related to the local optical field intensity at the position of the fiber tip. 

                                                 
a The relation between the SNOM image in collection-mode and the free-space optical field intensity 
distribution is actually more complex as will be explained in chapter 5. 
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An important sub-class of the transmission setups that deserves attention is the photon 

scanning tunnelling microscope (PSTM) or scanning tunnelling optical microscope 

(STOM).  The PSTM is similar to the collection-mode SNOM, except for the 

illuminating light being an evanescent field generated by illuminating a prism above 

the angle of total internal reflection.  In the standard collection-mode setup, the 

SNOM image is easily dominated by the propagating illuminating field in particular 

when studying weakly scattering structures, but in the PSTM, the illuminating field is 

evanescent and does not spoil the near field of interest.   

As the experimental SNOM images analyzed in this thesis are obtained from the 

collection SNOM at Aalborg University operating in the PSTM configuration, we will 

in the following focus on the properties of the collection SNOM.  

2.4 Subwavelength optical imaging 

Even though subwavelength components of the optical field can be detected using 

modern SNOM microscopy, several challenges remain to be overcome before optical 

imaging of structures with subwavelength resolution can be achieved. 

First of all, even in the straight-forward collection SNOM configuration, the metal-

coated fiber tip does not act as a lens in a geometrical optics sense.  The imaging 

system of Fig. 2.1 focuses the light emitted from the sample under study producing an 

image directly related to the original object.  But the collection SNOM simply detects 

the optical field distribution in a plane above the scatterer, a field distribution which, 

in general, does not directly reflect the topography of the object.  For this reason, it is 

necessary to distinguish between optical resolution, which describes how well the 

optical field in a detection plane can be resolved, and image resolution, that is a 

measure of the size of the details in the image topography.  In conventional far-field 

microscopy, there is no distinction between these two terms, but in NFO, the 

measured quantity is the optical field, which is only indirectly related to the object, 

and the optical and the image resolution become separated.  The relation between the 

measured optical field and the object topography is further described in chapter 4. 

Another issue is the influence of the nano-probe on the optical field.  The close 

proximity of the probe assures that evanescent components of the optical field are 

detected.  However, the highly conducting metal introduces a perturbation of the free-
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space field distribution that would exist in absence of probe, a perturbation that will 

appear in the SNOM image and cannot immediately be separated from the near-field 

of interest.  For this reason, the nano-probe in a-SNOM and collection SNOM cannot, 

in general, simply be considered a passive detector of the optical field, and when 

performing calculations on the optical field distribution in all configurations the nano-

probe and the scatterer must, in general, be treated as one global system. 

Finally, even if the interaction between the nano-probe and the sample is ignored, the 

relation between the measured signal and the free-space optical field at the position of 

the nano-collector is not trivial.  In collection SNOM, the SNOM image is clearly 

related to the optical field intensity in the vicinity of the fiber tip, but the exact nature 

of the relation is unclear.  We will address this issue in chapter 5. 
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3 Numerical modeling of the optical field 

When simulating the scattering of light in a geometry that is large compared to the 

wavelength, a description based on geometrical optics can be used.  In geometrical 

optics, light is essentially described as mechanical particles following straight paths in 

homogenous space and subject to reflection and refraction at surfaces.  Computations 

on such a system can be performed efficiently, and today, powerful ray tracing 

techniques allow high-quality simulations of light propagating from various sources 

and being scattered by numerous objects at a speed which can be admired by 

inspecting the latest 3D computer games. 

Unfortunately, the ray tracing algorithms cannot be used to model the scattering of 

light when the length scales are on the order of or below the wavelength of light.  In 

this case, the zero-wavelength approximation of geometrical optics breaks down, and 

a complete wave description becomes necessary.  In a wave description, light cannot 

be considered mechanical particles, and a full description of the vectorial nature of the 

electromagnetic field is necessary.  Even though high-quality ray tracing simulations 

in large geometries can be performed efficiently, the numerical modeling of the 

optical field in nano-scale geometries remains a challenge.  The reason can be 

understood by inspecting the wave equation describing the electric field in the 

frequency domain in absence of free charges and currents: 

 )()(
)(

1 2
0 rErE

r
k

r

=×∇×∇
ε

, (3.1) 

From a numerical point of view, all that is needed in geometrical optics to describe 

the propagation of a light particle are the coordinate sets of the scattering points in its 

path, whereas a wave description requires a complete solution to Eq. (3.1).  To solve 

this equation a discretization of the geometry on a subwavelength scale is usually 

necessary.  However, storing just one copy of the complex three-component electric 

field strength in a 10 x 10 x 10 µm geometry with a 25 nm discretization length 

requires 3 GB of RAM in Matlab, so even with the impressive computing power 

available in modern PCs, performing numerical simulations of the optical field on a 

nano-scale geometry remains a difficult task. 
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3.1 Modeling techniques 

Today, a single optimal numerical method for performing nano-scale optical field 

calculations has not yet been identified.  Rather, a number of techniques exists, each 

with their strengths and weaknesses.  The techniques which are most widely used 

today in NFO include the following: 

 

Finite-difference time-domain (FDTD) method14 

This technique is probably the most popular in electromagnetics.  The computational 

domain is discretized with a typical discretization length of 50 or 25 nm when 

performing calculations at optical frequencies.  The governing equations are simply 

finite-difference versions of Maxwell’s equations and the optical field is calculated in 

the time domain by determining the electric and magnetic fields at consecutive points 

in time.  The FDTD algorithm is straight-forward and easy to implement.  The initial 

condition is usually an excitation from a broadband pulse, and thus resonances and 

eigenmodes over a large bandwidth can be determined from a single computation 

using Fourier transformation.  The major disadvantage of the FDTD technique is the 

necessity to discretize the entire computational domain on a subwavelength scale, and 

this sets restrictions to the size of the geometry that the FDTD method can handle.  

Another weakness is the necessity to introduce artificial boundaries in order to keep 

the computational domain finite.  Advanced boundary conditions such as Perfectly 

Matched Layers (PMLs) have been developed to reduce the parasitic reflections from 

the boundary walls, but they are still not completely suppressed. 

 

Finite element method (FEM)15 

In this procedure, the computational domain is discretized into finite elements in a 

manner similar to that of the FDTD method.  The computation is performed in the 

frequency domain, and the eigenvalue problem of Eq. (3.1) is solved by discretizing 

the rotation operators.  The FEM is very generic and is implemented in powerful 

commercial software such as Femlab.  It suffers from similar weaknesses as the 

FDTD technique; a discretization of the entire computational domain is necessary and 

the domain must be finite, which again introduces parasitic reflections at the boundary 

walls.  
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Green’s function method16 

In this frequency domain method, Eq. (3.1) is transformed into an integral equation 

and a Green’s function or propagator function describing the propagation of the 

electric field is calculated.  Once the propagator for a specific refractive index profile 

is calculated, the scattering of any incoming field can be determined directly using the 

propagator.  A major advantage of this technique is that only the domain where the 

refractive index profile differs from a background profile, for which the Green’s 

function has already been determined, needs to be discretized.  The propagator for a 

small structure can thus quickly be determined from the analytical propagator 

describing free space.  And when the Green’s function for an advanced system has 

been determined, the propagator for a slightly perturbed system is easily determined, 

as only the perturbation region needs to be discretized.  Another advantage of this 

technique is that no artificial boundary is needed to limit the computational domain.  

In spite of these advantages, when performing a calculation from scratch, the 

necessity to discretize the entire structure remains, and this puts a limitation on the 

size of the structure that can be studied. 

 

Multiple Multipoles (MMP) technique17 

The MMP technique is a modal method.  The computational domain is divided into 

regions with constant refractive index and the fields in each region are expanded on 

basis functions that are the analytical free-space solutions of Eq. (3.1).  By writing the 

field as a sum of analytical solutions, only the boundaries between the adjacent 

domains need to be discretized.  The boundary conditions lead to a series of linear 

equations that are solved to obtain the optical field profile, and the expansion of the 

field on eigenfunctions of the wave equation usually results in rapid convergence.  

Many basis sets for the field expansion are possible, but multipole functions are 

generally found to be the most efficient.  A weakness of the MMP technique, 

however, is that the convergence speed depends on the set of multipole functions 

used, and prior knowledge about the field profile is thus necessary in order to choose 

the optimal basis set. 

 

The fiber tip structures studied in this Ph.D. project are large, and it was estimated 

that if the calculations were to be performed using the FDTD, the FEM or the Green’s 

function technique, the computations would be too slow due to the large discretization 
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domain.  The author therefore decided to investigate the Eigenmode Expansion 

Technique (EET), a modal method similar to the MMP method. 

3.2 Eigenmode Expansion Technique 

In this frequency domain technique, the geometry is divided into layers of uniform 

refractive index profile along a propagation axis, usually chosen as the z axis.  For 

each layer, eigenmodes are determined for the particular index profile assuming 

uniformity along the entire z axis.  As the name implies, the optical field in each layer 

is expanded on the corresponding eigenmodes, and the fields at each side of the 

interface between adjacent layers are connected using the scattering matrix formalism.  

The determination of eigenmodes, the expansion of the field on the eigenmodes and 

the scattering matrix formalism will be discussed in detail in the following. 

The difference between the discretizations used in techniques such as the FDTD 

method and the EET is illustrated in the following figure.  The majority of methods 

introduces a subwavelength discretization, illustrated in Fig. 3.1(a), of the 

computational domain leading to huge memory requirements.  However, in the EET 

the geometry is only divided into layers of uniform refractive index profile along the z 

axis as sketched in Fig. 3.1(b).   

 

 
Fig. 3.1:  A computational domain with subwavelength discretization is shown in (a). The 

corresponding EET layer division is illustrated in (b). 

 

In the EET, no subwavelength discretization is necessary,b and for each layer only the 

eigenmode profiles and a set of expansion coefficients need to be stored in memory.  
                                                 
b The determination of eigenmodes using the finite difference technique is an exception; here a 
discretization is made in the x-y plane.  

x 

z 

x 

z (a) (b) 
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When performing calculations on a structure featuring long sections that are uniform 

along one axis, the EET thus has a huge advantage compared to e.g. the FDTD 

technique, as considerably less memory is required to store the optical field.  

Furthermore, when describing the field in a particular layer, the basis set in the field 

expansion consists of eigenmodes that are already exactc solutions to the wave 

equation.  For this reason, it is expected that relatively few eigenmodes are needed to 

describe the optical field leading to an additional reduction in the memory 

requirement of the EET compared to other techniques.  The convergence in the 

computation of transfer functions (TFs) is described in detail in section 5.2.  However, 

a weakness of the EET is the necessity to expand the optical field on a finite set of 

eigenmodes.  This means that the geometry under study must be limited by artificial 

boundaries in the x-y plane, introducing the usual problem of parasitic reflections 

from the boundary walls of this plane.  No boundaries, however, are necessary to limit 

the geometry along the z axis. 

Procedures18,19 to determine eigenmodes in layers that are uniform along an axis and 

the mode matching technique20,21 used to connect the fields at the interfaces have been 

known for many years.  However, it is only recently that the EET has been used to 

perform calculations in large structures, where its advantages with respect to memory 

requirements and computation speed are clearly manifested:  The EET has been used 

by Bienstman22-24 to calculate the optical field in photonic crystal waveguides and in 

vertical-cavity surface-emitting lasers (VCSELs) in the presence of advanced 

boundary conditions such as PMLs to avoid parasitic reflections.  And the 

performance of single-mode bottom-emitting VCSELs was optimized using the EET 

in Ref. 25. 

All calculations of the optical field in this Ph.D. thesis are made using the EET.  To 

the author’s knowledge, the EET has not yet been implemented in any commercial 

software, and even though the code developed by Bienstman for his calculations is 

available26, this code is limited to structures with a single refractive index step in the 

radial direction.  For this reason, the EET calculations have been performed with 

home-made software, written in Matlab.  The details of the method and the 

                                                 
c The eigenmodes are virtually exact when they are determined using the semi-analytical method 
described in section 3.4.3.  If they are calculated using the finite difference or the plane-wave 
techniques described in sections 3.4.1 and 0, their precision depends on the number of points or plane 
waves used in the calculation. 
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considerations made during the development of the software are described in the 

following two sections. 

3.3 Eigenmodes 

The starting point of the EET calculation is the determination of eigenmodes that 

serve as a basis set for the expansion of the optical field.  To calculate these, the 

refractive index profile is sliced into layers having a uniform index profile along the z 

axis.  In Fig. 3.2(a), the index profile of a random glass sample is illustrated.  The 

sample itself can be separated into three layers, II to IV, uniform along the z axis.  

Also including the air layers I and V, the structure consists of five layers in total.  

Since layers I and V are both air layers, there are only four different index profiles. 

 

 
Fig. 3.2:  The division of the geometry into five layers is sketched in (a).  In (b), the x-z profile for 

zone II with uniformity along the z axis is illustrated. 

 

For each layer, we now consider the geometry with index profile in the x-y plane 

corresponding to the original geometry, but with uniformity along the z axis.  In the 

following, we refer to such a geometry as a zone.  In Fig. 3.2(b), the x-z profile of 

zone II corresponding to layer II in Fig. 3.2(a) is depicted.  Zones are infinite along 

the z axis and the zone profile of this example is identical to that of a glass waveguide, 

guiding light along the z axis. 

We now turn our attention to the 2D x-y profile of each zone.  The EET can, in 

principle, handle any index profile, such as the rectangular waveguide illustrated in 

Fig. 3.3(a). 

 

x 

z (a) (b) 

x 

z 
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Fig. 3.3:  A rectangular profile in the x-y plane is illustrated in (a).  A profile in the same plane 

featuring cylindrical symmetry is sketched in (b). 

 

Determining a single or a few precise eigenmodes in rectangular waveguides is not 

completely trivial due to the lack of analytic solutions and because of the divergences 

in the electric field that occur at the corners of the waveguide27, but it is certainly 

possible18.  However, the problem with eigenmode expansion in two-dimensional 

systems is that each dimension usually requires expansion on a minimum of 50 to 100 

modes in a computation to ensure convergence.  In two dimensions, somewhere 

between 2500 and 10000 modes are thus required, and the determination of so many 

eigenmodes is extremely numerically demanding.  For this reason, the structures 

studied in this work either feature uniformity along the y axis or rotational symmetry 

as in the waveguide illustrated in Fig. 3.3(b).  In these geometries, the effective 

number of dimensions of the eigenvalue problem is reduced to just one, and thus only 

a few hundred eigenmodes are needed in the computations. 

The boundary conditions used in the computation of the transfer functions are 

perfectly conducting metal walls.  The inclusion of advanced boundary conditions 

such as PMLs was estimated to be unnecessary as described further in section 5.2.1.  

In the topography reconstruction of the grating, periodic boundary conditions were 

employed.  

3.3.1 The eigenvalue problem 

Having defined zones that are uniform along one axis, we now inspect the wave 

equation from Eq. (3.1) for z-independent index profiles with the purpose of deriving 

the eigenvalue problem: 

(a) (b) 

x 

y 

ϕ 

r 
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0

2 =+⋅∇∇−∇ ⊥ rErrErE krε  (3.2) 

with time dependence given by )exp( tiω− .  ⊥r  refers to the coordinates (x, y) of the 

plane normal to the z axis, and the vector identity )(2 FFF ⋅∇∇+−∇=×∇×∇  has 

been used.  z independence invites a Fourier transformation and we thus write the 

electric field as )exp()()( ziβ⊥= rerE , where β is the propagation constant.  

Furthermore, from the divergence relation  

 ( ) 0=⋅∇ Erε  (3.3) 

we obtain the expression ( )))(ln( ⊥∇⋅−=⋅∇ rEE rε .  Insertion of the above 

expressions into Eq. (3.2) gives: 

 ( )( ) eerreue 22
0

2 )()(ln βεεβ =+∇⋅+∇+∇ ⊥⊥⊥⊥ ki rrz  (3.4) 

Here, uz is the unit vector along the z axis.  Eq. (3.4) is a second-order eigenvalue 

problem of the form 0ˆˆˆ 2
210 =++ eee λλ OOO  as we have a β on the left side.  Second-

order eigenvalue problems are much more demanding to solve numerically than 

standard eigenvalue problems.  Fortunately, the scalar equations for the in-plane 

components ⊥e  in Eq. (3.4) are not coupled to ze , and it thus suffices to solve the 

equation 

 ( ) ⊥⊥⊥⊥⊥⊥⊥⊥ =+∇⋅∇+∇ eerree 22
0

2 )()(ln βεε krr , (3.5) 

which is a standard eigenvalue problem of the form ⊥⊥ = ee λÔ .  Eq. (3.5) is the 

central equation.  By solving it, we obtain eigenmodes )(; ⊥⊥ re n  and eigenvalues that 

are the squares of the propagation constants βn.  These eigenmodes constitute the 

basis set upon which the optical field in the zone is expanded, and we can then 

describe an arbitrary optical field using 

 �� −+= ⊥⊥
−

⊥⊥
+

⊥
n

nnn
n

nnn ziazia )exp()()exp()()( ;; ββ rererE , (3.6) 

where the expansion coefficients +
na  and −

na  refer to the forward- and backward-

propagating parts of the field, respectively. 

Even though Eqs. (3.5) and (3.6) only involve the in-plane electric field components 

⊥e , the complete six-component electromagnetic field description is readily available:  

When an in-plane profile has been calculated, we can determine the z component 

using the identity 
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 ( ) )/( βε ie rz ⊥⊥ ⋅−∇= e , (3.7) 

derived from the divergence relation from Eq. (3.3).  Subsequently, the magnetic field 

strength )( ⊥rH  can be calculated from the Maxwell equation HE µω0i=×∇ . 

