

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Finite Discrete Gabor Analysis

Søndergaard, Peter Lempel; Hansen, Per Christian; Christensen, Ole

Publication date:
2007

Link back to DTU Orbit

Citation (APA):
Søndergaard, P. L., Hansen, P. C., & Christensen, O. (2007). Finite Discrete Gabor Analysis.

http://orbit.dtu.dk/en/publications/finite-discrete-gabor-analysis(ca4be7e7-bb54-4247-aa3a-e733feebde78).html

Finite Discrete Gabor Analysis
Peter L. Søndergaard

Institut for Matematik – DTU 2007

g=pgauss(15);

c=reshape(eye(25),5,5,25);

F=idgt(c,g,3);

F=[F;F(L,:)];

plot(F);

2

Abstract

Gabor analysis is a method for analyzing signals through the use of a set of basic building
blocks. The building blocks consists of a certain function (the window) that is shifted
in time and frequency. The Gabor expansion of a signal contains information on the
behavior of the signal in certain frequency bands at certain times.

Gabor theory can be formulated for both functions on the real line and for discrete
signals of �nite length. The two theories are largely the same because many aspects come
from the same underlying theory of locally compact Abelian groups.

The two types of Gabor systems can also be related by sampling and periodization.
This thesis extends on this theory by showing new results for window construction. It
also provides a discussion of the problems associated to discrete Gabor bases.

The sampling and periodization connection is handy because it allows Gabor systems
on the real line to be well approximated by �nite and discrete Gabor frames. This method
of approximation is especially attractive because e�cient numerical methods exists for do-
ing computations with �nite, discrete Gabor systems. This thesis presents new algorithms
for the e�cient computation of �nite, discrete Gabor coe�cients.

Reconstruction of a signal from its Gabor coe�cients is done by the use of a so-called
dual window. This thesis presents a number of iterative algorithms to compute dual and
self-dual windows.

The Linear Time Frequency Toolbox is a Matlab/Octave/C toolbox for doing basic
discrete time/frequency and Gabor analysis. It is intended to be both an educational and
a computational tool. The toolbox was developed as part of this Ph.D. project to provide
a solid foundation for the �eld of computational Gabor analysis.

3

Dansk resumé

Gabor analyse er en metode til at analysere signaler ved brug af nogle basale 'byggesten'.
Byggestenene består af en funktion (vinduet), som �yttes i både tid og frekvens. En
Gabor ekspansion af et signal indeholder information om signalets opførsel i bestemte
frekvensbånd til bestemte tidspunkter.

Gabor teori kan formuleres både for funktioner på den reele akse og for endeligt diskrete
signaler. De to teorier minder meget om hinanden fordi de udspringer af den samme
grundlæggende teori om lokalkompakte abelske grupper.

De to slags Gabor systemer kan også relateres via sampling og periodisering. Denne
afhandling udbygger denne teori og viser nye resultater indenfor konstruktion af vinduer,
samt giver en diskussion af problemerne relaterede til endeligt diskrete Gabor baser.

Relationen via sampling og periodisering er nyttig fordi den kan bruges til at ap-
proksimere Gabor systemer på den reele akse ved brug af endeligt diskrete Gabor sys-
temer. Denne approksimationsmetode er særligt attraktiv fordi der �ndes e�ektive nu-
meriske metoder til beregning med endeligt diskrete Gabor systemer. Denne afhandling
præsenterer nye algoritmer til e�ektiv beregning af Gabor koe�cienter for endelige sig-
naler.

Rekonstruktion af et signal udfra dets Gabor koe�cienter kan ske ved brug af et såkaldt
dualt vindue. I afhandlingen præsenteres en række iterative algoritmer til beregning af
duale og selv-duale vinduer.

�The Linear Time Frequency Toolbox� er en programpakke skrevet i Matlab/Octave/C
til simpel beregning af diskret tids/frekvens- og Gabor analyse. Den er ment som både et
undervisningredskab og som et beregningsmæssigt værktøj. Programpakken er udviklet
som en del af dette ph.d. projekt for a give et solidt fundament for numerisk Gabor
analyse.

4

Preface

This thesis is submitted in partial ful�lment of the requirements for obtaining the Ph.D.-
degree. The work has been carried out at the Department of Mathematics, Technical
University of Denmark from September 2002 to April 2007 under the supervision of Do-
cent Ole Christensen, MAT, DTU and Professor Per Christian Hansen, IMM, DTU. The
Ph.D. study was funded by the Danish Technical Research Council through the WAVES
programme, http://www.control.aau.dk/waves/.

Acknowledgements

I would like to thank my advisors Per Christian Hansen and Ole Christensen; Per Christian
for teaching me the importance of good programming, numerics and creative hand-waving
and Ole for teaching me the accuracy and rigor of a mathematician.

During my travel abroad I stayed with the Numerical Harmonic Analysis Group at
the Department of Mathematics, Vienna. I would like to thank Hans Feichtinger for
welcomming me and for all the help and inspiration he has given me, all the people
at NuHAG for their hospitality and discussions. In particular I wish to thank Hans
Feichtinger and Karlheinz Gröchenig for organizing the �special semester on modern time-
frequency analysis� during 2005.

I wish to thank my coauthers A.J.E.M Janssen, Bruno Torrésani and Peter Balazs
providing me the gift of coorperation. Without your ideas I would only have gotten half
the way.

Finally I wish to thank my wife and children for keeping my mind to better things
than computers and for comming with me to Vienna.

Overview

The thesis is build up of three lines of interest in the �eld of Gabor analysis:

1. The connection between Gabor systems for L2 (R), l2 (Z), L2 (T) and CL. Research
in this direction is presented in Chapter 2 and 3.

2. E�cient algorithms for Gabor systems for CL. Research in this direction is presented
in Chapter 4 and 5.

3. The construction of a Gabor toolbox. An early version of a paper on the toolbox
is presented in Chapter 6 and the reference manual for the toolbox is included as
Appendix B.

5

Chapter 1 provides a quick introduction to Gabor analysis necessary for the understanding
of the thesis and provides a general discussion of the results presented in the rest of the
thesis.

Appendix A presents a small taxonomy of symmetric Gabor and Wilson transforms
implemented by the toolbox.

Most of the research presented in this thesis have previously been published / submit-
ted for publication. The papers are in order of submission:

• Søndergaard, P.L. Gabor Frames by Sampling and Periodization. Published online
by Advances in Computational Mathematics, 2007. Presented in this thesis as
Chapter 2.

• Janssen, A.J.E.M and Søndergaard, P.L. Iterative algorithms to approximate canon-
ical Gabor windows: Computational aspects. Published online by Journal of Fourier
Analysis and Applications, 2007. Presented in this thesis as Chapter 5.

• Søndergaard, P.L. Symmetric, discrete fractional splines and Gabor systems. Sub-
mitted to International Journal of Wavelets, Multiresolution and Information Pro-
cessing. Presented in this thesis as Chapter 3.

• Søndergaard, P.L. An E�cient Algorithm for the Discrete Gabor Transform using
full length Windows. Submitted to IEEE Signal Processing Letters. Presented in
this thesis as Chapter 4.

• Søndergaard, P.L, Torresani, B. and Balazs, P. Algorithm XXX: The Linear Time
Frequency Analysis Toolbox. Will be submitted to Transactions on Mathematical
Software. Presented in the thesis as Chapter 6.

Peter L. Søndergaard
March, 2007

6

Contents

1 Gabor analysis 11
1.1 Mathematical background . 11

1.1.1 Fourier transformation . 11
1.1.2 Frames and Gabor systems . 11
1.1.3 Window classes . 13
1.1.4 Zak transforms and Gabor analysis 15

1.2 From the continuous to the discrete . 15
1.2.1 Window functions by Poisson summation 17
1.2.2 Discrete Balian Low . 20

1.3 E�cient algorithms . 23
1.3.1 Factorization methods . 23
1.3.2 Iterative algorithms . 24

2 Gabor frames by sampling and periodization 27
2.1 Abstract . 27
2.2 Introduction . 27
2.3 Basic theory . 29

2.3.1 The Fourier transforms . 29
2.3.2 The translation, modulation and dilation operators 29
2.3.3 Window classes . 30
2.3.4 The sampling and periodization operators 31
2.3.5 Frames for Hilbert spaces . 32
2.3.6 Gabor systems . 33

2.4 Between the spaces . 33
2.4.1 From L2(R) to l2(Z). 34
2.4.2 From L2(R) to L2([0, L]) . 35
2.4.3 From L2([0, L]) to CL . 36
2.4.4 From l2(Z) to CL . 37
2.4.5 From L2(R) to CL . 37