In Cartesian coordinates (x, y), the matrix form of Eq. (3.5) is: 
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From this equation we observe how the two field components are coupled by 

discontinuities in the dielectric constant.  In chapter 4, we study a grating with 

uniformity along the y axis illuminated with incident light normal to the y axis.  In this 

case the off-diagonal matrix elements vanish and the eigenvalue problem can be 

solved for each polarization separately.  The possibility of decoupling two field 

components is important as it effectively allows a doubling of the precision with 

which an eigenmode can be determined. 

In cylindrical coordinates we can write the electric field as a sum of contributions of 

different angular momenta: 

 � ⊥⊥ =
l

l ilr )exp()()( ; θere , (3.9) 

where l is the angular momentum.  In a rotationally symmetric structure, the various 

contributions are not coupled, and it is thus necessary to perform calculations for only 

one angular momentum at a time.  This effectively reduces the number of dimensions 

from 3 to 2, making exact 3D vectorial calculations feasible with only modest 

computing power.  The calculation of the transfer function is performed for the 

angular momentum l = 1 corresponding to the guided mode of a single-mode fiber, 

and the index of angular momentum is skipped for simplicity. 

When expressed in cylindrical coordinates (r, θ) the matrix form of Eq. (3.5) for a 

rotationally symmetric index profile becomes: 
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In this case, the er and eθ components are coupled and the equation must be solved for 

both components simultaneously.  The exception is when the angular momentum l is 

equal to zero. 

3.3.2 Eigenmode classes 

The eigenmode profile describes the mode in the x-y plane, however, its z dependence 

is governed by its propagation constant β alone.  It is therefore useful to classify 

different types of eigenmodes according their eigenvalues 2β . 

 

 
Fig. 3.4:  The distribution of the eigenvalues ββββ    2 in the complex plane is sketched. 

 

To do this, we consider the eigenvalues obtained in an arbitrary geometry, but with 

the restriction that the dielectric constant should be real-valued.  In Fig. 3.4, three 

classes of eigenvalues are illustrated.  When 2β  is real and 02 >β  or 02 <β , the 

propagation constant β is real or purely imaginary, respectively, and the mode is 

propagating or decaying along the z axis as described in section 2.1.  However, there 

exists a third class of modes:  Eigenmodes with complex eigenvalues can exist28 even 

in real-valued refractive index profiles.  These modes occur in complex conjugated 

pairs and they feature an oscillating decay along the z axis as their propagation 

constant is complex.  The existence of these complex modes do not pose a problem 

for the eigenmode expansion, but the determination of eigenmodes using the semi-

analytical approach is compromisedd by their existence. 

When studying optical waveguides in geometries without boundaries, one usually 

makes the distinction between guided and radiative modes.  Guided modes are a 

discrete set of modes confined to the waveguide, whereas radiative modes extend to 
                                                 
d The weakness of the semi-analytical approach in handling complex modes will be discussed in 
section 3.4.3. 

Re(β 2) 

Im(β 2) 

Propagating mode 

Evanescent mode 

Complex mode 
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infinity and form a continuous set.  In our geometries limited by artificial boundaries 

in the x-y plane, we can define semi-radiative modes as the discrete set of modes that 

extend to the entire geometry.  However, unlike the class of complex modes that pose 

a problem for the semi-analytical approachd, there is no practical reason in the EET 

for distinguishing between guided and semi-radiative modes. 

3.3.3 Orthogonality 

Even when considering the case where the dielectric constant is real-valued, the 

operator of the wave equation of Eq. (3.1) is not Hermitian.  However, by setting 

)()()( rErrG ⊥= rε  we obtain the slightly modified form of the same equation: 
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where the operator on the left side is Hermitian.  The basis set 

)exp()()()( zi nnrn βε ⊥⊥= rerrG  defined in 3D space is a solution to Eq. (3.11) and is 

thus orthogonal with respect to the inner product � ⋅= rGGGG dnmnm
* .  However, 

the orthogonality is assured by integrating in all three dimensions.  The eigenvalue 

problem of Eq. (3.5) is only two-dimensional and the inner product is given by 

� ⊥⋅= rffff dnmnm
* .  The operator is not Hermitian even when introducing the 

expression nrn erg )( ⊥= ε , and neither of the basis sets ne  or ng  are orthogonal. 

However, another orthogonality relation derived from the reciprocity theorem19 can be 

used.  In absence of free currents the reciprocity theorem states that, given two mode 

profiles ),( 11 HE  and ),( 22 HE , the relation 

 ( ) 01221 =⋅×−×
∂
∂
� ⊥ruHEHE d

z z  (3.12) 

holds true.  Our eigenmodes are of the form  
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and insertion into Eq. (3.12) gives: 

 ( ) ( ) 0122112 =⋅×−×+ ⊥� ruhehe dzββ . (3.15) 

We now consider the transverse mode profile ),( 11 HE  from before and the mode 

profile )','( 22 HE , which is the backward propagating version of ),( 22 HE  given by: 
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The components of the mode profile are identical to those in Eq. (3.14), except for the 

minus sign in the expression for the Ez and ⊥H  the components.  It appears since the 

sign of these components depends on the propagation constant as can be seen by 

inspecting Eq. (3.7) or the mode profiles given in appendix 8.1.  Insertion of ),( 11 HE  

and )','( 22 HE  into Eq. (3.12) results in: 

 ( ) ( ) 0122112 =⋅×+×− ⊥� ruhehe dzββ . (3.17) 

Now, if 21 ββ ≠  the integrals in Eqs. (3.15) and (3.17) must equal zero.  Taking their 

sum, we obtain the orthogonality relation: 

 ( ) 021 =⋅×� ⊥ruhe dz . (3.18) 

This orthogonality relation is used in the mode-matching taking place at the interfaces 

between adjacent layers, as described further in section 3.5.1.  The orthogonality 

relation is valid in arbitrary geometries, including those with complex index profiles. 

3.3.4 Completeness 

In order to represent any optical field using eigenmode expansion, the basis set must 

be complete.  For geometries featuring a real-valued refractive index profile and 

uniformity along the y axis, it has been proven29 that the eigenmodes obtained by 

solving Eq. (3.5) form a complete set.  It is unclear whether the completeness extends 

to general geometries with complex index profiles, but so far no evidence has 

indicated that it is not the case and the completeness of the eigenmodes is thus 

generally assumed in spite of the lack of formal proof. 



 27 

3.4 Determination of eigenmodes 

In this section, the methods used in this Ph.D. thesis to determine eigenmodes are 

described.  Two different optical field simulation tools have been programmed:  The 

first is for generic 3D structures described using Cartesian coordinates.  The 

computations in the topography reconstruction described in chapter 4 are performed 

using this solver.  The second is for 3D structures featuring rotational symmetry, 

where a description using cylindrical coordinates is advantageous.  The calculations 

of transfer functions of SNOM fiber tips described in chapter 5 are made using this 

code. 

For the generic 3D structures an eigenmode solver based on plane-wave expansion 

was used.  The Cartesian coordinate geometries studied in this work were glass 

gratings, which are simple structures that were handled efficiently using the plane 

wave code. 

However, when calculating the transfer function of various SNOM fiber tips, 

obtaining proper convergence was a challenge.  To determine which method would 

result in the best convergence, three different techniques for solving the eigenmode 

problem in cylindrical coordinates were investigated.  A code based on a finite-

difference approach to determining eigenmodes was made.  Furthermore, a code, 

where the eigenmode is expanded on the eigenmodes of the empty metal cylinder, 

was developed.  This can be considered a plane-wave expansion except for the basis 

set consisting of Bessel functions due to the cylindrical coordinate description rather 

than the trigonometric functions used when employing Cartesians coordinates.  

Finally, a code implementing a semi-analytical approach to determine mode profiles 

was programmed.  Here, the eigenmodes are given as analytic solutions to the wave 

equation and are thus virtually exact. 

Each method for determining eigenmodes has strength and weaknesses, and the 

method of choice will depend on the geometry under study. 

3.4.1 Finite-difference technique 

The finite-difference (FD) technique is probably the oldest and most well-known 

technique in computational electromagnetics and is certainly one of the simplest to 
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understand.  The technique can be implemented in both Cartesian and cylindrical 

coordinates, but in this work the technique was used only for cylindrical coordinates. 

  

 
Fig. 3.5:  In (a), a mode profile discretized in real space is depicted.  In (b), the finite difference 

scheme used to perform differentiation at the point rii is illustrated. 

 

A discretization grid (rii) is chosen in real space with separation distance ∆ between 

nearest neighbours, and the field is evaluated at the discretization points as illustrated 

in Fig. 3.5(a).  Numerically, the field components are represented by vectors as 
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The field is known only at these points and the regions between points are described 

using interpolation. 

The operator elements of Eq. (3.10) are then expressed in their finite-difference form 

and the eigenvalue problem is solved directly.  The multiplicative elements are 

represented by matrices, where all off-diagonal elements are zero.  The differential 

operator is expressed using the FD scheme illustrated in Fig. 3.5(b).  Differentiation 

Dii at a point rii is evaluated by taking the difference between the field values at the 

neighbouring points rii+1 and rii-1 and dividing it with their separation in space.  

Matrices representing the multiplicative operator εr(r) and the differential operator 

�/�r in the FD scheme for equidistant points are shown in the following figure: 

 

r 

Er 

r 

Er 

rii-1 rii rii+1 

(a) (b) 
∆ 
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(a)   (b) 
Fig. 3.6:  Operator matrices are sketched representing the multiplicative operator εεεεr(r) in (a) and 

the differential operator for equidistant points in (b). 

 

In this work, only piece-wise constant refractive index profiles along the radial axis 

were considered, but the generic form of the matrix representing εr(r) in Fig. 3.6(a) 

can handle an arbitrary index profile, e.g. one with gradients.   

The operator matrix for �2/�r2 is also required to express the operator of Eq. (3.11) 

and is obtained simply by squaring the matrix in Fig. 3.6(b).  One might imagine that 

particular modifications to the matrices representing differential operators would be 

necessary to assure the correct handling of the discontinuities of the Er component.  

However, this is not the case:  Except for a correction necessary when using non-

equidistant points, which is explained below, the matrices are used in their raw form 

and the discontinuity of the Er component appears automatically. 

An advantage of the finite difference scheme is that the elements of the operator 

matrix are zero except near the diagonal row.  The operator matrix can thus be 

represented as a sparse matrix in Matlab requiring much less memory than a full 

matrix.  Also, less calculation time is spent in the determination of eigenvectors of a 

sparse matrix than of a full one of same size.  And it should be noted that in the FD 

technique, the computation time necessary to calculate modes is independent of the 

refractive index profile of the geometry. 

When solving an eigenvalue problem involving N free variables, a maximum of N 

eigenvectors can be determined, and inversely, when requesting N eigenvectors, at 

least N free variables should included.  This means that, the more eigenmodes are 

included in a computation, the more discretization points are used to represent these 

modes, and the more accurate the mode profiles become.  However, we also have the 
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option of increasing the point resolution without changing the number N of 

eigenmodes by setting up the operator matrix corresponding to the increased 

resolution and then simply requesting only N eigenvectors from the eigenvalue 

problem solver routine.  In this work, the point resolution was increased with a factor 

of 2 in all FD calculations to improve the quality of the mode profiles. 

An example of an eigenmode profile determined using the FD technique is depicted in 

Fig. 3.7.  The refractive index geometry is a glass waveguide of 500 nm radius with 

refractive index of ~ 1.46.  The calculation is performed at the wavelength λ equal to 

633 nm, and the fundamental mode obtained using a fairly coarse discretization is 

shown. 

 

    
Fig. 3.7:  The refractive index profile (blue) together with the in-plane components (green) of a 

cylindrically symmetric mode profile obtained using the FD method are depicted. 

 

The mode is clearly confined to the waveguide, and we observe the discontinuity of 

the radial component at the glass-air interface.  As illustrated in the figure, equidistant 

discretization points are generally used.  However, it is convenient to include extra 

points at particular positions on the r axis: 

The finite difference technique has difficulty in describing the mode correctly near 

0=r , most likely due to the appearance of 1/r2 in the off-diagonal elements of the 

operator matrix in Eq. (3.10).  For this reason, additional points were added with a 

separation of 1/8 of the original discretization distance as illustrated in Fig. 3.8(a).   

  



 31 

    
(a)   (b) 

Fig. 3.8:  The inclusion of additional discretization points is illustrated near r = 0 (a)  
and at the glass-air interface (b). 

 

Furthermore, additional points were added at each interface between rings of different 

refractive index.  As illustrated in Fig. 3.8(b), the finite difference technique handles 

the discontinuity of the radial field component well.  The jump, however, of the Er 

component is distributed over four discretization points.  If only equidistant points 

were used at the interfaces, the center of the continuous four-point jump of the Er 

component could be at a distance of up to ∆/2 from the interface and the 

discontinuous nature of the jump would not be obvious.  We thus included additional 

points to assure that the field discontinuity occurs exactly at the interface and set the 

separation distance to 2 pm to make the jump sharp compared to the standard point 

separation distance ∆, which usually is ~ 10 nm.   

When expressing the differential operator for non-equidistant points, the FD matrix of 

Fig. 3.6(b) should be modified in order to correctly handle the discontinuities of the Er 

component at the interfaces:  Correction coefficients that take into account the 

different separation length to the neighbouring points must be included: 
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Fig. 3.9:  Illustration of the standard gradient (dashed line) and the corrected gradient using 

weighing coefficients (full line) for non-equidistant points. 

 

Referring to Fig. 3.9, the unmodified FD gradient Dii at the discretization point rii can 

be expressed as the average of the gradient between points rii-1 and rii and the gradient 

between points rii and rii+1: 
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We now introduce the correction coefficients )/( 11 ++ ∆+∆∆ iiiiii  and )/( 11 ++ ∆+∆∆ iiiiii , 

that take into account the unequal separation distances.  The modified finite difference 

Dii gradient becomes: 
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When ∆ii = ∆ii+1 = ∆, this reduces ( ) )2/()()( 11 ∆−= −+ iiriirii rErED .  The standard 

gradient obtained using Eq. (3.19) and the corrected gradient of Eq. (3.20) are 

illustrated in Fig. 3.9. 

3.4.2 Plane-wave expansion 

In the plane-wave (PW) expansion technique, an eigenmode n;⊥e is represented by a 

linear combination of basis modes: 

 )()(
1

;,; ⊥
=

⊥⊥⊥ �= rbre
N

j
jjnn c , (3.21) 

r 

Er 

∆ii ∆ii+1 

rii-1 rii  rii+1 
 



 33 

where the basis modes j;⊥b  is any complete set of modes.  For numerical reasons we 

are forced to consider a limited number N of basis modes. 

 

 
Fig. 3.10:  The rectangular (a) and rotationally symmetric (b) vacuum geometries, whose 

solutions are used as basis sets, are illustrated. 

 

As basis set, it is convenient to chose the solutions to the governing Eq. (3.5) for the 

vacuum geometries illustrated in Fig. 3.10.  When the dielectric constant is equal to 

unity, the equation becomes: 

 ⊥⊥⊥⊥ =+∇ bbb 22
0

2 βk . (3.22) 

The operator in Eq. (3.22) is Hermitian and the solutions are orthogonal plane waves, 

that can be described analytically.  In general, all six field components of a solution to 

the wave equation are non-zero.  However in the particular case of the vacuum 

geometry, the solutions can be classified as either transverse electric (TE) and 

transverse magnetic (TM).  The complete solutions in Cartesian and cylindrical 

coordinates to the vacuum geometries of Fig. 3.10, including the z component and the 

magnetic field, are given in appendix 8.1. 

When solving Eq. (3.5), the ⊥e  components of the solutions to the vacuum geometry 

listed in the tables of the appendix are used as a basis set.  When subsequently 

determining the z component and the magnetic field, the corresponding components 

from the tables are used as basis sets for the ez and h components.  Since the basis 

modes used to expand the various field components are chosen to satisfy the boundary 

conditions of the geometry, the boundary conditions are automatically respected by 

the eigenmodes as well. 

(a) (b) 
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Now, to calculate eigenmodes in geometries with non-uniform refractive index 

profile, we must represent the operator Ô  of the eigenvalue problem in Eq. (3.5) as a 

matrix.  To do this we use the inner product 

 � ⊥⊥⊥⊥⊥ ⋅= rbbbb dnmnm ;
*

;;; , (3.23) 

and the elements Om,n of the operator matrix are then given by: 

 nmnm OO ;;,
ˆ

⊥⊥= bb , (3.24) 

assuming that the basis modes are properly normalized such that mnnm δ=⊥⊥ ;; bb .  

The mnδ  is a Kronecker delta, since our geometry is limited in the ⊥r  plane.  We now 

split the operator Ô  of Eq. (3.5) into three operators as: 

 ( ) ⊥⊥ =++ ee 2
210

ˆˆˆ βOOO , (3.25) 

where 2
0

2
0

ˆ kO +∇= ⊥ , ( ) 2
01 1)(ˆ kO r −= ⊥rε  and ( ))(lnˆ

2 ⊥⊥⊥⊥ ∇⋅∇= ree rO ε .  The 

advantage of using basis modes, that are solutions to the vacuum geometry, now 

becomes apparent.  When evaluating the operator element 

nmnmnmnmnmnmnm OOOOOOO ,;2,;1,;0;2;;1;;0;,
ˆˆˆ ++≡++= ⊥⊥⊥⊥⊥⊥ bbbbbb ,  (3.26) 

the basis modes are eigenmodes of 0Ô .  The elements nmO ,;0  are thus given directly by  

( ) mnm kk δ2
0

2
, +⊥ , where 222

, mmm bak +=⊥  when using the basis modes in Cartesian 

coordinates described in appendix 8.1.1, and 22
, mm ak =⊥  when using those in 

cylindrical coordinates given in appendix 8.1.2.  This is particularly useful in 

cylindrical coordinates, where the evaluation of nasty integrals involving 1/r2 is 

completely avoided.  All that remains to be evaluated are then the elements nmO ,;1  and 

nmO ,;2 . 