2.5 Going back . 38
2.6 Proofs . 40

2.6.1 Some additional theory. 40
2.6.2 Proofs of section 2.4.2 . 42

7

3 Symmetric, discrete fractional splines and Gabor systems 43
3.1 Abstract . 43
3.2 Introduction . 43
3.3 De�nitions . 44
3.4 Symmetric splines for the real line . 46
3.5 Discrete splines by sampling and periodization 49
3.6 Discrete splines by the DFT . 51
3.7 Numerical results . 52
3.8 Conclusion . 56
3.9 Derivation of the periodic, discrete fractional splines by sampling and pe-

riodization . 56

4 An E�cient Algorithm for the Discrete Gabor Transform using full
length Windows 59
4.1 Abstract . 59
4.2 Introduction . 59
4.3 De�nitions . 60
4.4 The method . 61
4.5 Extensions . 65
4.6 Special cases . 65
4.7 E�cient implementation . 65

5 Iterative algorithms to approximate canonical Gabor windows: Compu-
tational aspects 67
5.1 Abstract . 67
5.2 Introduction . 67
5.3 Paper outline and results . 71
5.4 Frame operator calculus and basic inequalities 72
5.5 Norm scaling . 73

5.5.1 Iterations for approximating gt . 73
5.5.2 Iterations for approximating gd . 74

5.6 Initial scaling . 75
5.7 Considerations in the adjoint orbit space 77

5.7.1 Estimate for upper frame bound . 79
5.7.2 Error measure . 79
5.7.3 In�uence of out-of-space components 80

5.8 Zak domain considerations . 81
5.9 Sampling and periodization of Gabor frames 83
5.10 Implementational aspects . 84

5.10.1 Matrix representation and the SVD 85
5.10.2 Factorization of �nite, discrete Gabor systems 86
5.10.3 Other methods . 87
5.10.4 Implementational costs . 88
5.10.5 Stopping criterion . 89
5.10.6 Window functions . 89

5.11 Experiments . 89
5.11.1 Convergence and divergence of norm scaling 90

8

5.11.2 Comparison with other methods . 92
5.11.3 Number of iterations . 94
5.11.4 Choosing an initial scaling . 95
5.11.5 Summary from the numerical experiments 95

5.12 A result on Condition A' . 96

6 Algorithm XXX: The Linear Time Frequency Toolbox 98
6.1 Abstract . 98
6.2 Introduction . 98
6.3 Basic Fourier and time-frequency analysis 101
6.4 Time/Frequency transforms . 102

6.4.1 The discrete Gabor transform . 102
6.4.2 The discrete Wilson transform . 104
6.4.3 The modi�ed discrete cosine transform (MDCT) 105

6.5 Window design . 105
6.5.1 FIR windows . 106
6.5.2 IIR windows . 107
6.5.3 Symmetries . 107
6.5.4 Dual / tight windows . 107
6.5.5 Non-canonical dual window . 108

6.6 Other tools . 108
6.6.1 Time variant �ltering . 108
6.6.2 Plotting routines . 108

6.7 Signal processing tasks . 109
6.7.1 Compression . 109
6.7.2 Denoising . 109
6.7.3 Feature extraction using formants 109
6.7.4 OFDM transmission . 110

6.8 Implementation . 110

7 Symmetric Gabor and Wilson systems 111
7.1 Symmetries of discrete Fourier analysis . 111
7.2 The symmetric DGT transforms . 112
7.3 The symmetric Wilson transforms . 112

7.3.1 DWILT . 113
7.3.2 DWILTII . 114
7.3.3 DWILTIII . 116
7.3.4 DWILTIV . 116

A Symmetric Gabor and Wilson systems 117
A.1 Symmetries of discrete Fourier analysis . 117
A.2 The symmetric DGT transforms . 118
A.3 The symmetric Wilson transforms . 118

A.3.1 DWILT . 119
A.3.2 DWILTII . 120
A.3.3 DWILTIII . 122
A.3.4 DWILTIV . 122

9

B Reference manual 123
B.1 The Linear Time-Frequency Analysis Toolbox. 124

B.1.1 Basic Fourier/TF analysis . 124
B.1.2 Gabor systems. 128
B.1.3 Window construction for Gabor frames. 132
B.1.4 Wilson bases and MDCT. 135
B.1.5 Window functions. 144
B.1.6 Time Varying Filtering. 149
B.1.7 Conditions numbers. 150
B.1.8 Plots. 152
B.1.9 Cosine and Sine transforms. 155

B.2 LTFAT - Object oriented interface . 160
B.2.1 Setup and deletion of object . 160
B.2.2 Analysis and synthesis . 161
B.2.3 Information . 164
B.2.4 Condition numbers etc. 165
B.2.5 Multipliers . 165

B.3 LTFAT - Signal processing tools . 166
B.3.1 Working with coe�cients. 166
B.3.2 Extra signal processing tools. 168

B.4 LTFAT - Examples . 169
B.4.1 Simple examples . 169
B.4.2 Applications . 169
B.4.3 Aspect of particular functions . 175
B.4.4 Misc: . 179

B.5 LTFAT - Signals . 181
B.5.1 Sound signals. 181
B.5.2 Images. 182

10

Chapter 1

Gabor analysis

1.1 Mathematical background

In this section we will make a brief introduction to Gabor analysis necessary for the
understanding of the thesis. The material is mostly taken from [41]. The book [41]
provides an excellent exposition of Gabor analysis on L2

(
Rd
)
.