In Cartesian coordinates, the calculation of the element nmO ,;1  for a piece-wise 

constant refractive index profile is straightforward.  The integrals to be evaluated are 

of the general form � dxxaxa nm )sin()sin( , the analytic primitive function of this 

integral is known, and the operator elements are thus quickly determined.   

When studying a piece-wise constant index profile in cylindrically symmetric 

coordinates, one runs into trouble when trying to evaluate the nmO ,;1  elements directly:  
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This involves determining the indefinite integral � ∂
∂

∂
∂

rdrraJ
r

raJ
r nlml )()( , where Jl 

is the Bessel function of the first kind of order l, and no analytic primitive function for 

this integral is known.  A useful trick, however, is to employ the transformations 

( ) 2// ifff r θ+≡+  and ( ) 2// ifff r θ−≡−  and the mode profiles in these “sum 

and difference” coordinates are given in appendix 8.1.2.  When using the transformed 

coordinates, the operator matrix 1O  representing the operator 1Ô  remains unchanged: 

[ ] [ ] �
�

�
�
�

�
�
�

�
�
�

�

−
−

=�
�

�
�
�

�
�
�

�
�
�

�

−
−

−

+
−+

n

n

r

r
mm

n

nr

r

r
mmr b

b

k

k
bb

b

b

k

k
bb

;

;

2
0

2
0*

;
*

;
;

;

2
0

2
0*

;
*
; )1(0

0)1(
)1(0

0)1(
ε

ε
ε

ε
θ

θ . 

However, using the expression on the right side simplifies the evaluation of the 

element nmO ,;1 , as this only involves an integral of the general form 

� rdrraJraJ nlml )()( , and an analytic primitive function to this integral does exist. 

The calculation of the element nmO ,;2  for piece-wise constant refractive index profiles 

in both coordinate sets is a bit tricky, as it involves the derivative of the dielectric 

constant, that may be discontinuous along a curve C.  The procedure is to write the 

element as: 

 ( ) ( )( )�� ⊥⊥⊥⊥⊥⊥⊥⊥ ∇⋅⋅∇−=∇⋅∇⋅= rbbrbb ddO rnmrnmnm εε lnln ,
*

;,
*

;,;2 . (3.27) 

The contribution from a discontinuity of εr is then given by the curve integral 

( )� ⋅∆⋅∇− ⊥⊥⊥
C

nrm dsbb ,
*

; lnε .   

Here, ∆ln εr is the discontinuity of ln εr, and ds is a line element perpendicular to the 

curve in the direction of increasing εr. 

So far, only the evaluation of operator matrix elements for piece-wise constant 

refractive index profiles is described.  However, in the final stages of the Ph.D. work, 

graded index profiles of the form baxxr +=)(ε  in Cartesian coordinates were 

considered.  The element nmO ,;1  is evaluated by calculating integrals of the general 

form � xdxxaxa nm )sin()sin( , which has an analytic primitive function that can be 

evaluated directly.  The integral in the determination of the element nmO ,;2  is of the 
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form � + dxcxxaxa nm )/()sin()sin( , and this integral also has a known antiderivative, 

however, the antiderivative includes the exponential integral function 

�
∞ −=
x

dt
t

t
x

)exp(
)int(exp , 

and unfortunately, the expint function in Matlab is evaluated only using an iterative 

formula, making the calculation of the 2O  matrix somewhat slow. 

The computation time of the eigenmode problem for a given number of basis modes is 

independent on the refractive index profile, however, the time necessary to calculate 

the operator matrix O  depends linearly on the number of regions of the index profile. 

As in the FD technique the quality of the mode profiles depends on the number N of 

eigenmodes used in a computation, and as previously we have the option of increasing 

the quality of the mode profiles without changing N by increasing the number of basis 

modes.  In this work, 2N basis modes were used in the representation of an 

eigenmode. 

 

    
Fig. 3.11:  The refractive index profile (blue) together with the in-plane components (green) of a 

cylindrically symmetric mode profile obtained using plane-wave expansion are depicted. 

 

The in-plane field components of the fundamental mode profile obtained by solving 

the eigenvalue problem for the rotationally symmetric geometry of Fig. 3.7 using the 

plane-wave expansion method are illustrated in Fig. 3.11. 

Comparing the profile of the radial component with that depicted in Fig. 3.7, we 

observe that the jump at the interface is less pronounced.  The difficulty in describing 
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discontinuities in the field components is a general weakness of the plane-wave 

expansion technique.  The problem is related to properties of Fourier transformation:  

The Fourier transform (FT) of a discontinuous function has very broad support and 

similarly, our discontinuous er component requires a large number of plane waves to 

be described correctly.  As the computer can only handle a limited number of basis 

modes, the fine details of the sharp jump are lost. 

3.4.3 The semi-analytical approach 

When using the semi-analytical (SA) method there is, unlike the techniques described 

in the previous two sections, no expansion of the field on any grid or basis set, and no 

eigenvalue problem is solved in this technique.  Rather, the field profiles are described 

by exact analytical solutions to the wave equation.  A mode-matching is performed at 

the interfaces between rings of different dielectric constant, and this leads to a 

numerical problem of determining propagation constants of the modes.  It has been 

shown that analytic solutions do not exist in rectangular waveguides, and for this 

reason the technique can only be used for rectangular geometries uniform along one 

axis or for the rotationally symmetric geometries described in the following. 

As explained in detail in appendix 8.1.2, analytic solutions to the wave equation in a 

region of constant refractive index are available.  Separating the angular and the radial 

dependence, the solutions are written as  

 �
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and the modes are either TE or TM.  Their radial profile is given by Bessel functions 

and depend on the sign of 22 β−k , where 2
0

2 kk rε= .  We now introduce the notation 

),( hef =  for the complete optical field profile.  When 0222 >≡− hk β , the solutions 

fJ;TE, fJ;TM, fY;TE and fY;TM are allowed, and these solutions represent standing 

oscillating waves.  When 0222 <−≡− qk β , the solutions fI;TE, fI;TM, fK;TE and fK;TM 

are valid, and these modes are exponentially increasing or decaying.  The radial 

dependence of z components of these functions is given explicitly in the following 

table: 
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Field component fJ;TE fJ;TM fY;TE fY;TM 

ez 0 Jl(hr) 0 Yl(hr) 

hz  Jl(hr) 0 Yl(hr) 0 

 fI;TE fI;TM fK;TE fK;TM 

ez 0 Il(qr) 0 Kl(qr) 

hz Il(qr) 0 Kl(qr) 0 

Table 3.1:  The radial dependence of the z components of the eight possible solutions  
in a region of constant εεεεr. 

 

The solutions only depend on the quantities h and q which are given by k0, the 

dielectric constant εr  and the propagation constant β.  The complete six component 

mode profile for TE and TM modes for the fJ functions are given in appendix 8.1.2.   

We now consider the rotationally symmetric refractive index profile sketched in the 

following figure: 

 

 
Fig. 3.12:  Illustration of a geometry consisting of two rings I and II. 

 

The geometry consists of two regions I and II, each featuring constant dielectric 

constants εr;I and εr;II.  We introduce 2
0;

2 kk IrI ε≡ , 2
0;

2 kk IIrII ε≡  and 2
0

2 / keff βε ≡  and 

look for mode confined to the region I, which means that its propagation constant 

should be such that IIreffIr ;; εεε >> .  In region I we then have 0222 >≡− II hk β , and 

the mode profile fI valid for ar ≤  is given by the linear combination: 

 TMYITEYITMJITEJII cccc ;4,;3,;2,;1, fffff +++= . (3.29) 

In region II, 0222 <−≡− IIII qk β  and the mode profile fII valid when ar ≥  is given by: 

 TMKIITEKIITMIIITEIIIII cccc ;4,;3,;2,;1, fffff +++= . (3.30) 

I 
εr 

Lr r a 

II 
εr;I 

εr;II 

εeff 
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We now require that the mode profile respects the boundary conditions at 0=r , 

ar =  and rLr = .  As the Bessel function Yl(r) diverges when 0→r , this sets the 

requirement 04,3, == II cc .  At ar = , we require that the tangential components of 

electric and magnetic fields are continuous, that is )()( ;; aeae III θθ = , )()( ;; aeae IIzIz = , 

)()( ;; ahah III θθ =  and, )()( ;; ahah IIzIz = .  And finally, at rLr =  the conditions are 

0)()( ;; == rIIzrII LeLeθ .  The boundary conditions can be described by the matrix 

relation 0=cB , where [ ]4,3,2,1,2,1, ;;;;; IIIIIIIIII ccccccc =  and 
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The boundary conditions can thus be expressed as a set of linear equations.  The 

elements of B  depend on the quantities hI and qII, which in turn are given by the 

propagation constant β.  The remaining quantities are all fixed. 

The linear system 0=cB  allows a non-trivial solution c  when 0det =B .  We thus 

consider the function )(det βB  and search for the zero points of this function.  For 

each zero point a solution c  exists with a corresponding propagation constant β, that 

describes an optical mode through Eqs. (3.29) and (3.30). 

An example of a mode profile obtained using the semi-analytical approach is given in 

Fig. 3.13 below.  The geometry is identical to that depicted in Fig. 3.7 and Fig. 3.11.  

Inspecting the figure, we observe the perfect shape of the mode profile.  Unlike the 

solution obtained using the FD technique, the mode here is known in an arbitrary 

point in space, and unlike the mode profile given by PW technique, the discontinuity 

of the radial component is described exactly. 
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Fig. 3.13:  The refractive index profile (blue) together with the in-plane components (green) of a 

cylindrically symmetric mode profile obtained using the SA approach are depicted. 

 

Also, as the field above is described using only six variables (plus the propagation 

constant), very little memory is necessary to store a mode profile obtained using the 

SA approach. 

In the example, we have considered a two-region refractive index geometry, and we 

have looked for a mode confined to region I.  The procedure described above, 

however, is directly extended to handle an arbitrary piece-wise constant refractive 

index profile with an arbitrary number of regions, and any mode, localized or not, can 

be described.  From a numerical point of view, every new region adds four extra 

coefficients to the vector c , and the size of the matrix B  increases correspondingly.  

It is thus more computationally demanding to evaluate )(det βB  in an advanced 

geometry with many regions compared to a simple two-region geometry. 

Even though modes are completely determined once the zero points of the function 

)(det βB  are known, the challenge of finding the zero points remains.  The problem is 

that of determining zero points of an, in principle, completely unknown function.   

In a lossless geometry with real-valued index profile, we usually expect the squares of 

the propagation constants 2β  to lie on the real axis as it is the case for the propagating 

and evanescent modes depicted in Fig. 3.4.  A cut-off 2
0max; krε  exists where max;rε  is 

the maximum value of the dielectric constant of the geometry.  The zero-points 2β  

will lie on the real half-axis given by 2
0max;

2 krεβ ≤  and searching this half-axis for 
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zero-points can be done using a standard search routine.  The oscillations of the 

function )(det βB  around 0 with corresponding zero-points are illustrated in Fig. 

3.14(a).  As modes are determined simply by following the real axis, the computation 

time for finding the zero points increases only linearly with the number of modes. 

 

    
(a)   (b) 

Fig. 3.14:  In (a), the oscillations of the function det(B) are depicted (blue) with marked zero-
points (green).  The path of a zero-point in complex space when the imaginary part of the 

refractive index profile is increased is illustrated in (b). 

 

In a geometry with loss, the squares of the propagation constants 2β  of the solutions 

no longer lie on the real axis, but are found in the complex plane.  )(det βB  is an 

analytic function, and zero points in the complex plane of an analytic function can be 

determined using a technique based on contour integration30.  However, when a large 

number of zero-points has to be determined, this technique becomes very 

cumbersome.  For this reason, the perturbative technique suggested in Ref. 23 has 

been used in this Ph.D. work instead:  The method consists of initially determining the 

zero-points of the geometry, where the imaginary part of the refractive index profile 

has been set to zero, and this can be done using the technique determined above.  We 

then increase the imaginary part of the index profile and calculate the value of the 

function )(det βB  in the vicinity of our original zero-points.  If the imaginary part is 

increased gently, the zero-points only move a little and we can follow the zero-points 

as they move around in the complex plane.  The path of a zero-point as the imaginary 

part of a complex refractive index profile is increased is illustrated in Fig. 3.14(b).  
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The computation time necessary for determining complex propagation constants 

depends directly on the magnitude of the imaginary part of the index profile.  When 

considering weak losses in dielectric materials, the imaginary part is small and the 

computation is fairly fast.  However, when introducing metals with large imaginary 

parts into the geometry, the path of the zero-points becomes correspondingly longer 

and the computation time increases. 

In the technique presented above to determine propagation constants, two assumptions 

are made:  In the case of a real-valued index profile, all 2β  zero-points should lie on 

the real axis.  And in the case of a complex index profile, when the imaginary part of 

the refractive index is increased, no new zero-points, unrelated to the original points 

determined on the real axis, should appear.  Unfortunately, at least the first 

assumption does not generally hold:  As explained in Section 3.3.2, a complex mode 

having its 2β  in the complex plane can exist even in the case of a real-valued 

geometry.  These modes, which are necessary to form the complete basis set, will not 

be found by the search routine outlined above.   

 

  
(a) (b) 

Fig. 3.15:  The refractive index profile (a) and a contour plot of ln(|det(B)|) with  
seven zero-points (b) are shown. 

 

In Fig. 3.15, an example of the occurrence of complex modes is illustrated.  We 

consider modes of the real-valued index profile depicted in Fig. 3.15(a) for the 

wavelength λ = 950 nm and the angular momentum l equal to 8.  The function 

)(det βB  is mapped in the complex plane in Fig. 3.15(b).  We observe a pair of zero-
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points at i1.25.732 ±−≈β , corresponding to complex modes.  The occurrence of 

complex modes is described as “rare” in Ref. 24, however, in this work they were 

systematically observed in waveguide geometries when the index of the waveguide 

and/or the angular momentum are increased. 

3.5 Scattering matrix formalism 

In the previous sections, we have determined eigenmodes in geometries featuring 

uniformity along the z axis.  We will now describe the mode-matching procedure 

applied in geometries consisting of two or more layers of different refractive index 

profiles.  Two different procedures, the transfer matrix formalism and the scattering 

matrix formalism, exist, which can handle the mode-matching.  The transfer matrix 

formalism has an advantage when handling stacks of layers with periodicity, but 

unfortunately it also suffers from numerical instability22,24.  For this reason the 

scattering matrix formalism was employed in this work. 

3.5.1 Reflection and transmission at an interface 

Let us consider the two-layer geometry illustrated in Fig. 3.16(a). 

 

 
Fig. 3.16:  A two-layer geometry (a) and the reflection and transmission of light  

at the zone interface (b) are illustrated. 

 

In the two layers, the field is expanded on the eigenmodes of the corresponding zone 

as in Eq. (3.6).  We now consider the situation, in which an incoming mode of index 

m is propagating forward in layer I, sketched in Fig. 3.16(a).  It reaches the layer 
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interface and is partly reflected giving rise to a backward-propagating field in layer I.  

The incoming mode, however, is also partly transmitted, and this results in a forward 

propagating field in layer II.  We then write the electric field in the two zones as 

follows: 

 � −−
⊥⊥

−−
⊥⊥

+
⊥ +=

n

zzi
nInI

zzi
mImII

IIInIIIImI eaea )(
;;;

)(
;;;;

,;,; )()(')( ββ rererE  (3.31) 

 � −
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+
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n
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nIInIIII

IIInIIea )(
;;;;

,;)()( βrerE , (3.32) 

where the expansion coefficients are defined relative to the position IIIzz ,=  of the 

interface for convenience.  The electric field is then given by )()( ; rErE ⊥⊥ = I  when 

IIIzz ,≤  and )()( ; rErE ⊥⊥ = II  when IIIzz ,≥ .  We have fixed ';
+

mIa , however, the 

coefficients −
nIa ;  and +

nIIa ;  are yet unknown.  We now introduce the reflection and 

transmission matrices IIIR ,  and IIIT ;  defined by ';;,;
+− = mInmIIInI aRa  and 

';;,;
++ = mInmIIInII aTa .  The coefficients of the matrices IIIR ,  and IIIT ;  are obtained by 

requiring that the boundary conditions are fulfilled at the interface between layers I 

and II, meaning that the tangential components of the electric and magnetic field 

should be continuous.  Referring to appendix 8.2 for the details of the derivation, the 

defining expressions are given by: 

1

, 2
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 += III

T

IIIIIIT hehe  IIIIII

T

IIIIII TR ,, 2
1

�
	



�
�


 −= hehe , 

where the inner product used above is ( )� ⊥⋅×= ruhehe dznmnm . 

When the reflection and transmission matrices are known, the coefficients −
nIa ;  and 

+
nIIa ;  can be determined, and the field is well-defined by Eqs. (3.31) and (3.32).  In 

Fig. 3.16, the structure is illuminated from below.  However, we could equally well 

illuminate the geometry from above, and in this case we would use the matrices IIIR ,  

and IIIT ,  to describe the field. 
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3.5.2 Scattering matrices 

We can describe a two-layer geometry using the reflection and transmission matrices 

introduced above.  Now, let us consider the three-layer geometry illustrated in Fig. 

3.17(a). 

 

 
Fig. 3.17:  A three-layer geometry is depicted in (a).  The reflection and transmission of light at 

the two interfaces are illustrated in (b). 

 

As previously, we illuminate the structure from below with light described by the 

eigenmode m.  The field is given by: 
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For the layer II we define coefficients '±
IIa  by ++ = mImIImII aPa ;,; '  and −− = mIImIImII aPa ;,; ' , 

where )exp(, IImmII LiP β=  and IIIIIIIIII zzL ,, −= .  The coefficients ±a  can be thought 

of as “having their back against the interface”, where the coefficients '±a  are “facing 

the interface”. 

Referring to Fig. 3.17(b), we now consider the reflection of light by the three-layer 

geometry.  The light of mode m travels forward in layer I.  At the interface it is partly 
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reflected back into layer I with reflection described by the matrix IIIR , .  However, 

part of the light is also transmitted into layer II.  It propagates towards the interface 

between zone II and II and is partly reflected.  It then travels backwards towards the 

first interface and is partly transmitted at the interface into layer I.  This journey can 

be described by the matrix IIIIIIIIIIIIIII TPRPT ,,, , where IIP  is the propagation matrix; a 

diagonal matrix consisting of the elements mIIP , .  This journey consisting of one 

round-trip inside layer II adds an additional reflection to that described by IIIR , .  

There is, however, also contributions from light making two, three etc. round-trips in 

layer II.  The sum of these contributions is given by the scattering reflection matrix 

IIIISR ,  describing reflection at the interface between layer I and II with multiple 

reflections inside layer II included: 

 ( ) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TPRPRPRPTRSR ,
1

,,,,,, 1 −−+= , (3.36) 

where the double bars have been skipped for simplicity.  The details of this derivation 

are found in appendix 8.3.  In a similar manner, one can derive the scattering 

transmission matrix IIIIST , , which describes transmission of light from layer I to layer 

III, again considering the multiple reflections in layer II.  The relations 

';;,;
+− = mInmIIIInI aSRa   and ';;,;

++ = mInmIIIInIII aSTa  hold, and the fields in layer I and III are 

thus well-determined.  The expansion coefficients in layer II are also readily 

determined using expressions given in the appendix. 

When scattering reflection and transmission matrices can be determined in a three-

layer structure, we can determine the field in a structure of a given number of layers 

recursively.  The recursive procedure can be understood by inspecting the four-layer 

geometry of Fig. 3.18.  We first calculate the scattering matrices IIIISR , , IIIIST , , 

IIIISR ,  and IIIIST ,  using the procedure outlined above.  We can then treat the four-

layer structure as a three-layer geometry, where reflection and transmission between 

layer I and III are described using the scattering matrices listed above. 
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Fig. 3.18:  A four-layer geometry is depicted in (a).  The reflection and transmission  

of light are illustrated in (b). 

  

The scattering reflection matrix IVISR ,  is then given by an expression similar to Eq. 

(3.36) where the matrices IIIR , , IIIT ,  etc. are simply replaced by IIIISR , , IIIIST ,  etc.  

The complete expressions for all scatterings matrices are given in appendix 8.3. 

Using the scattering matrix formalism, we can illuminate the structure from below or 

from above (or both simultaneously), and from these boundary conditions we can then 

completely determine the optical field in the entire structure. 

3.6 Discussion 

The heart of the EET is the computation of eigenmodes.  Using the semi-analytical 

approach, exact mode profiles and propagation constants are obtained and the high 

quality of the eigenmodes leads to fast convergencee when the number of included 

modes is increased.  The procedure to determine propagation constants in the semi-

analytical approach is not perfect, however.  Propagation constants appear in the 

complex plane even when real-valued refractive index profiles are considered, and a 

fast and reliable method of identifying these is currently lacking. 

The finite-difference and the plane-wave expansion techniques systematically find 

propagation constants, but they do so at the expense of the quality of the eigenmodes 

                                                 
e The convergence of the EET is further addressed in section 5.2. 
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and with increased computation time.  A future challenge for EET-users is thus the 

development of an efficient method of identifying propagation constants in the 

complex plane.  When this is accomplished, the EET will represent an extremely 

attractive candidate in the simulation of light scattering on 2D or 3D cylindrically 

symmetric microscopic structures. 
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4 Topography characterization using near-field 
imaging 

When studying a microscopic object using conventional far-field optical microscopy, 

the achievable resolution is limited to approximately half of the wavelength.  We saw 

in chapter 1 that subwavelength information is also present in the field scattered by an 

object, but it is contained in the evanescent part of the field and does not reach a 

remote observer.  The SNOM, however, allows access to the near field scattered by 

the object and thereby acquirement of information about its evanescent components 

before these decay beyond the noise floor.  With this information, spatial resolutions 

beyond the diffraction limit can be achieved, and SNOM thus offers a non-destructive 

way of characterizing microscopic structures with subwavelength features. 

Even though detection of evanescent field components is now possible, a connection 

between the detected field and the geometry of a sample studied is far from trivial.  

Well-established techniques exist to model the field produced by scattering on a small 

object, but determination of the topography from the field measured, the inverse 

scattering problem (ISP), remains a challenge.  In initial papers31,32, a surface profile 

reconstruction method based on the Rayleigh hypothesis was demonstrated.  Inversion 

schemes for 3D structures under the validity of the Born approximation have also 

been proposed33,34, but a general inversion procedure for arbitrary structures has not 

yet been identified. 

Recently, a method based on an optimization procedure35 was suggested and 

numerically tested.  In this chapter, we employ this procedure to characterize 

topography of a deep grating from SNOM images.  Such a structure cannot be 

described using the Rayleigh hypothesis or the Born approximation and is therefore 

interesting for examination of the advantages and limitations of the procedure 

developed. 

4.1 Experimental SNOM measurements 

The sample used in this work is a transmission diffraction grating of fused silica glass, 

that has been fabricated by Ibsen Photonics.  The grating is linear and uniform with a 

constant period of 1013.6 nm.  The grating fabrication involved holographic exposure 
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of a photoresist layer deposited on the top surface of a glass substrate.  Hereafter the 

grating pattern was etched by reactive ion etching (RIE) into the surface to a depth of 

approximately 2.0 µm.   

 

 
Fig. 4.1:  A SEM image of the grating profile is shown. 

 

The sidewall profile, illustrated in Fig. 4.1, was intended to be nearly vertical.  After 

the RIE, the residual photoresist was removed, and the grating was cleaned in acid 

solutions.   

The experimental setup consists of a collection SNOM with an uncoated fiber tip and 

an arrangement for sample illumination under the condition of total internal reflection.  

The setup, which is rather similar to the setup used in experiments reported in Ref. 36, 

is operating as a PSTM.  In Fig. 4.2, the setup is shown schematically.  A fiber tip of a 

stand-alone SNOM37 was scanned close to the illuminated grating, collecting a tiny 

part of diffracted optical field.  The light source was a HeNe laser with wavelength � 

� 633 nm and power output of ~ 5 mW and the illumination beam was s-polarized 

with electric field vector directed along the y axis.  The beam was weakly focused 

with focal length of ~ 500 mm and spot size of ~ 300 µm.  The grating was attached 

with immersion oil to the base of a glass prism.  The light intensity was modulated by 

an optical chopper with modulation frequency ~ 350 Hz in order to enable its 

synchronous detection.  The intensity distribution near the grating surface was probed 

with an uncoated sharpened tip of a single-mode optical fiber fabricated by chemical 

etching in 40 % hydrofluoric acid.38   
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Fig. 4.2:  The main part of the experimental SNOM setup. 

 

The resulting fiber tip has a cone-angle of ~ 24° and curvature radius of less than 80 

nm.  The other end of the fiber is optically coupled to a photo-detector, whose signal 

at the modulation frequency is synchronously detected by using a lock-in amplifier.  

The fiber tip was scanned over the sample surface in constant height mode by using 

the shear-force feedback.39  The experimental measurements were performed by 

Valentyn S. Volkov at Aalborg University. 

Now, the angle of beam incidence αi � 44.5° was slightly above the angle of total 

internal reflection, but the grating diffracted and transmitted light up to the third order.  

Even though the SNOM was operating in the PSTM configuration, both propagating 

and evanescent wave components were thus present above the grating.   

 

 
Fig. 4.3:  Near-field optical images for tip-surface distances of 100 nm (a), 500 nm (b) and 900 nm 

(c) are shown.  The scanning area is 3.9 x 3.9 µµµµm2. 
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SNOM optical images were obtained by scanning in the x-y plane at different constant 

heights above the top surface varying from 100 nm to 900 nm in steps of 100 nm, and 

three such scans are illustrated in Fig. 4.3.  Even though the grating is uniform along 

the y axis, slight variations in the signal along this axis were observed in the SNOM 

images.  As transpires from the following section, we are interested in the resulting x-

z intensity profile, which was constructed by averaging along the y axis and using 

interpolation.  The aforementioned signal variations along the y axis were included in 

the uncertainty of this profile. 

 

 
Fig. 4.4:  The effective plane of detection is situated a distance h above the apex plane. 

 

When the topography identification was performed in the beginning of the Ph.D. 

work, the transfer function calculations described in the following chapter had not yet 

been performed, and the exact relation between the near-field and the optical image 

was unclear.  For this reason it was assumed that the detected signal determined by 

the power carried by the guided mode of the single-mode fiber is proportional to the 

near-field intensity in an effective plane of detection (EPD) located at the height h 

relative to the tip apex as illustrated in Fig. 4.4.  When using s polarization, there is 

only one electric field component along the y axis, and it was assumed that the SNOM 

images reflect the absolute square of the Ey component.  For p-polarized light, 

however, the detected field has two field components along the x and z axes, and as 

the relative contributions of the Ex and Ez components to the fiber mode were 

unknown, the relation between the measured signal and the near-field intensity was 

more complicated.  Therefore the analysis described below is based only on 

measurements with s-polarized light. 
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4.2 Inversion procedure 

The grating is too deep for the assumptions of perturbative methods31-34 to solve the 

ISP, and we have chosen the procedure suggested in Ref. 35 instead.  The method 

consists of a geometrical model, a direct field calculation, a comparison between 

modeling and experimental data and a minimization routine. 

We start by defining a geometrical model with parameter vector p.  We assume that 

the geometry can be described by this model, and the components of the vector p are 

the parameters to be determined.  Unknown non-structural information, such as the 

intensity and the angle of incidence of the incoming light, can also be described by 

these parameters. 

The field above the grating is then calculated for a parameter vector.  We compare the 

modelled field )|( prI  with the experimental data )(exp rI  and calculate a fit value 

)(pf  using: 

 [ ]� −= rprrp dIIf 2
exp )()()( . (4.1) 

The inversion procedure now consists of varying p and minimizing )(pf  with 

standard minimization routines.  The global minimum (min)p  is then identified as the 

correct parameter vector )(cp  that reflects the geometry of the real structure.  Ideally 

this would satisfy 0)( )( =cf p , but an inaccurate geometrical model, noise and the 

difficulty of measuring the exact field due to the unknown SNOM tip transfer function 

will result in 0)( )( >cf p . 

4.3 Topography identification 

We have employed a simple rectangular two-parameter geometry illustrated in Fig. 

4.5 to model the grating.  Here, p = (H, W).  Fig. 4.1 hints that the real sample is 

better described by a more complicated model, but for reasons given in section 4.4 we 

have chosen to determine a simple two-parameter equivalent profile.   
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Fig. 4.5:  The two-parameter geometric model of the grating is shown. 

 

With only two parameters, the parameter landscape within reasonable limits could be 

calculated.  The function ))(log( pf  is illustrated in Fig. 4.6. 

 

 
Fig. 4.6:  A contour plot of the function log(f(p)) is shown.  The minimum values  

are illustrated in blue. 

 

In the comparison of the SNOM image to the modeled field intensity distribution for a 

parameter set p, the relative height h of the EPD was introduced as a variable.  For 

each set p the function )),(log( hf p  was minimized with respect to h, such that 

 
p

pp ),(min)( hff = . (4.2) 

In this way, the global minimum (min)p  was unambiguously determined. 

 

Parameter Best fit value 

H 2.093 ± 0.003 µm 

W 0.516 ± 0.001 µm 

Table 4.1:  The p(min) parameters are given. 

 

H 
W 
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The corresponding parameters are given in Table 4.1, and the uncertainty on the 

parameters is due to the variation of the SNOM images along the y axis shown in Fig. 

4.3.  The modeled field intensity at (min)p  is compared to the resulting experimental x-

z intensity profile in Fig. 4.7. 

 

 
Fig. 4.7:  The experimental average x-z measured signal profile (a) and the modeled field 

intensity at the global minimum (b) are shown. 

 

Comparing the experimental and calculated intensity profiles one observes a 

displacement along the z axis of the latter with respect to the former by ~ 725 nm 

away from the surface plane.  As the z coordinate of the experimental data refers to 

the height of the tip apex, this indicates that the position of the EPD is h � 725 nm 

above the apex.  The location of an EPD a certain distance above the apex has also 

been noticed previously40,41 when comparing experimental images and theoretical 

simulations.   

4.4 Discussion 

We have determined the parameters of a rectangular grating using the direct modeling 

of light diffraction by the grating and an optimization procedure to fit the numerically 

and experimentally obtained field intensity distributions.  In the following, we 

consider the advantages and limitations of this approach. 
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The calculations performed are the result of direct modeling of the field scattered by a 

given dielectric refractive index structure.  Existing well-established methods can be 

used and the development of dedicated inversion programs is not required. 

The general problem with optimization routines is related to the difficulty of 

determining a global minimum rather than just a local one without searching the entire 

parameter space.  Many methods have been proposed but a fool-proofed technique 

does not exist, limiting the inversion technique to very few free parameters.  

Furthermore, as the bijectivity of the geometry-image map is not established, one 

cannot automatically rule out the existence of another parameter vector (min)'p  that 

minimizes the fit function equally well, i.e. that satisfies the relation 

)()'( (min)(min) pp ff = .  If different geometries would result in an identical fit value, 

prior knowledge about the structure would be required to determine which parameter 

minimum reflects the true geometry. 

In our case, Fig. 4.1 suggests that the grating profile is not rectangular and a five-

parameter geometrical model with graded side walls was tested.  However, with the 

calculation time of a few minutes per parameter vector, a complete mapping of the 

five-parameter space with any reasonable resolution was not feasible, and identical 

)( (min)pf  values were found for different local minima, indicating that the geometry-

image mapping is not single-valued. 

Under the questionable assumption that the two-parameter geometry model is valid, 

we could determine the grating geometry with small uncertainty.  We should however 

acknowledge that more complicated geometries produce intensity field profiles very 

similar to that measured experimentally.  For these geometries, bijectivity of the 

geometry-image map should be achieved by performing additional SNOM 

measurements, e.g., made at other wavelengths and/or for p polarization and/or for 

different angles of incidence.  Currently, however, it is not well-understood what 

information about the sample geometry can be obtained with a particular 

measurement configuration.  By increasing the number of measurements we expect to 

decrease the probability of having the same intensity profile for different grating 

geometries, but a systematic procedure that would ensure one-to-one correspondence 

between intensity profiles and sample geometries is yet to be developed. 

Before pursuing the inversion problem of topography characterization any further, one 

important issue needs addressing:  We have assumed that the SNOM image faithfully 
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represents the free space field intensity in an EPD located a certain distance above the 

tip apex.  However, the validity of this assumption is questionable, and as the input of 

the topography identification routine is the intensity distribution, any deviation 

between the SNOM image and the field intensity can thus have the consequence that 

the procedure identifies the wrong geometry.  This issue is the topic of the next 

chapter. 
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5 Modeling of near-field imaging 

The interpretation of the measured SNOM image has been subject to debate36,42-46.  

The SNOM clearly allows detection of sub-wavelength features, but in spite of 

progress in the understanding of the field-image coupling mechanism, the exact 

relation between the optical field and the observed SNOM image remains unclear. 

Near-field detection is generically complicated by the close proximity of the fiber tip, 

resulting in tip-sample interaction modifying the free-space optical field generated in 

absence of the nano-collector.  The detected field thus includes a perturbation of the 

original free-space field, a perturbation that is generally difficult or impossible to 

separate.  Fortunately, it has been shown that for a dielectric sample studied in the 

PSTM setup, the tip-sample interaction is negligible47, and in this case the fiber tip 

can be approximated to a passive detector of the optical field. 

Initially, the nano-collector was considered a point-like probe42 detecting the optical 

field intensity at a specific position.  It was argued43 that the finite size of the probe 

should be taken into account by introducing a transfer function.  The intensity transfer 

function (ITF), relating the absolute square of the electric field to the SNOM image, 

was proposed43 and the conception that the image represents field intensity below a 

spatial frequency cut-off has been used to analyze experimental near-field data48,49. 

It was then shown that the ITF does not accurately model the field-image relation44.  

The correct general framework necessary for describing the field-image coupling was 

given in Ref. 45.  It was pointed out36 that when utilizing a single-mode fiber, the 

general TF can be described by an amplitude coupling function.  General symmetry 

properties of this TF, correctly relating the optical field to the image, are given in Ref. 

46. 