Fourier and Gabor analysis can be formulated in terms of locally compact Abelian
(LCA) groups. An LCA group can be seen as an abstraction of the spaces R, Z, T or CL

and many other spaces. The bene�t of using LCA groups is that theory developed for
LCA groups will work for any of the four spaces just mentioned. In the introduction to
[41], it is noted that almost all material in the book (except for certain sections) hold for
function spaces on LCA groups and not just for L2 (R).

In this thesis we will not pursue the LCA connection, but just mention that it is
responsible for the similarities of many of the formulas shown.

1.1.1 Fourier transformation

The basis of all time-frequency analysis is the Fourier transform.
The Fourier transform FR : (L1 ∩ L2) (R) 7→ L2(R) is de�ned by

(FRf) (ω) =

∫
R
f(x)e−2πiωxdx (1.1)

The Fourier transform FR can be extended to a bounded, linear, unitary operator, FR :
L2(R) → L2(R).

The Discrete Fourier Transform (DFT) of a signal f ∈ CL is de�ned by

(FLf) (k) =
1√
L

L−1∑
l=0

f(l)e−2πikl/L. (1.2)

1.1.2 Frames and Gabor systems

A frame is an extension of the mathematical concept of a basis. All bases are frames, but
a frame might not be a basis. One of the de�ning characteristics of as basis is that it is
linearly independent. A frame might not be linearly independent, but in return it can be

11

overcomplete, i.e. consist of more vectors than strictly neccesary to span a space. Frames
are thoroughly treated in the book [23].

The precise de�nition of a frame is as follows:

De�nition 1.1.1. A family of elements {ej}j∈J in a separable Hilbert space H is called
a frame if constants 0 < A ≤ B <∞ exist such that

A ‖f‖2
H ≤

∑
j∈J

∣∣〈f, ej〉H
∣∣2 ≤ B ‖f‖2

H , ∀f ∈ H. (1.3)

The constants A and B are called lower and upper frame bounds, respectively.

Two frames for a Hilbert space H, {ej} and {fj}, are called dual frames if and only if
f =

∑
j∈J 〈f, ej〉 fj, ∀f ∈ H.

The frame operator of a frame {ej}j∈J for a Hilbert space H is de�ned by

S : H → H : Sf =
∑

j

〈f, ej〉H ej, (1.4)

where the series de�ning Sf converges unconditionally for all f ∈ H.
The condition (1.3) ensures that the frame operator is both bounded and invertible

on H.
The inverse frame operator can be used to give a decomposition of any function f ∈ H:

f =
∑

j

〈
f, S−1ej

〉
ej, ∀f ∈ H. (1.5)

The frame {S−1ej} is known as the canonical dual frame.
A tight frame is a frame where the frame bounds are equal, A = B. If A = B = 1 the

frame is known as a normalized tight frame, or as a Parseval frame, because the frame
condition (1.3) resembles the Parseval equality for orthogonal bases.

The advantage of a tight frame is that reconstruction can be done by the frame itself:

f =
1

A

∑
j

〈f, ej〉 ej, ∀f ∈ H. (1.6)

A special tight frame related to a frame {ej} is the canonical tight frame given by{
S−1/2ej

}
.

A Gabor system (g, α, β) is a family of functions gm,n ∈ L2 (R) of the following form

gm,n (x) = e2πimβxg (x− nα) , m, n ∈ Z,

where g ∈ L2(R) and α, β > 0.
A Gabor system that is also a frame for L2 (R) is called a Gabor frame. The density

of a Gabor frame is given by αβ. Three important cases for the value of αβ are given by

αβ > 1: The undersampled case. In this case a Gabor system cannot be a basis or a
frame.

αβ = 1: The critially sampled case. In this case, if a Gabor system is frame then it is
also a basis.

12

αβ < 1: The oversampled case. In this case, a Gabor system cannot be a basis, but it
may very well be a frame.