Further information about the nature of the TF was obtained as comparisons40,41 

between modeling and experiment, such as the one in chapter 4, revealed 

correspondence between detected SNOM images and the intensities of the free space 

fields in planes a distance above the tip apex.  This hints that the optical field may be 

coupled to the guided fiber mode not at the very tip apex, but in an effective detection 

point inside the tip. 

However, to completely understand the field-image relation, exact numerical 

modeling of the field scattered on the fiber tip must be performed.  A comparison 
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between free-space field and image measured using a reduced 2D tip was performed 

in Ref. 50 and a full 3D simulation of the field scattered by the tip was presented in 

Ref. 51.  Unfortunately, in these works the concept of TF was not invoked. 

In this chapter, we examine TFs for conical single-mode fiber tips computed using the 

EET.  The coupling efficiency of glass fiber tips is determined in a wide range of 

spatial frequencies of the incident radiation for tip opening angles varying from 30° to 

120°.  The characteristics of the TFs describing the relation between probed optical 

fields and near-field images are analyzed in detail. 

5.1 Near-field coupling 

The general experimental SNOM setup we will model is illustrated in Fig. 5.1.  A 

dielectric sample with subwavelength features is placed on a prism and is subject to 

illumination from below at the wavelength λ  of 633 nm.  The sample scatters the 

light, and a near-field is generated. 

 

 
Fig. 5.1:  The SNOM measurement setup is illustrated. 

 

The SNOM fiber tip is scanned above the sample in constant height mode9 with tip 

apex in a detection plane dzz = .  Other scanning modes, such as constant distance 

mode9, are frequently used in SNOM microscopy, but the TF relates the field in a 

β 
zd 

z 

x 
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detection plane of fixed z coordinate to the image, and the choice of constant height 

mode is thus necessary if field-image comparisons are to be made.   

The tip couples the field to the guided fiber mode, but also scatters light back towards 

the sample.  We restrict our analysis to SNOM measurements on weakly reflecting 

dielectric samples, where the tip-sample interaction can be ignored,47 and we thus 

only treat the coupling of the near-field into the guided mode.  Also, we assume that 

power levels are sufficiently low so that linear scattering can be assumed.  These 

restrictions are made as the TF, relating the free-space field with the observed SNOM 

image, is only defined45 in the linear scattering regime and in absence of multiple 

reflections between tip and sample.  A treatment of the field-image relation in setups 

where the tip-sample interaction or non-linear effects are important is beyond the 

scope of this Ph. D. thesis. 

In the detection plane ),( dz⊥r  we consider the electric field ),,( zyx EEE=E .  We 

then make the plane-wave expansion in the detection plane: 

 ( )� ⊥⊥⊥⊥⊥ ⋅= krkkFrE dizd exp)(),( . (5.1) 

The z dependence of the plane waves are given by ( )zikzexp  with 22
0 ⊥−= kkk z ,  

where λπ /20 =k .  Plane waves with 2
0

2
k<⊥k  correspond to the propagating part of 

the near-field, while those with 2
0

2
k>⊥k  represent its evanescent part. 

The three components of the vector field ),,( zyx EEE=E  are not independent but 

subject to the divergence relation 0=⋅∇ E , valid in free space.  For this reason we 

will in the following only consider the transverse components ),( yx EE=⊥E  and 

),( yx FF=⊥F  of the field and of the expansion coefficients respectively.  The z 

component of the field can be determined at any time using  

 ( )� ⊥⊥⊥
⊥⊥

⊥ ⋅⋅−= krkkFr di
k

zE
z

dz exp),( . (5.2) 

Now, the optical field couples to guided fiber modes n with angular momenta m with 

normalized mode profiles ( )ϕimrmn exp)(,G .  Following Ref. 45, we introduce vector 

coupling coefficients )(,
⊥kH mn  describing the coupling between a plane wave with 
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wave vector ⊥k  and the guided fiber mode with field profile of the form 

( )ϕimrA mnmn exp)(,, G .  The contribution from the total field to a guided mode is then 

 ( )� ⊥⊥⊥⊥⊥⊥⊥ ⋅⋅= krkkFkHr diA mnmn exp)()()( ,, , (5.3) 

where ⊥r  refers to the position of the apex in the plane dzz = .  The mode profiles 

( )ϕimrmn exp)(,G  are normalized such that the total power S detected at the end of the 

fiber is given by � ⊥⊥ =
mn

mnAS
,

2, )()( rr . 

To take advantage of the rotational symmetry of the optical fiber, the plane wave 

vector components of Eq. (5.1) may be expressed in cylindrical coordinates as 

θθθθ uuF ),(),(),( kFkFk skp +=⊥ , corresponding to s- and p-polarized parts of the 

field.  We obtain: 

 ( ) ( )� ⊥⊥⊥⊥⊥ ⋅+= krkuurE dikFkFz skpd exp),(),(),( θθθ . (5.4) 

The cylindrical unit vectors are illustrated in  
Fig. 5.2.  We remark in passing that when calculating the z component of the electric 

field using Eq. (5.2), only the p-polarized part of the field gives a contribution. 
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Fig. 5.2:  The units vectors in cylindrical coordinates are illustrated. 

 

For a single-mode fiber of weak refractive index contrast we only need to include 

coefficients ( )yx AA ,  of the two orthogonal linearly polarized modes of the form 

)(,, ⊥rG yxyxA , where the profiles )(, ⊥rG yx  as previously are normalized such that the 

total fiber power is 
22 )()()( ⊥⊥⊥ += rrr yx AAS .  The field contribution to the two 

modes is then given by: 
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. (5.5) 

The detailed derivation of this equation is given in appendix 8.4.  In Eq. (5.5), Hs(k) 

and Hp(k) represent the coupling of an incoming plane wave of s and p polarization 

respectively with in-plane wave vector of norm k to a guided fiber mode.  Due to 

symmetry, the functions Hs(k) and Hp(k) are independent of the angle of incidence θ .  

The functions Hs(k) and Hp(k) are the TFs that describe the detection capability of a 

particular fiber tip, that we compute numerically using the procedure described in 

chapter 3. In the following, the TFs are presented as functions of 0/ kk  for 

convenience. 

5.2 Convergence 

When performing computations of the TF using the EET, we would ideally like to 

include an infinite number of eigenmodes in the expansion of the field.  Assuming 

that the eigenmodes constitute a complete basis set, an infinite number of modes 

would ensure that the true optical field was identical to its eigenmode expansion.   

Unfortunately, we must, for numerical reasons, restrict ourselves to including a finite 

number N of eigenmodes.  Even though this means that our computation is no longer 

exact, we can still in general expect that only a limited number of eigenmodes are 

necessary to assure that the computation reflects reality within a reasonable error 

margin.   

Furthermore, we are generally interested in the properties of a structure placed in free 

space, but the EET requires that we enclose our geometry inside a metal cylinder.  

Parasitic reflections from the metal walls will influence the system under study, but 
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we can expect their influence to become negligible when the radius of the metal 

cylinder is sufficiently large. 

To assure that the number of included modes in the computation is large enough and 

that parasitic reflections do not influence our results, convergence checks must be 

performed.  The convergence issues related to the determination of the TF using the 

EET are non-trivial, and for this reason we devote this subsection to a convergence 

study of TFs of uncoated and metal-coated fiber tips.  The computations for uncoated 

tips are all full 3D, but for reasons explained below 2D calculations are also 

considered for metal-coated tips. 

5.2.1 Uncoated fiber tips 

The uncoated fiber tip geometry modeled in this work is that of a tapered single-mode 

fiber with core and cladding refractive indices of 1.4622 and 1.4572, respectively, and 

a core diameter of 4 µm.  The refractive index geometry of the computation is 

illustrated in Fig. 5.3.  The tip opening angle β varies, but the wavelength λ is 633 nm 

in all calculations in this thesis.   

 

 

 
Fig. 5.3:  The index geometry of a SNOM fiber tip is illustrated. 

 

In the computation of the TF for the uncoated fiber tip, the complex modes described 

in section 3.3.2 did not appear, and the TF could thus be calculated using the SA 

approach as well as using the FD and PW methods.  TFs computed for an increasing 

β 
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number of eigenmodes using the three mode calculation techniques are illustrated 

below: 

 

 
Fig. 5.4:  The figure shows TFs obtained using the finite difference technique (a), plane-wave 

expansion (b) and the semi-analytical approach (c) using a varying number of modes.   
ββββ = 30° and Lr = 30 µµµµm. 

 

Inspecting the figure, we observe that the convergence of the TF calculated using the 

FD technique is very poor.  The TF computed using the PW expansion converges 

nicely, however, a discontinuity is observed at 0/ kk  = 1.  This discontinuity is not 

physical, and its presence reveals a difficulty of the PW expansion in computing the 

correct guided mode coupling at this value of 0/ kk .  The best convergence is, not 

surprisingly, obtained using the SA approach.  In Fig. 5.4(c), we do observe a small 

shoulder near 0/ kk  = 1, most likely caused by parasitic reflections from the metal 

cylinder, however, the curves from the SA calculation are still much smoother than 

those of the PW computation. 

From Fig. 5.4(c), it is clear that only ~ 500 eigenmodes are necessary to achieve 

convergence.  Except for the procedure used to determine eigenmodes, the 

computations performed are completely identical, and we can thus conclude that, even 

though the FD technique handles field discontinuities well, the general quality of its 

mode profiles is inferior compared to that of modes of the other methods.  On the 

other hand, the calculations using PW expansion generally yields nice performance.  

The PW expansion has difficulty describing field discontinuities, but we conclude that 

the index contrast and thus the field discontinuities are weak enough so that they may 

be described with sufficient precision using the number of basis modes included in the 

computations above.  The best TFs are obtained using the SA approach, and in the 
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following convergence studies the SA approach was employed to determine the mode 

profiles.   

Convergence of the TF calculation for an increasing number of eigenmodes is 

necessary, however, other issues need addressing as well.  First of all, real optical 

fibers feature a cladding diameter of ~ 125 µm.  However, the guided mode profile 

only extends a couple of microns into the cladding, and we thus expect that 

computation on a reduced fiber tip with a much smaller cladding diameter to be 

sufficient. 

 

  
Fig. 5.5:  The TF is illustrated for varying cladding diameter (a) and varying number of layers 

(b).  ββββ = 60° and Lr = 10 µµµµm and in (b) the cladding diameter is 12 µµµµm. 

 

TFs for fiber tips of varying cladding diameter are depicted in Fig. 5.5(a).  We 

observe that the TF converges very quickly when the cladding diameter is increased, 

and it is thus only necessary to consider a reduced fiber tip with a cladding diameter 

of ~ 12 µm when calculating the transfer function. 

A second issue is the number of layers used in the representation of the tip.  As the 

EET treats structures consisting of layers of uniform index profile along the z axis, we 

model the conically shaped tip by using a large number of thin layers, resulting in the 

saw-tooth profile shown in Fig. 5.3.  The number of layers required is studied in Fig. 

5.5(b).  For 0/ kk  < 1, only about 48 layers are required to achieve convergence, 

however, to obtain a converging TF for all values of k about 192 layers must be used. 

Finally, we study the effect of enclosing the fiber tip in a metal cylinder.  We aim at 

determining the TF for a fiber tip in open space, but we are forced to perform 

computations on a fiber tip placed inside a metal cylinder as explained earlier.  



 67 

However, when we increase the metal cylinder radius towards infinity, we expect the 

TF to converge towards its free space value. 

 

  

  
Fig. 5.6:  The TFs for varying metal cylinder radius Lr are shown for ββββ = 30°, 60°, 90° and 120°. 

 

We study the influence of the metal cylinder radius on the TF by inspecting the figure 

above.  For a fiber tip having an opening angle β equal to 30°, 60° or 120° we observe 

virtually no dependence of the TF on the radius of the cylinder.  This may be 

somewhat surprising as one expects the optical field distribution to highly perturbed 

by the metal wall in particular for the small cylinder radius of 10 µm.  But whatever 

parasitic reflections are introduced by the metal wall, the figure shows that, when β = 

30°, 60° or 120°, these reflections do not influence the magnitude of the coupling to 

the guided fiber mode for the angles.  Inspecting the TF for β = 90°, we observe an 

oscillation behaviour near 0/ kk  < 0.5, and in this interval the TF does not converge 

when the cylinder radius is increased.  We conclude that for this particular opening 

angle, the parasitic reflections do influence the TF for 0/ kk  < 0.5. 
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5.2.2 Metal coated tips 

Inspired by the success in calculating TFs for uncoated fiber tips, the possibility of 

determining the TF for a fiber tip covered with a thin layer of metal was examined.  

Optical resolution of ~ λ / 40 has been achieved experimentally52 with a metal-coated 

tip, and this geometry more closely resembles the original design by Synge. 

We would like to calculate the TF of a fiber tip with the index profile illustrated in 

Fig. 5.7(a). 

  

  
Fig. 5.7:  The geometries of a full tip profile (a) and a reduced tip (b) with  

metal coatings are  shown. 

 

The fiber is covered with a layer of aluminum except at the very apex of the tip, and 

an aperture is thus be formed.  The typical thickness t of a metal layer covering a 

SNOM fiber tip is usually ~ 25-100 nm, and the coating is thus fairly thin.  However, 

the real challenge lies in the refractive index of aluminum, which is ~ 1.30 + 7.48i at 

the wavelength λ = 633 nm, and a highly absorbing material is thus introduced into 

the structure. 

As calculation time for a complex refractive index profile is very long, the reduced 

metal-coated tip structure depicted in Fig. 5.7(b) was investigated.  Calculations were 

performed only using the SA approach and the PW expansion as the performance of 

the FD technique in the previous section was found to be very poor. 

When determining modes in a zone with a complex refractive index profile the 

perturbative method described in the end of section 3.4.3 was employed in the SA 

approach, whereas the PW code handles the complex refractive index directly. 
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TFs obtained for the reduced metal-coated tip for a varying number of modes are 

shown in the figure below:  

 

  
Fig. 5.8:  The TFs for the reduced metal-coated tip obtained using the SA approach (a) and the 

PW expansion (b) for a varying number of modes are shown.  ββββ = 30°, Lr = 10 µµµµm and t = 50 nm. 

 

Inspecting Fig. 5.8(a) we observe a slower convergence of the TF when the number of 

modes is increased compared to the case of the uncoated metal tip.  However, the 

curves for 750 and 1000 modes are identical. and this would suggest that the SA 

approach can handle the metal-coating and yield convergence for a reasonable number 

of eigenmodes.  This, however, is only partly true and the problem lies in the 

determination of the propagation constants of eigenmodes.  The perturbative method 

used to determine eigenmodes was optimized with respect to speed while keeping a 

reasonable accuracy, but even then, the typical calculation time necessary to find 

propagation constants for 1000 complex eigenmodes was above 2 hours and wrong 

propagation constants would still appear from time to time due to insufficient 

accuracy.  Even though the perturbation method initially seems to work, it is slow and 

not very stable. 

In the previous section, we saw that the PW expansion method performed reasonably 

well for uncoated tips, and the method was also tested for the metal-coated tip.  The 

resulting TFs are depicted in Fig. 5.8(b).  We observe that even though the general 

shape of the curves matches those obtained using the SA approach, the TF does not 

converge.  The problem can be understood by studying the profiles of eigenmodes 

obtained using the two methods: 
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Fig. 5.9:  The radial component of the fundamental mode in a glass waveguide (a) and a metal-
coated guide (b) calculated using the SA and the PW methods are shown.  The real part of the 

field and the index profile are depicted. 

 

The fundamental mode profile in a glass waveguide obtained using the PW expansion 

method with 2000 basis modes is compared to the perfect mode profile derived using 

the SA approach in Fig. 5.9(a).  We observe that, since the index step is so small, the 

PW expansion can nicely model the discontinuity at the glass-air interface, and this 

results in the fast convergence of the method for uncoated tips.  In Fig. 5.9(b), mode 

profiles obtained in a metal-coated waveguide are shown.  The large refractive index 

of aluminum causes a steep discontinuity of the radial field component at the glass-

metal interface clearly visible on the profile obtained using the SA approach.  

Comparing the two profiles, we observe that the curve calculated using PW expansion 

does not resemble the perfect curve obtained using the SA approach.  As discussed at 

the end of section 0, a discontinuity in the refractive index results in a discontinuity of 

the radial electric field component, which is difficult to expand on a limited set of 

basis modes.  We can thus expect the PW expansion technique to fail in computing 

the correct eigenmodes in structures featuring large index steps, as it is the case for 

the structure illustrated in Fig. 5.9(b). 

As the problem is caused by the discontinuity, we can expect the PW method to 

perform better in structures where the steep discontinuities have been replaced with 

linear gradients.  A graded index profile will result in a continuous radial field 

component, which is more easily described using plane waves.  For this reason we 

examine a geometry with linear gradients at the metal interfaces of the form 

barrr +=)(ε . 
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Fig. 5.10:  The absolute value of the refractive index profile of a standard zone without gradients 

(blue) and a zone with gradients at the glass-metal and metal-air interfaces (green) is shown. 

 

The absolute value of the radial index profiles for a standard structure and for a 

geometry with gradients is depicted in Fig. 5.10.  The glass waveguide has a radius of 

200 nm and is covered with a 100 nm thick layer of aluminum.  In the graded profile, 

80 nm thick gradient regions are included where the dielectric constant εr changes 

linearly.  As the figure depicts the absolute value of the refractive index rather than εr, 

the linear gradients are shown in a slightly curved shape. 

Unfortunately, the calculation of operator matrices 1O  in the cylindrically symmetric 

version of the PW expansion involves the evaluation of the indefinite integral 

� drraJraJ nlml )()( , which has no known anti-derivative.  The integrals can be 

evaluated numerically, but, in practice, this is far too slow.  However, instead of 

examining a 3D geometry, we can consider a 2D fiber tip in Cartesian coordinates 

with gradients along the x axis of the form baxxr +=)(ε  and with uniformity along 

the y axis.  In Cartesian coordinates, primitive functions for all the indefinite integrals 

exist, and the determination of the operator matrix is thus done in a reasonable amount 

of time.  Even though a 2D calculation is a simplification of the full 3D problem, 2D 

computations will allow us to evaluate the effect of implementing a gradient at the 

metal interfaces. 
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Fig. 5.11:  TFs calculated using the 2D PW method are shown for the standard metal-coated 

reduced tip (a) and for a tip with gradients at the metal interfaces (b).   
ββββ = 30°, Lx = 20 µµµµm and t = 100 nm. 

 

In Fig. 5.11(a), TFs calculated for a 2D metal-coated tip without gradients is shown, 

and as in the 3D case the convergence is very poor.  TFs for the same tip, where the 

index discontinuities have been replaced with gradients, are illustrated in Fig. 5.11(b).  

Comparing the convergence in the case of the graded vs. the ungraded structure, a 

slight improvement is observed for the graded structure, however the convergence is 

still not acceptable.  The lack of convergence is most likely due to the fact that, even 

though the discontinuity has been converted into a gradient, the gradient width is still 

less than 0.5 % of the total geometry width, and the change in the field is thus still 

very steep compared to the width of the geometry.  Softer gradients of widths around 

~ 500 nm or more can of course be considered, but a geometry with such thick 

gradients deviates greatly from the true physical geometry, and the extent to which a 

calculation on such a graded structure reflects the physical reality is questionable. 

The possibility of calculating the TF of a metal-coated fiber tip was, due to time 

constraints, not investigated further. 

5.2.3 Discussion 

The EET has proven to be an efficient tool when simulating the scattering of light on 

3D rotationally symmetric uncoated fiber tips.  The main strength of the EET is its 

ability to handle geometries with uniformity or periodicity along the propagation axis.  

The tapered tip features neither, but the computation of its TF is still precise and 

reasonably fast considering the size of the geometry. 
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The EET simulates light scattering in geometries that are limited by artificial 

boundaries introducing parasitic reflections.  We do not calculate the field scattered 

by a structure placed in free space, but we are forced to consider the influence of the 

metal walls.  By extending the cylinder radius or by introducing advanced boundary 

conditions, this influence can be reduced, however, in the case of TFs calculated for 

uncoated fiber tips, the influence of parasitic reflections is generally negligible even 

for small cylinder radii. 

5.3 Transfer functions 

The TF computed using a full 3D simulation allows us to determine the power carried 

by the guided fiber mode for a given incoming light intensity as function of ⊥= kk .  

The following TFs are calculated for an electric field amplitude of 27.5 kV/m in the 

detection plane corresponding to an illumination intensity of 1 µW/µm2 for a 

propagating wave. 

TFs determined for s and p polarization for various opening angles are depicted in 

Fig. 5.12. 

 

         
Fig. 5.12:  TFs for opening angles ββββ from 30° to 120° for s polarization (a)  

and p polarization (b) are shown. 

 

In the propagating regime ( 1/ 0 <kk ), we observe an oscillatory behavior for all the 

TFs of both polarizations.  The peaks in this part of the spectrum represent coupling 

resonances, the positions of which depend on geometry.  In the evanescent regime, we 

generally observe a monotonic near-exponential decrease except for p polarization in 
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the interval 5.1/1 0 << kk  when β = 60° or 90°.  We also note that, for 1/ 0 >kk , the 

coupling efficiency as function of opening angle seems to be at a maximum for an 

opening angle β around 90°.  However, it should be stressed that determination of the 

exact optimal opening angle requires a study of TFs for more than four opening 

angles. 

5.4 Resolving power 

One of the motivations for calculating a TF is that it allows us to determine the 

resolving power of a SNOM fiber tip.  The definition of resolution, however, depends 

on whether the optical fields distributions are limited in real space or in k space. 

To introduce the concept of resolution for distributions limited in real space, we 

consider an electric field distribution whose x or z component in the detection plane is 

of the shape of a delta-function.  In the first case the in-plane field distribution is 

given by xdz urrE )(),( ⊥⊥⊥ = δ , resulting in 2)2/(1)( π=⊥kxF  for the plane wave 

expansion coefficients.  0=⋅∇ E  must be satisfied however, so the z component of 

the electric field distribution is non-zero and can be determined using Eq. (5.2).  

Secondly, when the z component of the field is a delta-function we have 

)(),( ⊥⊥ = rr δdz zE  and 2)2/(1)( π=⊥kzF , and this time the requirement 0=⋅∇ E  

leads to a non-zero in-plane field.  As s-polarized waves do not contribute to the z 

component of the field, we set 0=sF  and obtain the p-polarized in-plane field 

contributions from ⊥⊥⊥ −= kkk /)()( zzp FkF , a rotationally symmetric function. 

The calculated SNOM images for the delta-function distribution along the x axis are 

shown in Fig. 5.13(a).  For β = 30° the SNOM image profile features a near-Gaussian 

shape, but for the larger opening angles we generally observe an oscillating decay 

along the x axis.   
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Fig. 5.13:  SNOM images of near-field delta functions as function of opening angle ββββ are shown.  

The x component of the field is a delta function in (a) and the z component  
is a delta function in (b). 

 

This is not very surprising as the near-exponential decay of the TFs for 1/ 0 >kk  

serves as an effective cut-off, and we can thus roughly approximate the product 

)()(,
⊥⊥⊥ ⋅ kFkH mn  of Eq. (5.3) to a step function equal to zero for 1/ 0 >kk .  Making 

the Fourier transform we obtain a sinc function having the oscillating decay observed 

in Fig. 5.13(a) for opening angles of 60°, 90° and 120°. 

We characterize the spatial extent of the imaged spots using the average deviation 

(AD) along the two axes given by �� dxxSdxxxS )0,()0,(  along the x axis, and the 

determined ADs are presented in Table 5.1.   

 

 xurE )( ⊥⊥ = δ  )( ⊥= rδzE  

Opening angle ββββ Average deviation 
along x axis 

Average deviation 
along y axis Average deviation 

30° 262 nm 160 nm 1175 nm 

60° 1029 nm 88 nm 845 nm 

90° 255 nm 104 nm 506 nm 

120° 698 nm 683 nm 1199 nm 

Table 5.1:  Average deviations of the images of delta-functions. 

 

The smallest AD is obtained for β = 60° along the y axis, however, this opening angle 

also features the largest AD along the x axis due to the slow oscillating decay.  The 

minimum AD along the x axis is given for the β = 90° opening angle with an AD 

along the y axis only slightly larger than that for β = 60°.  This behavior reflects the 
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flatness of the TFs:  The TF for β = 90° is rather broad and falls off slowly resulting 

in a wide step function giving a narrow sinc-like spot.  On the other hand, the TF for β 

= 120° decreases much faster, the step function is of shorter width and the resulting 

spot is wider. 

Fig. 5.13(b) presents the SNOM images obtained when the z component of the field is 

a delta-function.  The images preserve the rotational symmetry of the 

)(),( ⊥⊥ = rr δdz zE  distribution, and we generally observe a donought-shaped profile.  

We can understand the node at the origin by inspecting Eq. (5.5) for rotationally 

symmetric profiles )( ⊥ksF  and )( ⊥kpF .  In this case we have )()( ,, ⊥⊥ −−= rr yxyx AA  

and )0(,yxA  must thus equal 0.  AD values for the donought-shaped spots are given in 

Table 5.1, and, as previously, the narrower profiles are obtained for opening angles of 

60° and 90°. 

We observe that the exact shape of the SNOM image of the delta-functions depends 

on the nature of the TF.  The shape is generally not of Gaussian form, and this 

complicates the interpretation of an experimentally obtained SNOM image.  In the 

case where the x component of the field is a delta-function, we have good one-to-one 

correspondence between delta-function and detected spot for β = 30°, but when β = 

90° the two weaker spots neighbouring the main spot can be mistaken for near-field 

point sources of weaker intensity.  When the z component of the field is a delta-

function the approximation of the images to Gaussian-shaped spots becomes even 

more ambiguous.  We conclude that, even when the concept of resolution is 

introduced, the identification of the SNOM image as the local electric field intensity is 

generally incorrect. 

If we ignore the non-Gaussian shape of the imaged spots, we can roughly define the 

resolution of a SNOM tip as twice the AD values given in Table 5.1.  We note that the 

resolution limit defined here is related to the shape of the tip and is independent of 

noise. 

The definition of resolution described above is meaningful when imaging optical field 

distributions limited in real space.  However, when imaging plane waves that can be 

considered point sources in k space, the concept of resolution should be treated 

differently: 

In previous works,53,54 the resolution of SNOM setups was determined by imaging 

counter propagating waves.  Two such waves of identical spatial frequency and 
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amplitude propagating along the x axis and decaying along the z axis result in a 

standing wave pattern of the form )exp()cos( zkxk zx −  with 22
0 xz kkk −= , where 

0kkx > .  The intensity pattern features an image contrast 

( ) ( )minmaxminmax / IIIICi +−=  of 1, which, without background noise, would be 

preserved in the SNOM image.  However, for increasing xk  and thus increasing zk  

the calculated TFs show us that the standing wave pattern intensity in the image 

decays near-exponentially, and when it approaches the background noise floor, the 

image contrast will deteriorate, and the limit of the spatial resolution has been 

reached.  It should be stressed that, contrary to the previous case, the resolution limit 

when imaging a point-source in k space is due to background noise:  The coupling 

coefficient drops exponentially for increasing k, but it is never zero.  Even though the 

fiber tip has a finite size, the image contrast would, without noise, be equal to 1 

regardless of the value of the spatial frequency. 

Keeping the illumination intensity fixed and choosing a noise floor, resolutions of the 

various tips for the two polarizations can be extracted directly from Fig. 5.12 as the 

intersection of the TF curves with the noise floor.  Resolutions of the tips described in 

the figure are given in Table 5.2 for (arbitrarily chosen) noise floors of 1 pW and 100 

fW. 

 

Noise floor 
1 pW 100 fW 1 pW 100 fW 

Opening angle ββββ 
Resolution 

(s pol.) 
Resolution 

(p pol.) 
30° 365 nm 264 nm 437 nm 300 nm 

60° 286 nm 209 nm 471 nm 251 nm 

90° 219 nm 156 nm 248 nm 180 nm 

120° 289 nm 205 nm 317 nm 222 nm 

Table 5.2:  The SNOM tip resolving power is listed. 

 

Obviously, the values of the resolving power presented here depend directly on the 

illumination power and the background noise floor, but relative comparison between 

the resolutions of various fiber tips can still be made:  First, the resolutions for s 

polarization are slightly better than those for p-polarized light.  And second, we 
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observe that the resolution is generally improved with ~ 40 % when the noise floor is 

decreased from 1 pW to 100 fW.   

Whether we consider point sources in real space or in k space, the best resolution is 

not obtained for β = 30° as one might expect but rather for the large opening angle β = 

90°.  The data show that if one is interested in improving the resolution of a SNOM 

microscope, one should not aim at producing a fiber tip with smallest opening angle 

possible. 

5.5 Effective plane of detection approximation 

In the effective plane of detection (EPD) approximation, the coupling of the near field 

to the fiber tip with apex in the detection plane is proportional to the value of the free-

space field produced in absence of tip a certain height h above the detection plane.  

From 22
0 kkk z −=  we have that kk z →  for 0kk >> , so an evanescent wave with 

spatial dependence of the form )exp( zkikr z−  in the reference plane will have 

decayed by a factor ~ )exp( kh−  at the height h.  We recognize this exponential decay 

as the near-linear regime in Fig. 5.12 of the TF curves plotted using semi-logarithmic 

scale for 2/ 0 >kk .  The coupling of the near-field to the fiber tip in this regime can 

thus be interpreted as coupling at an effective plane of detection positioned a distance 

h above the apex. 

However, for 2/ 0 <kk  the TF curves are not quite linear.  The EPD height h can still 

be defined, but it should then be a function of k:  For a given k we solve the two 

equations ))(2exp()( hkikakS z=  and ))(2exp()( hkkikakkS z ∆+=∆+  for the 

parameters a and h when 0→∆k  (the factor 2 is included as we fit to power, not 

field strength).  We obtain the function )(kh , illustrated in Fig. 5.14, representing the 

local EPD height, near the spatial frequency k.   

The function )(kh  is highly non-uniform when 2/ 0 <kk  for both polarizations, and 

for p-polarized light we observe negative h values for opening angles of 30° and 60° 

in the intervals, where the TFs have a positive slope.   
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Fig. 5.14:  The local effective plane of detection height is shown for s polarization (a)  

and p polarization (b). 

 

When 2/ 0 >kk , the curves are nearly independent of opening angle and, while still 

not constant, they vary much less than in the previous regime.  The curves are 

generally slowly decreasing with average value of ~ 125 nm for both polarizations in 

the interval 5.3/2 0 << kk .  We note that this value agrees well with the EPD height 

determined when comparing the experimental and modeled data of Ref. 40. 

The EPD approximation which assumes a k independent effective plane of detection 

is intuitively appealing, but Fig. 5.14 reveals that the approximation is not ideal as it 

only holds for spatial frequency components of 2/ 0 >kk .  This means that it can be 

used only when prior knowledge of the field distribution is available, knowledge that 

allows us to rule out the existence of components with 2/ 0 <kk .  Furthermore, even 

when restricting the approximation to 2/ 0 >kk , the effective detection height h is 

still not exactly constant but continues to decrease with k. 

In many experiments however, as when imaging the propagation of surface plasmon 

polaritons10 or the guided modes in photonic crystal structures11, the spectrum of the 

optical field distribution is limited to a very narrow interval in k space and light of 

only one polarization is present.  In this case the SNOM image does indeed reflect the 

intensity distribution in an effective detection plane and, if knowledge of the average 

spatial frequency is available, the z coordinate of this plane can be determined from 

Fig. 5.14. 
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5.6 Fiber tip sharpness 

To examine the importance of employing a sharp fiber tip, we investigated the TFs of 

fiber tips of opening angle β = 90° having their outer end cut off as illustrated in Fig. 

5.15. 

 

 
Fig. 5.15:  The cut-off tip geometry is illustrated.  The end of the cut-off tip has diameter dt. 

 

The detection plane is then raised to the end of the cut-off tip.  The TFs for varying tip 

cut-off diameters dt are illustrated in Fig. 5.16. 

 

   
Fig. 5.16:  Transfer functions for p polarization for tips of fixed opening angle ββββ of 90° with 

varying cut-off diameter dt. 

 

For dt = 0 µm, nothing has been cut off and the TF is that of Fig. 5.12(b) for β = 90°.  

For dt > 0 µm the curves feature a complex oscillatory behavior.  However, for the dt 

� 4 µm curves, the average power level is identical to or slightly better than that of the 

uncut tip.  This indicates that a perfectly sharp fiber tip results in a near-linear TF 

curve, where the EPD approximation may be used.  But, surprisingly, a perfectly 

sharp tip is not necessary to achieve good coupling in the evanescent regime.  For 

β 

zd 
dt 
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example, considering the detection of evanescent waves with relatively low spatial 

frequencies 5.2/1 0 << kk , the tip cut with dt = 0.25 µm is notably more efficient than 

the sharp one and preferential over other cut tips due to a monotonous decay of the 

transfer function.   

However, we observe an overall drop in the power level when dt is increased beyond 

4 µm.  Also, for cut tips with dt above ~ 1 µm we notice an improved coupling of 

propagating waves with 0/ kk  below ~ 0.4.  The amplification of propagating modes 

in the SNOM image is inconvenient as they will dominate over the evanescent field of 

interest.  We conclude that even though the tip need not be perfectly sharp, the conical 

part of the tapered fiber beyond dt = 1 µm improves the near-field image and should 

not be omitted. 

5.7 2D vs. 3D calculations 

We have presented TFs determined using a 3D model.  Full 3D vectorial 

computations are usually very demanding, whereas the numerical modeling of a 2D 

geometry in general requires only modest computing power.  For this reason people 

often resort to simplified 2D simulations, even though results obtained from a 2D 

calculation do not necessarily hold for a true 3D geometry. 

In the case of the TF, it is of interest to compare TFs calculated using the full 3D 

model with TFs obtained for a simplified 2D geometry.  The 2D tip we will consider 

has the profile along the x axis depicted in Fig. 5.1, but is uniform along the y axis.   

With uniformity along the y-axis the polarizations split, and we can perform 

computations for each polarization separately.  This means that only about half the 

number of modes is required to obtain convergence compared to the 3D cylindrically 

symmetric geometry.  The 2D calculations presented below were performed using the 

plane-wave expansion code with periodic boundary conditions. 

In Fig. 5.17 the TFs calculated using the 2D code are compared to those obtained 

using the full 3D code.   
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Fig. 5.17:  The TFs calculated using the 2D and full 3D code are shown for  

opening angles ββββ of 60° and 90°. 

 

We observe that the shape of the 2D TFs is very similar to the 3D TF curves, when 

1/ 0 <kk .  In the evanescent regime, the 2D curves tend to decay faster than the full 

3D curves, in particular for p polarization. 

However, a reasonable qualitative correspondence is observed indicating that even 

though 3D computations are necessary to obtain the exact TF, fast 2D calculations 

may be useful to reveal its general shape. 