The Gabor frame operator S commutes with time and frequency shifts and this property
makes the canonical dual and canonical tight frames of a Gabor frame again be Gabor
frames. The big advantage of this is that in order to �nd the canonical dual or tight frame,
we do not need to apply S−1 or S−1/2 to all frame elements, but only to the window in
order to compute the window gd of the canonical dual frame or the window gt of the
canonical tight frame:

gd = S−1g, (1.7)

gt = S−1/2g. (1.8)

These two windows are known as the canonical dual and canonical tight windows.
Gabor analysis for CL can be de�ned entirely similar to that of L2 (R). We denote for

g ∈ CL and a, b ∈ N by (g, a, b) the collection of time-frequency shifted windows

gna,mb, n ∈ Z,m ∈ Z, (1.9)

where for j, k ∈ Z we denote

gj,k = e2πikl/Lg(l − j), l = 0, . . . L− 1. (1.10)

Note that it must hold that L = Na = Mb for some M,N ∈ N. Gabor system can be
written as

ab

L
=

a

M
=

b

N
. (1.11)

The density divides Gabor systems into undersampled, critically sampled and oversampled
systems just as in the L2 (R) case.

The Discrete Gabor transform of a signal f ∈ CL is the coe�cients c ∈ CM×N com-
puted by

c(m,n) = 〈f, gna,mb〉 (1.12)

=
l=L−1∑

l=0

e−2πilmb/Lf(l)g(l − na). (1.13)

The Gabor frames presented in these section uses a rectangular grid in time and
frequency. It is possible to generalize Gabor system to be formulated for general (non-
separable) lattices, see Figure 1.1. The �gure shows the position of the atoms of a Gabor
frame in the time-frequency plane for both a rectangular and a quinquix (hexagonal)
lattice. We shall not work with these kind of Gabor frames in this thesis. They are
described in the L2 (R) setting in [41, Chapter 9] and discrete Gabor systems for non-
separable lattice are described in the papers [102, 103, 32, 65].

1.1.3 Window classes

We de�ne the Wiener space by

W (R) =

{
f

∣∣∣∣∑
n∈Z

esssup
x ∈ [0, 1]

|f (x+ n)| <∞

}
.

13

v1

v2

Fr
eq

ue
nc

y

b

Fr
eq

ue
nc

y

a

TimeTime

Figure 1.1: A rectangular and a skew (quinqux) grid in the time-frequency plane.

If both f, f̂ ∈ W (R) then we write that f ∈ (W ∩ FW) (R).
If f ∈ (W ∩ FW) (R) then f is continuous and any regular sampling of f belongs to

l1 (Z). This can be stated formally by:

De�nition 1.1.2. The sampling operator Sα : f ∈ (W ∩ FW) (R) 7→ l1 (Z) for α > 0 is
given by

(Sαf) (j) =
√
αf(jα), ∀j ∈ Z. (1.14)

Very similarly, then a periodization of f will be absolutely convergent and the result
will belong to C (T), the space of continuous functions on the torus:

De�nition 1.1.3. The periodization operator PL : (W ∩ FW) (R) → A([0, L]) for L > 0
is given by

PLg(x) =
∑
k∈Z

g(x+ kL), x ∈ [0, L], (1.15)

where A([0, L]) is the space of functions on [0, L] which have an absolutely convergent
Fourier series.

This makes (W ∩ FW) (R) a well suited space for working with samplings and peri-
odizations.

De�nition 1.1.4. A function g ∈ L2(R) belongs to Feichtinger's algebra S0(R) if

‖g‖S0
=

∫
R×R

∣∣∣∣∫
R
g(t)(MωTxϕ) (t)dt

∣∣∣∣ dxdω <∞, (1.16)

where ϕ(t) = e−πt2 is the Gaussian function.

Replacing the Gaussian ϕ in the de�nition of S0 with another non-zero window in the
Schwartz class of smooth, exponentially decaying functions, will give an equivalent norm.

It holds that S0 ⊂ W ∩ FW . An example of a function in W ∩ FW but not in S0 is
presented in [68].

Showing membership of the space W ∩ FW is usually easy because it involves a
separate condition on the function and its Fourier transform. It is much harder for the
space S0, but extensive research has been done on this yielding many characterizations of
S0, see e.g. [37].

14

1.1.4 Zak transforms and Gabor analysis

For f ∈ L2 (R) the Zak transform Zαf by

(Zαf) (x, ω) =
√
α
∑
k∈Z

f (x− lα) e2πiωk, x, ω ∈ R. (1.17)

The Zak transform is quasi-periodic in its �rst variable and periodic in the second:

(Zαf)
(
x+ αn, ω +

m

α

)
= e2πiαnωZα (x, ω) . (1.18)

Because of the quasi-periodicity relation (1.18), the value of Zα is completely determined
by its value on the fundamental domain [0, α)× [0, 1

α
).