5.8 Comparison with experiment 

In the topography identification described in chapter 4, the SNOM image is assumed 

to be reflecting the free-space field intensity distribution at the effective plane of 

detection.  Now, we have determined the TF for the uncoated fiber tip used to obtain 

the experimental SNOM images and the above assumption is no longer necessary.  

We can introduce the TF into the inversion routine and take advantage of our 

knowledge of the relation between the free space optical field and the SNOM image 

to improve the quality of the topography identification. 

Before implementing the TF into the inversion routine, we start by performing a test 

simulation of the experimental measurement sketched in Fig. 4.2.  The geometry of 
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the grating was determined separately55 using AFM and optical diffraction 

microscopy, and exact knowledge of the grating profile is thus available.  Of course, 

we will in general not have prior knowledge about the topography of the sample under 

study, but for now we are only interested in verifying that our numerically determined 

TF does indeed describe the field-image relation correctly. 

When the grating geometry, the angle of incidence of light, the TF of the tip and all 

other relevant parameters are known, we can perform a simulation of the experimental 

SNOM measurement. 

 

  
Fig. 5.18:  The experimentally measured (a) and the simulated (b) SNOM images are depicted. 

The z coordinate is that of the tip apex.  ββββ = 24°. 

 

The experimentally obtained SNOM image is compared with the result of the 

numerical modeling in Fig. 5.18.  With exact knowledge of all parameters, we would 

expect to obtain good correspondence between theory and experiment.  However, 

even though some agreement can be observed for the high-intensity lines in Fig. 5.18, 

the general deviation between the experimental and the modeled SNOM image is still 

somehow disappointing.  As modeling of the scattering of light on a grating using the 

EET is well-established, we suspect that the reason for the discrepancy is related to 

the TF. 

An experimental characterization of the TF was performed56 by Ilya P. Radko at 

Aalborg University.  In this work, a fiber tip was illuminated with laser light of 

wavelength 633 nm and total power of ~ 1.5 mW and the power of the guided fiber 

mode was then detected.   



 84 

             
(a)   (b) 

Fig. 5.19:  The fiber tip used in the TF measurements is shown in (a) and the experimental setup 
is sketched in (b).  Illustrations by Ilya P. Radko. 

 

The fiber tip which was used in the measurement is illustrated in Fig. 5.19(a).  It 

features a slightly smaller opening angle, but should otherwise be identical to the one 

used in the topography identification.  On the scale of the fiber tip apex where the 

coupling takes place, the Gaussian laser beam can be considered a plane wave.   

The experimental setup used in the far-field measurements is illustrated in Fig. 

5.19(b).  By changing the angle of incidence of the illumination beam the far-field 

measurements allow a determination of the TF in the interval k / k0 � 1.  Near-field 

measurements where the tip was illuminated with evanescent waves having k / k0 > 1 

were also performed, but since the near field above the grating is dominated by its 

propagating components we focus on the far field measurement. 

 

    
(a)   (b) 

Fig. 5.20:  The experimentally measured (a) and the simulated (b) TFs are depicted.  ββββ = 22°. 

 

The experimentally measured TF in the far-field setup is given in Fig. 5.20(a).  First, 

we notice that the curves for both polarizations are not symmetric, and this suggests 

that the tip shape is not perfectly conical.  Second, even though we observe two major 
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peaks centered at approximately ± 10°, the spectrum is generally dominated by fast 

oscillations.  On the other hand, the modeled TF shown in Fig. 5.20(b) is symmetric 

and does not feature the same rapid oscillations.  One possible explanation for the lack 

of fast oscillations in the modeling is an error in the numerical computation, but since 

the asymmetry of the experimental curves already indicate that the tip shape is not 

ideal, it is more likely that the oscillations are due to imperfections of the tip shape 

near the outer end of the tip, where the coupling takes place. 

In the experiment, repeated measurements on the same tip were performed giving 

identical results which suggests that the measurement setup was working properly.  

However, measurements were also performed on different tips fabricated using the 

same etching procedure.38  Variations were observed in the measured TFs, and this 

supports our suspicion that the etching process is not perfect, but produces random 

imperfections in the tip shape. 

 

     
Fig. 5.21:  TFs for varying opening angle ββββ are depicted for s and p polarization. 

 

The dependence of the TF on small variations of the tip opening angle β is shown in 

Fig. 5.21, and it is apparent that the TF is sensitive to a change of the order of just a 

few degrees.  Even though it is hard to compare the shape of the experimental curves 

with the modeled ones due to asymmetry and fast oscillations, a rough estimate is that 

the tip opening angle at the very apex is ~ 18-19° rather than the 21.7° indicated in 

Fig. 5.19(a), which is on a scale of hundreds of microns. 

It is thus possible that the discrepancy between experiment and modeling observed in 

Fig. 5.18 could be caused by the fiber tip used in the measurement having an opening 

angle near the apex different from the assumed value of 24°.  To examine this 

possibility simulations of SNOM images obtained using tips with opening angles 
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between 15° and 30° were performed, but the agreement between experiment and 

modeling did not improve significantly for any angle in this interval.   

As  Fig. 5.21 reveals that the TF is very sensitive to the exact shape of the fiber tip 

profile, the most plausible explanation for the discrepancy between experiment and 

modeling seems to be the influence of imperfections in the fiber tip shape on the TF.  

These imperfections perturb the TF to an extent where it can no longer be properly 

modeled using a simple conical geometry model for the fiber tip and the experimental 

SNOM image thus cannot be reproduced in our simulation. 

5.9 Discussion 

The fact that arbitrarily small field variations are not observed in the SNOM image 

can be roughly understood by introducing the concept of resolution, where the TF is 

considered a step-function, constant for rk /2π< , where r is the resolution limit, and 

zero otherwise. The SNOM images of delta-functions, however, demonstrate that the 

SNOM image does not faithfully depict the optical field intensity and that the concept 

of resolution cannot alone explain the field-image relation. 

From the calculated TFs it is clear that, in the evanescent regime, the curves are better 

approximated to an exponential decay characteristic for an effective plane of detection 

above the tip apex than to the constant obtained, if the field was effectively coupled at 

the very apex.  Unfortunately, the EPD approximation is only valid for perfectly sharp 

fiber tips in certain spatial frequency regimes. 

The limitations of the concept of resolution and of the EPD approximation suggest 

that, to interpret the SNOM image correctly, a more general approach is needed:  We 

can consider the SNOM image detected for a given optical field as the result of 

operating on the field with a coupling operator Ĥ .  If this operator is invertible, we 

can operate with its inverse 1ˆ −H  on the SNOM image to obtain the optical field.  

From Eq. (5.5) we observe that, in the general case, the operator Ĥ  is invertible if the 

complex functions )( ⊥rxA  and )( ⊥ryA  are known, and we thus require that our 

SNOM microscope can detect phase and power of the two linearly polarized guided 

modes ( )yx AA ,  individually.  If this is possible, the components of the optical field are 

given by the inverse Fourier transform of Eq. (5.5): 
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Eq. (5.6) shows that all information about the vectorial electric field in the reference 

plane is available if we can measure ( ))(),( ⊥⊥ rr yx AA  and we have prior knowledge of 

the functions Hs(k) and Hp(k).  If the field is uniform along the y axis, the integrals in 

Eq. (5.6) vanish for angles θ  different from 0 (mod π) and the polarizations are 

separated.  In this particular case, we can reconstruct the field without individual 

measurements of )( ⊥rxA  and )( ⊥ryA . 

Theoretically, the functions Hs(k) and Hp(k) can be completely arbitrary.  In practice 

there will be noise present, and we cannot use the inversion of Eq. (5.6) for spatial 

frequencies that couple to power levels below the noise floor.  To overcome the 

limitation to resolution due to noise, a nano-collector with a near-constant amplitude 

of the TF is preferred:  With a near-constant amplitude, a weak propagating 

background field will not be amplified in the SNOM image compared to field 

components of high spatial frequency, and the evanescent field of interest can then be 

studied. 

However, the use of the inversion in Eq. (5.6) requires that we can model the coupling 

at the tip of the optical field to the guided fiber mode correctly.  We can calculate the 

TF of a rotationally symmetric fiber tip, but the geometry of fiber tips produced 

experimentally deviates from the perfect conical structure.  This deviation causes the 

TF of the experimental tip to differ from the modeled one to an extent, where it does 

not make sense to implement the TF in the inversion procedure of the topography 

characterization.  We conclude that, in order to analyze experimentally measured 

SNOM images correctly and perform topography characterizations of better quality, 

the discrepancy between the simulated and the experimentally determined TFs must 

be addressed.  On the experimental side one can imagine the invention of better tip 

fabrication techniques that result in tip shapes closer to the perfect cone.  As for the 

modeling one may consider the calculation of TFs for tip shapes without rotational 

symmetry.  The numerical modeling of such tips is much more demanding than that of 

rotationally symmetric structures, but with the rapid increase of computation power of 

modern computers, such calculations may be possible in the near future. 
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6 Local density of states in micropillars 

The possibility of modifying the spontaneous emission rate in a solid state material 

and thereby controlling light emission was first suggested by Yablonovitch57.  He 

introduced the photonic crystal, a structure with a periodic refractive index profile, 

and pointed out that the photonic crystal can feature a photonic bandgap, which is 

frequency interval where no light can propagate, in the same way that a crystalline 

material can exhibit an electronic bandgap. 

Of particular interest in quantum optics is the micro-cavity which may be created by 

introducing a defect into the photonic crystal.  At the defect, a mode with a frequency 

inside the photonic bandgap may exist.  The bandgap, however, prevents the light 

from propagating into the photonic crystal and the mode is thus localized to the 

defect.  When a quantum dot (QD) is placed at the defect, strong coupling effects 

between the QD and the localized mode can be achieved. 

The quantity governing the coupling between the QD and the optical field is the local 

density of states (LDOS).  In this brief chapter, we examine the possibility of 

calculating the LDOS of a micropillar. 

6.1 Local density of states 

In the weak coupling regime, the spontaneous emission rate Γ at the position r and 

frequency ω  is given by Fermi’s golden rule58: 

 ),,(
2

2

2 rd ωπ
NM

�
=Γ , (6.1) 

where M is the dipole matrix element representing the atomic transition, d is its 

orientation and N(d, ω, r) is the LDOS defined by: 

 ( )� ⋅−=
α

ααωωδω 2)(),,( rEdrdN . (6.2) 

In this equation, the summation is made over all solutions to Eq. (3.1) for all 

frequencies.  The spontaneous emission rate is thus proportional to the LDOS and we 

observe in Eq. (6.2) that, if a periodicity in the geometry results in a frequency 
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interval with no solutions to Eq. (3.1), the LDOS will be zero and light emission will 

be inhibited. 

The theory of spontaneous emission and LDOS is well-developped59.   However, the 

numerical computation of the LDOS involves the determination of all modes at a 

given frequency, and in complex structures this poses a challenge.  In a photonic 

crystal without defects, due to periodicity, only a single unit cell needs to be 

considered and the calculation of the LDOS can be performed60,61.  When the 

periodicity is broken by a defect, the geometry can be treated using a super-cell 

approximation61, but for the approximation to be valid the computation must be 

performed on a large cell, and this can be very numerically demanding. 

6.2 The micropillar 

In the following we aim at computing the LDOS in a micropillar.62  The geometry is a 

rotationally symmetric stack of alternating layers of GaAs and AlAs on top of a GaAs 

substrate.  The stack consists of two distributed Bragg reflectors (DBRs) surrounding 

a micro-cavity, and the structure is very similar to a VCSEL except for the diameter 

of the pillar being much smaller.  The geometry is illustrated below: 

 

 
Fig. 6.1:  The index profile of the micropillar. 

 

If a QD is placed in the center of the resonator, there is a high probability that a 

photon generated by the de-excitation of the QD will couple to a cavity mode.  And if 

the top DBR is thinner than the bottom reflector, the photon will be emitted through 

the top.  One can improve the Q-factor of the stack by increasing the number of layer 
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pairs in the DBRs and thereby increase the probability that the photon couples to a 

cavity mode.  In a realistic structure, however, there will be a material loss, and if the 

DBRs become too thick, the photon will be absorbed before leaving the micropillar. 

Now, if the LDOS can be determined using numerical modeling, the optimal balance 

between DBR reflectivity and material losses can be found such that the emission 

efficiency of the micropillar is maximized.  And this is our motivation for calculating 

the LDOS in the micropillar. 

6.3 Mode numeration 

In the following we assume for simplicity that the structure is lossless.  Now, to 

calculate the LDOS at a given point, we must determine all modes Eα that are 

solutions to Eq. (3.1).  We can define a mode profile Eα by illuminating the 

micropillar from the bottom with a single eigenmode as illustrated in the figure below:  

 

 
Fig. 6.2:  The illumination of the micropillar from below using a single eigenmode is illustrated. 

 

The incoming eigenmode will be reflected at the base of the micropillar, and in layer 

1 the backwards propagating field will be a superposition of eigenmodes of layer 1.  

On the other side of the pillar, the field in layer N will be a superposition of 

eigenmodes of layer N.  The entire mode profile, however, is completely determined 

by the label ),,( , βα nlhl=  of the illuminating eigenmode, where the labels l, hl,n and β 

refer to its angular momentum, the norm of its in-plane k vector and its propagation 

1 

N 

z 

x 
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constant respectively.  hl,n takes a discrete set of values so that the boundary 

conditions are fulfilled, β is positive and the relation 2
0;

22
, kh GaAsrnl εβ =+  holds.  In a 

similar fashion, one can define a mode by illuminating the micropillar from above 

with the eigenmode specified by ),,( , βα nlhl= , where β is negative and 

2
0

22
, kh nl =+ β  is valid.  In this way, the label ),,( , βα nlhl=  specifies all modes of the 

micropillar geometry and we can write the normalization condition as: 

 )'('''
* ββδδδε αα −=⋅� nnllr drEE . (6.3) 

We should remark that, to keep the modes physical, we only illuminate the micropillar 

with propagating waves and thus require that 02 >β . 

6.4 Convergence 

As it was the case for the TFs, we would ideally like to perform a computation for a 

micropillar in free space, and, as previously, we are forced to enclose the geometry in 

a metal cylinder due to the limitations of the EET.  The metal cylinder will influence 

the LDOS, however, when the radius of the metal cylinder increases we expect the 

value of the LDOS to converge.  

Before examining the micropillar, we study the influence of the metal cylinder on the 

LDOS of an empty vacuum geometry without micropillar.  In the following we 

consider a dipole orientation d directed along the r axis and we calculate the LDOS at 

the point r = 0 so that calculations need to be performed for only one angular 

momentum. 

The LDOS, normalized to its free-space value, is given in Fig. 6.3 as function of metal 

cylinder radius Lr at the wavelength λ = 950 nm.  We observe that the LDOS 

converges towards unity, and a precision better than 1 % is obtained immediately.  

This indicates that we may not have to worry about the influence of the metal cylinder 

walls on the LDOS. 
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Fig. 6.3:  The LDOS of the vacuum geometry as function of Lr is depicted.  λλλλ = 950 nm. 

 

We now take a look at the micropillar.  The structure we will examine has 10 and 15 

layer pairs in the top and bottom DBR, respectively, and refractive indices of 3.5 and 

3 are chosen for GaAs and AlAs, respectively.  The structure is designed to be 

resonant at 950 nm and the LDOS is determined at the center of the cavity. 

 

  
(a)   (b) 

Fig. 6.4:  The LDOS of the micropillar as function of included modes (a) and as function of the 
metal cylinder radius Lr (b).  In (a) Lr = 20 µµµµm and in (b) 400 modes are used.  λλλλ = 950 nm. 

 

In Fig. 6.4(a), the LDOS as function of included modes in the computation is depicted 

and we observe that about 400 modes are required to achieve an accuracy of 1 ‰.  

The influence of the metal cylinder radius Lr on the LDOS can be studied by 

inspecting Fig. 6.4(b).  The normalization here is made to the LDOS of bulk GaAs, 

and since the LDOS in the cavity is perturbed by the micropillar geometry, we should 

not expect the normalized LDOS to equal unity.  We observe that the influence of the 
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metal wall causes a deviation of the LDOS of ~ 20 % from its average value and it is 

not clear that convergence is achieved. 

6.5 Discussion 

The EET can readily be used to compute the LDOS in a micropillar enclosed in a 

metal cylinder.  We are, however, interested in the LDOS of a micropillar in free 

space, and convergence of the LDOS when the cylinder radius is increased is 

required, to be confident that the LDOS is not influenced by the metal walls. 

In our initial calculation, we do not observe this convergence and an unsatisfying 

uncertainty of ~ 20 % is obtained.  To improve the precision we can of course extend 

the cylinder radius beyond 20 µm and re-examine convergence.  Since computations 

become more demanding for increased cylinder radius, this is the “brute force” 

method.  However, another more elegant option is to introduce advanced boundary 

conditions.  In other geometries, the implementation of PMLs has proven effective22-24 

in reducing the reflections from the boundary, and it is thus likely that the 

implementation of PMLs in our micropillar geometry can improve convergence 

without increasing the cylinder radius. 

Due to time constraints, however, these possibilities will not be explored until after 

the submission deadline of this Ph.D. thesis. 
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7 Conclusion 

This thesis summarizes my Ph.D. work on developing optical methods for performing 

characterization of structures on a subwavelength scale. 

The numerical method chosen in this work to simulate the scattering of light on 

microscopic structures was the EET.  The theory behind the method has been given, 

multiple techniques for solving the eigenmode problem have been presented, and the 

strengths and weaknesses of each technique have been discussed.  The EET has 

proven effective in calculating the TF of an uncoated fiber tip, but the high quality 

simulation of the optical field possible by using the semi-analytical approach for 

solving the eigenmode problem relies on the correct determination of the propagations 

constants.  It seems possible to model metal-coated fiber tips, however, the 

determination of propagation constants in zones with complex refractive index 

profiles is very cumbersome.  If an efficient method for finding propagation constants 

is developed, reasonably fast simulations of TFs of metal coated fiber tips should be 

possible and the properties of the TFs of these probes can be explored. 

The sample subject to subwavelength characterization in this work was a deep grating, 

and an optimization technique to identify the grating topography was tested.  The 

technique becomes cumbersome when analyzing a geometry modeled using a large 

number of free parameters, but if the number of parameters is limited, the technique 

works well.  However, it leaves us with the problem of establishing bijectivity of the 

geometry-image mapping.  The illumination of samples with different topographies 

can result in the same optical field distribution, and the optimization technique is only 

efficient when we possess an understanding of the measurements necessary to 

establish a one-to-one correspondence between object and image.  In this work, an 

optically equivalent topography, which is similar, but not identical to the true sample 

topography has been identified. 

Furthermore, the calculation of the TF of SNOM fiber tips has been presented.  The 

knowledge obtained of the TF has been used to perform an in-depth analysis of the 

relation between the free-space optical field and the measured SNOM image.  When 

working with uncoated fiber tips, we have learned that the detected SNOM image 

only represents the optical field intensity distribution in an effective plane of detection 

in a few particular cases.  In general, an inversion operation must be performed to 
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reconstruct the optical field.  This reconstruction requires exact knowledge of the 

transfer function of the fiber tip and the capability to measure phase and power of the 

two orthogonal modes of the single-mode fiber individually.  To extend the 

achievable resolution, not only good coupling, but also a flat amplitude of the transfer 

function is preferred.  Our simulations indicate that for uncoated fiber tips at the 

wavelength of 633 nm, a tip having a ~ 90° degree opening angle is the optimal 

choice.  The tip can be sharp, but an equally good coupling is obtained for a cut-off tip 

with diameter dt up to 1 µm. 

The TF was determined for an uncoated conical fiber tip with an opening angle 

identical to that of the fiber tip used in the experimental SNOM measurements.  

However, the tip used in the experiment deviates from the ideal conical profile, and 

this deviation prevented us from reproducing the experimental SNOM images in our 

simulation.  As the reconstruction of the free-space optical field requires exact 

knowledge of the TF, we concluded that the imperfections in the realistic tip profile 

pose an obstacle to the correct interpretation of the SNOM images and that better tip 

fabrication techniques are required to improve the correspondence between simulation 

and experiment. 

Finally, the possibility of computing the LDOS of micropillars was briefly touched 

upon.  Even though parasitic reflections from metal walls clearly influence the LDOS 

in an initial calculation, the EET still seems to be an efficient tool in evaluating the 

LDOS in a micropillar. 
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8 Appendix 

8.1 Mode profiles 

In this section, the analytic expressions for the mode profiles used in the plane-wave 

expansion technique and in the semi-analytical approach are given.  These solutions to 

the wave equation are valid for uniform refractive index profiles.  To obtain the 

profiles we consider the wave equation for the Ez and Hz field components in the 

frequency domain: 
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Here 2
0

2 kk rε= , and the time dependence )exp( tiω−  is assumed.  The z dependence is 

separated using )exp()()( zifF zz β⊥= rr , and Eq. (8.1) becomes: 
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This equation allows two classes of solutions:  The transverse electric (TE) modes 

having Ez equal to zero and the transverse magnetic (TM) modes with Hz equal to 

zero.  Eqs. (8.1) and (8.2) only describe z components of the field, however, when 

these are known the remaining four field components can be calculated using the 

relations: 
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that are obtained by manipulation of Maxwell’s equations.   

The analytic solutions in Cartesian and cylindrical coordinates are given below.  In 

both coordinate sets, we consider the boundary condition of a perfectly conducting 

metal wall requiring that the tangential components of the electric field should be 

zero.  In Cartesian coordinates, we also consider the periodic boundary condition. 
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8.1.1 Mode profiles in Cartesian coordinates 

If we express the Laplace operator in Cartesian coordinates, Eq. (8.2) becomes: 
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and its solutions are products of exponential, sine and cosine functions.  The exact 

nature of the solutions depends on the boundary conditions. 

Solutions in a geometry limited by metal walls at 0=x , xLx = , 0=y  and yLy =  

are given in Table 8.1 below: 

 

Field component TE modes TM modes 

ex )sin()cos(/ 2
0 byaxbhiωµ−  )sin()cos(/ 2 byaxahiβ  

ey )cos()sin(/ 2
0 byaxahiωµ  )cos()sin(/ 2 byaxbhiβ  

ez 0 )sin()sin( byax  

hx )cos()sin(/ 2 byaxahiβ−  )cos()sin(/ 2
0 byaxbhiωε−  

hy )sin()cos(/ 2 byaxbhiβ−  )sin()cos(/ 2
0 byaxahiωε  

hz )cos()cos( byax  0 

Table 8.1:  TE and TM modes in a rectangular vacuum geometry with metal walls. 

 

To respect the boundary conditions, the conditions xx Lna /π=  and yy Lnb /π=  

apply with nx and ny being positive integers.  Either nx or ny may be zero, but not both 

at the same time.  The relation 22222 hbak ≡+=− β  also holds. 

When using the periodic boundary condition stating that 

)()( ⊥⊥ =++ reuure yyyxxx LnLn , a field component of a solution is usually chosen to 

be a travelling wave of the form )exp( ibyiax + .  However, in the plane-wave 

expansion technique, complex basis modes lead to a complex-valued operator matrix, 

which is computationally much more demanding to solve than a real-valued matrix.  

For this reason we employ sine and cosine functions as basis set when using periodic 

boundary conditions, even though this leads to an increased amount of book-keeping.  

The in-plane electric field components of the basis modes used when the boundary 

conditions are periodic are listed below: 
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TE modes Field 
component Set 1 Set 2 Set 3 Set 4 

ex )cos()cos(2 byaxa
h
iβ  )sin()cos(2 byaxa

h
iβ  )cos()sin(2 byaxa

h
iβ−  )sin()sin(2 byaxa

h
iβ−  

ey )sin()sin(2 byaxb
h
iβ−  )cos()sin(2 byaxb

h
iβ  )sin()cos(2 byaxb

h
iβ−  )cos()cos(2 byaxb

h
iβ  

 TM modes 

 Set 1 Set 2 Set 3 Set 4 

ex )cos()cos(2
0 byaxb

h
iωµ  )sin()cos(2

0 byaxb
h

iωµ
−  )cos()sin(2

0 byaxb
h

iωµ  )sin()sin(2
0 byaxb

h
iωµ

−  

ey )sin()sin(2
0 byaxa

h
iωµ  )cos()sin(2

0 byaxa
h

iωµ  )sin()cos(2
0 byaxa

h
iωµ

−  )cos()cos(2
0 byaxa

h
iωµ

−

Table 8.2:  TE and TM modes in a rectangular vacuum geometry with  
periodic boundary conditions. 

 

The conditions on a and b are xx Lna /2π=  and yy Lnb /2π=  with nx and ny being 

positive integers.  When they appear in a cosine function, nx and ny can also take the 

value of zero.  As previously we have 22222 hbak ≡+=− β .   

8.1.2 Mode profiles in cylindrical coordinates 

Writing out the Laplace operator in cylindrical coordinates, Eq. (8.2) is given by: 
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We proceed by separating the angular dependence of the field using 

)exp()()( θilrhh zz =⊥r  and obtain: 
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When 0222 >≡− hk β , the solutions to this equation are the Bessel functions Jl(hr) 

and Yl(hr) of first and second kind.  If 0222 <−≡− qk β , the solutions are the 

modified Bessel functions Il(qr) and Kl(qr) of first and second kind.  Even though all 

four functions, depending on the sign of 22 β−k , are solutions, only the Bessel 

function Jl(hr) fulfils the boundary conditions both at the center 0=r , where the field 
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should remain finite, and at the metal wall rLr = .  The following table lists the mode 

profiles: 

 

Field component TE modes TM modes 

er )()/(/ 2
0 hrJrlh lωµ−  )()/(/ 2 hrJrhi l∂∂β  

eθ )()/(/ 2
0 hrJrhi l∂∂− ωµ  )()/(/ 2 hrJrlh lβ−  

ez 0 )(hrJ l
 

hr )()/(/ 2 hrJrhi l∂∂β  )()/(/ 2 hrJrlh lωε  

hθ )()/(/ 2 hrJrlh lβ−  )()/(/ 2 hrJrhi l∂∂ωε  

hz )(hrJ l
 0 

Table 8.3:  TE and TM modes in vacuum geometries in cylindrical coordinates with angular 
dependence given by exp(ilθθθθ). 

 

The boundary condition requires that 0)( =rl hLJ  and 0)()/( =∂∂ rl hLJr  for TM and 

TE modes respectively.  Zero points of the functions )(rJ l  and )()/( rJr l∂∂  must 

thus be determined, and this is done using a standard search routine.   

It is useful to also introduce the “sum and difference” coordinates defined by the 

transformations ( ) 2// ifff r θ+≡+  and ( ) 2// ifff r θ−≡− .  Using the Bessel 

recurrence relations ( ) ll JrrlJ ∂∂=± //1 � , the solutions from Table 8.3 become: 

 

Field component TE modes TM modes 

e+ 2/)(/ 1 hrhJ l−− ωµ  2/)(/ 1 hrhJi l−β  

e− 2/)(/ 1 hrhJ l+− ωµ  2/)(/ 1 hrhJi l+− β  

ez 0 )(hrJ l
 

h+ 2/)(/ 1 hrhJi l−β  2/)(/ 1 hrhJ l−ωε  

h− 2/)(/ 1 hrhJ l+− β  2/)(/ 1 hrhJ l +ωε  

hz )(hrJ l
 0 

Table 8.4:  TE and TM modes in vacuum geometries in “sum and difference” cylindrical 
coordinates with angular dependence given by exp(ilθθθθ). 

 

We have now gotten rid of the derivative and the factor 1/r, and the solutions are now 

easier to work with. 
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8.2 Derivation of reflection and transmission matrices 

Referring to Fig. 3.16, we require that the tangential components of the electric and 

magnetic fields are continuous at the interface.  From Eqs. (3.31) and (3.32) we 

obtain: 

 jmIII
j

jIIjmIII
j

jImI TR ;,;;;,;;;; )()()( �� ⊥⊥⊥⊥⊥⊥ =+ rerere  (8.7) 

 jmIII
j

jIIjmIII
j

jImI TR ;,;;;,;;;; )()()( �� ⊥⊥⊥⊥⊥⊥ =− rhrhrh . (8.8) 

We now introduce the inner product given by: 

 ( )� ⊥⋅×= ruhehe dznmnm . (8.9) 

In the following, we assume that our mode profiles have been normalized using this 

inner product.  If our eigenmodes are non-degenerate, we then have from the 

orthogonality relation of Eq. (3.18) that mnnqmq δ=,, he , where q is the layer index.  

Multiplying the bra version of Eq. (8.7) with nI ,h  and the ket version of Eq. (8.8) 

with nI ,e  gives: 

 �=+
j

jmIIInIjIInmIIImn TR ;,;;;, heδ  (8.10) 

 �=−
j

jmIIIjIInInmIIImn TR ;,;;;, heδ . (8.11) 

Adding and subtracting these two equations, we obtain: 

 ( ) jmIII
j

jIInInIjIImn T ;,;;;;2 � += heheδ  (8.12) 

 ( ) jmIII
j

jIInInIjIInmIII TR ;,;;;;;, 2
1
� −= hehe . (8.13) 

In matrix form this can be written as: 

 
1

, 2
−
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 += III

T

IIIIIIT hehe  (8.14) 

 IIIIII

T

IIIIII TR ,, 2
1

�
	



�
�


 −= hehe . (8.15) 
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These equations define the reflection and transmission matrices.  The expressions for 

IIIR ,  and IIIT ,  are derived in a similar manner. 

8.3 Expressions for the scattering matrices 

Referring to Fig. 3.17 and the subsequent discussion, the total reflection of light 

incident from below by the three-layer structure is given by the sum: 

 
( )

( ) ...,
2

,,,,

,,,,,,,,,,

++

++=

IIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

TPRPRPRPT

TPRPRPRPTTPRPTRSR
, (8.16) 

where the product IIIIIIIIIIII PRPR ,,  describes a round trip in layer II, and the double 

bars have been omitted for simplicity.  Using the relation 12 )1(...1 −−=+++ AAA , 

valid for matrices with absolute eigenvalues below unity, the defining recursive 

relation becomes: 

 ( ) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TPRPRPRPTRSR ,
1

,,,,,, 1 −−+= . (8.17) 

As explained in section 3.5.2, the corresponding scattering matrix qSR ,1  for 3>q  can 

be determined simply by replacing the matrices IIIR , , IIIT ,  etc. with 1,1 −qSR , 1,1 −qST  

etc.  The matrix qST ,1  is determined in a similar manner. 

The defining recursive relations for all the scattering matrices used in the eigenmode 

expansion technique are given below: 

 ( ) qqqqqqqqqq STPRPSRPTST ,1
1

1,1,1,1,1 1 −
+++ −=  (8.18) 

 ( ) qqqqqqqqqqqqq STPRPSRPRPSTSRSR ,1
1

1,1,1,1,,11,1 1 −
+++ −+=  (8.19) 

 ( ) qqqqqqqqqqqqqqqqqqq TPSRPRPSRPRPSTTPSTST ,11,
1

1,1,1,1,,11,1,1 1 +
−

++++ −+=  (8.20) 

 ( ) qqqqqqqqqqqqqqq TPSRPRPSRPTRSR ,11,
1

1,1,1,,11,1 1 +
−

++++ −+=  (8.21) 

 ( ) qnqqqqnqqqqqnqqqqqnqqqqn STPRPSRPRPSRPTSTPTST ,1,
1

,1,,1,,1,1, 1 −
−

−−−− −+=  (8.22) 

 ( ) qnqqqqnqqqqqnqqnqn STPRPSRPRPSTSRSR ,1,
1

,1,,,1, 1 −
−

−− −+=  (8.23) 

 ( ) qqqnqqqqqnqnq TPSRPRPSTST ,1
1

,1,,,1 1 −
−

−− −=  (8.24) 

 ( ) qqqnqqqqqnqqqqqqnq TPSRPRPSRPTRSR ,1
1

,1,,1,,1,1 1 −
−

−−−− −+=  (8.25) 
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In the above expressions it is understood that 2,12,1 RSR = , 2,12,1 TST =  etc. 

Finally the expansion coefficients +
qa  and −

qa  describing the forward and backward 

propagating parts of the field in a layer q in a structure with a total of n layers are 

given by the expressions: 

 )''()1( ,1,1,1
1

,1,
−+−+ +−= nqnqqqqnqqqq aSTPSRaSTPSRPSRa  (8.26) 

 )''()1( ,1,1,
1

,1,
−+−− +−= nqnqqnqqnqqqq aSTaSTPSRPSRPSRa . (8.27) 

From these coefficients, the electric field is then given by: 

 ( )� ⊥⊥
−−−−+
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nqq

qqnqqqnq eaea )()( ;;
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)(
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1,;,1; rerE ββ . (8.28) 

8.4 Derivation of Eq. (5.5) 

Using bra-ket notation, we define ( ) θθ erk ⊥⊥ ⋅≡ isk exp,,  and 

( ) kipk erk ⊥⊥ ⋅≡ exp,,θ  and Eq. (5.4) becomes: 

 ( )� ⊥⊥ += krE dpkkFskkFz psd ,,),(,,),(),( θθθθ . (8.29) 

We now introduce the coupling operator Ĥ  coupling the plane wave sk ,,θ  to the 

guided mode ( )ϕir ±± exp)(1G  of angular momentum ±1 of a single-mode fiber.  The 

coupling coefficient is then of the form skH ,,ˆ1 θ± .  We then exploit that, due to 

cylindrical symmetry, the rotation operator θziJe−  and the coupling operator Ĥ  

commute: 

 skHeskeHskH iiJ z ,0,ˆ1,0,ˆ1,,ˆ1 ±=±=± − θθθ � . (8.30) 

Similar expressions hold for p-polarization.  We now define coupling coefficients 

skHikH s ,0,ˆ12)(1 ±≡±  and pkHkH p ,0,ˆ12)(1 ±≡± .  The coupling of the total 

field to the fiber mode becomes: 

� ⊥⊥⊥
±±

⊥
± ⋅+�

	



�
�


 += krkr diikFkHkFkH
i

A ppss )exp(),()(
2

1
),()(

2
1

)( 111 θθθ � . (8.31) 
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This expression describes the coupling to the guided modes ( )ϕir ±± exp)(1G .  

However, for a weak index contrast between core and cladding, there exist linear 

combinations )(, ⊥rG yx  of the modes ( )ϕir ±± exp)(1G , which, to a good 

approximation, are linearly polarized.  We are therefore usually more interested in 

coupling to the modes )(, ⊥rG yx , and we thus define ( ) 2/11 −+=x  and 

( ) )2/(11 iy −−= .  Now, as incoming s- and p-polarized light of angle θ = 0 is 

directed along the y and x axis respectively, we have 0,0,ˆ =skHx  and 

0,0,ˆ =pkHy  and obtain the properties sss HHH ≡−= −11  and ppp HHH ≡= −11  for 

the coupling coefficients.  The coupling of the field to the mode profiles )(,, ⊥rG yxyxA  

is then given by the expression: 
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