The Zak transform is closely related to critically sampled Gabor systems. The canonial
dual window can be computed by a pointwise inversion of the Zak-transform and the frame
bounds of a Gabor system (g, 1, 1) are given by

A = ess inf
x,ω∈[0;1)

|Zg (x, ω)|2 (1.19)

B = ess sup
x,ω∈[0;1)

|Zg (x, ω)|2 (1.20)

If g ∈ W ∩ FW (R) then Zg is continuous. By using this and the quasi-periodizity
relations (1.18) it can be shown that if g ∈ W ∩ FW (R) then Zg contains a zero in the
unit sqaure. This means that (g, 1, 1) cannot be a Gabor frame, because by (1.19) then
the lower frame bound is zero.

The �nite, discrete Zak transform ZKh for h ∈ CL and K ∈ {0, ..., L− 1} such that
L
K
∈ N is de�ne by

(ZKh) (r, s) =

√
K

L

L/K−1∑
l=0

h (r − lK) e2πislK/L, r, s ∈ Z. (1.21)

Just as the Zak transform for L2 (R), the �nite, discrete Zak transform is quasi-periodic
in its �rst variable and periodic in the second,

(ZKh)

(
r + kK, s+ l

K

L

)
= e2πiksK/L (ZKh) (r, s) . (1.22)

The values (ZKh) (r, s) of a �nite, discrete Zak-transform on the fundamental domain
r = 0, . . . , K − 1, s = 0, . . . , K/L− 1 can be calculated e�ciently by K FFT's of length
K/L. To obtain values outside the fundamental domain, the quasi-periodicity relation
(1.22) can be used.

1.2 From the continuous to the discrete

In this section we will present a small survey on the relationsship between Gabor frames for
continuous and discrete spaces. This includes a small discussion of the results published
in [92, 94] (presented in the thesis as Chapter 2 and 3.

15

The Poisson summation formula states that for f ∈ W ∩ FW then:

f̂ (n) =

∫
T

(∑
k∈Z

f (x+ k)

)
e2πinxdx, n ∈ Z (1.23)

In words this means that in order to compute a sampling of the Fourier transform of
a function f , we can do this by computing the Fourier coe�cients of a sampling of the
function. The condition that f ∈ W ∩ FW is only a convenient, su�cient condition, the
formula holds under much weaker conditions.

The Poisson summation formula shall be our standard tool for tool for studying the
relation between Gabor system for various spaces. This is done in the paper [92], printed
in this thesis as Chapter 2.

In the paper [92] (Chapter 2) relationsships between Gabor frames for the four spaces
L2 (R), l2 (Z), L2 (T) and CL. The work in this paper builds mainly upon the work in
[79, 53] by Orr and Janssen and was done in parallel with similar work presented in [62]
by Kaiblinger.

The main result of Janssen presented in [53] is that if the window of a Gabor frame
(g, α, β) for L2 (R) satis�es certain conditions, then a regular sampling of this window will
generate a Gabor frame (gs, a, b) for l2 (Z). The frame bounds for (g, α, β) will also be
frame bounds for (gs, a, b) and the canonical dual windows of (g, α, β) and (gs, a, b) will
also be related by sampling. In the end of [53] it is hinted how to prove similar results
going from Gabor frames for l2 (Z) to CL by periodization.

The paper [92] generalizes (trivially) Janssen's results to hold for a greater range of
values of α, β and extends the results to also cover the transition L2 (R) → L2 (T) by
periodization and L2 (T) → CL by sampling.

Furthermore, the relationsship between Gabor co�ecients computed for the four spaces
are presented. This is an extension of work presented in [79] for critically sampled Gabor
systems. Basically, if cm,n = 〈f, gm,n〉L2(R) and dm,n =

〈
f s, gs

m,n

〉
l2(Z)

then the co�cients
d will be a periodization in the frequency variable of the coe�cients c. This is closely
related to the aliasing phenomena for Fourier coe�cients, where high-order frequencies
are aliased to low order frequencies. For the relationsship L2 (R) → L2 (T) the coe�cients
are periodized in the time variable instead. These results holds under the condition that
both f, g ∈ S0 (R) (or the similar space to S0 on Z or T), because the proof uses the
Poisson summation formula. While this is a natural condition on the window g, it is
sometimes a too strong condition on f .

The last type of result presented in [92] is an extension of the result on canonical duals
to also hold for non-canonical dual windows: if γ is a dual window of (g, α, β) then γs is
a dual window of (gs, a, b).

The method for going all the way from L2 (R) to CL by sampling and periozation is
summed up in 2.4.13, which we repeat below:

Theorem. Let g ∈ S0(R), αβ = a
M

= b
N

and Mb = Na = L with a, b,M,N,L ∈ N and
assume that (g, α, β) is a Gabor frame for L2(R) with canonical dual window γ0. Then(
gsd, a, b

)
is a Gabor frame for CL with the same frame bounds and canonical dual window

16

γ0,sd. The two functions are given by

gsd(l) =

√
α

a

∑
k∈Z

g
(α
a

(l − kL)
)
, (1.24)

γ0,sd(l) =

√
α

a

∑
k∈Z

γ0
(α
a

(l − kL)
)
, (1.25)

for l = 0, . . . , L− 1.

In [62] Kaiblinger has developed a method for �going back�, that is to consider a window
g ∈ S0 (R) of a Gabor frame (g, α, β) for L2 (R), sample and periodize it to get gsd ∈ CL,
compute the canonical dual γ0,sd ∈ CL of

(
gsd, a, b

)
using �nite dimensional methods and

use an interpolation scheme to construct an approximation γ0
L ∈ L2 (R) of the canonical

dual window γ0 of (g, α, β). Kaiblinger uses a spline interpolation to accomplish this, in
[92] a similar method using the original Gabor frame (g, α, β) for interpolating functions
is presented.

Kaiblingers method and the Gabor frame interpolating methods are e�cient tools
for computing an approximation to the canonical dual of a Gabor frame for L2 (R). It
would be most bene�cial to also apply them to the case of non-canonical windows. This
is unfortunately not directly possible because the results in [92] only relates some dual
window of (g, α, β) to some dual window of (gs, a, b) and not speci�c windows as in the
case of the canonical duals.

1.2.1 Window functions by Poisson summation

In this section we shall use the Poisson summation formula to construct appropriate
window functions for �nite discrete Gabor frames.

Using the appropriate Poisson summation formulas one can de�ne the sampling and
periodization operator QL : S0 (R) 7→ CL:

(QLf) (l) = L−1/4
∑
k∈Z

f
(
l/
√
L+ k

√
L
)
. (1.26)

In [2, 62] it is proven that for f ∈ (W ∩ FW) (R) then

QL (FRf) = FL (QLf) , (1.27)

so QL relates the Fourier transform on R to the Fourier transform on CL through sampling
and periodization. We shall use QL as the general tool to construct appropriate window
functions for Gabor frames for CL from windows in (W ∩ FW) (R). The operator QL

is also related to Gabor systems because by using the dilation operator Dw : L2 (R) →
L2 (R) given by

(Dwf) (t) = (w)−1/4 f

(
t√
w

)
, t ∈ R. (1.28)

then (1.24) can be written as

17

(
QLD 1

L
a2

α2
g
)

(l) =

√
α

a

∑
k∈Z

g
(α
a

(l − kL)
)
, l = 0, ..., L− 1. (1.29)

While the operator QL works very nicely with Fourier transforms and Gabor anal-
ysis, it is not a unitary operator. This is the cause of several problems, because if
g ∈ (W ∩ FW) (R) has unit L2 (R)-norm, then QLg is not guaranteed to have unit norm.
For a window gsd = QLg ∈ CL comming from a unit norm window g one must decide
whether to normalize g in accordance with Q and the Gabor sampling/periodization the-
ory, or to make it unitary in the CL sense.

Similar problems arise in connection with orthogonality and convolution, see discussion
of Hermite and splines windows in Sections 1.2.1.3 and 1.2.1.2.

1.2.1.1 Gaussian windows.

In this section we use exp (x) for ex to increase readability.
We wish to construct a periodic, discrete Gaussian function of length L. The starting

point in the Gaussian ϕ ∈ S0 (R) given by

ϕ (t) =

(
1

2

)−1/4

exp
(
−πt2

)
, t ∈ R. (1.30)

In order to generate a suitable range of functions, we use the dilation operator (1.28):

(Dwϕ) (t) = ϕw (t) =
(w

2

)−1/4

exp

(
−πt

2

w

)
. (1.31)

Finally we obtain the sampled and periodized version of this using the sampling and
periodization operator QL:

ϕD
w (l) =

(
wL

2

)−1/4∑
k∈Z

exp

−π
(

l√
L

+ k
√
L
)2

w

 (1.32)

=

(
wL

2

)−1/4∑
k∈Z

exp

(
−π (l + kL)2

wL

)
(1.33)

for l = 0, . . . , L− 1. Because of (1.27) then the Discrete Fourier Transform of ϕD
w is ϕD

1/w.
The �nite, discrete Gaussian constructed this way is whole point even (see Appendix

A). For some applications it is bene�ciel to construct a Gaussian that can be centered at
di�erent positions. We shift the dilated, continuous Gaussian (1.31) in time by −ct/

√
L:

ϕw,ct (t) =
(w

2

)−1/4

exp

−π
(
t+ ct√

L

)2

w

 (1.34)

Finally, we sample and periodize this using Ql:

18

ϕD
w,cf

(l) =

(
wL

2

)−1/4∑
k∈Z

exp

(
−π (l + ct + kL)2

wL

)
(1.35)

for l = 0, . . . , L− 1. This function is centered at (−ct, 0) in the �nite, discrete TF-plane.
It has exponential decay in both time and frequency, but it is only Fourier invariant if
ct = 0. If ct = 1

2
, this function is half point even (see Appendix A).

The methods can also be used to construct �nite, discrete window functions from
hyperbolic secants. For a discussion of the role of hyperbolic secants in Gabor analysis,
see [59].

1.2.1.2 Splines

In the paper [94] (Chapter 3 in this thesis), we de�ne several classes of discrete, fractional
splines. These are spline-like functions in CL of possibly fractional orders. The paper
builds on the research done by Unser and Blu in the papers [12, 13, 99, 100, 101] where
they study fractional splines as window functions for wavelets and in connection with the
study of fractional Brownian motion.

In [94] two classes of splines are developed:

1. The 'c' class. These splines are formed by sampling and periodization of their
continuous counterparts using the operators Dw and QL. Because of the nature
of QL, they do not satisfy the convolution properties normally associated to spline
functions, but they do satisfy an important subsampling property.

2. The 'd' class. These splines are truly �nite and discrete constructions made to
satisfy the convolution properties by de�nition. On the other hand, they do not
satisfy the subsampling property.

It is easy to show that any of the splines βα de�ned in De�nition 3.4.1 belong toW ∩FW
for α > 0 and that βα /∈ W ∩ FW for α ≤ 0.

Regarding S0 (R) it can be easily shown using [37, Thm. 3.2.17] that βα ∈ S0 (R) when
α >

√
2−1
2

≈ 0.207. For α ≤ 0 then βα /∈ S0 (R) because of the similar result for W ∩FW .

This leaves the interval
(
0,

√
2−1
2

)
for which it is currently not know if βα ∈ S0 (R). If it

should turn out that βα /∈ S0 (R) for any value 0 < α <
√

2−1
2

then it would produce a
simple example of a function in W ∩FW but not in S0 (R) to complement the only other
known construction in [68].

1.2.1.3 Hermite functions

Hermite functions (sometimes called Gauss-Hermite functions) are a set of eigenfunctions
for the Fourier transform given by the product of a Hermite polynomial and the Gaussian
function. The zero'th order Hermite function is simply the Gaussian function.

The discrete Hermite functions are much harder to de�ne. In the LTFAT toolbox we
have included two de�nitions.

19

1. De�ne them as sampled and periodized versions of their continuous counterparts
using the operator QL. These functions resemble the continuous ones, and are eigen-
functions of the DFT. However, they are not orthonormal, and the straightforward
way of computing them is numerically unstable for large orders.

2. De�ne them as eigenfunctions of an almost tridiagonal matrix that commutes with
the DFT. When the order is not a multiple of 4, then this matrix has distinct eigen-
values, and therefore its eigenfunctions are uniquely determined and orthonormal.
If they are sorted according to the corresponding eigenvalue, then this ordering
corresponds to the ordering of the continuous ones, namely after the number of
zero-crossings. If the order is a multiple of 4, then one eigenvalue has multiplicity
two. This is �xed by �nding a basis consisting of an even and an odd eigenvector.
The procedure is decribed in detail in [80].

The �rst approach is suitable for generating a few, lower order Hermite functions intended
as window functions for Gabor frames, the second approach is suitable for generating a
whole set of basis vectors for CL. It should be noted that there are other methods for
generating discrete Hermite functions, this is still an active �eld of research. An attractive
approach in presented in [75] because it makes it possible to construct dilated functions
as is done for the Gaussian by the parameter w in (1.33).

1.2.2 Discrete Balian Low

The classical Balian-Low theorem (BLT) states that if the Gabor system (g, α, β) with
α = β = 1 forms an orthonormal basis for L2 (R) then(∫

R
|xg (x)|2 dx

)(∫
R
|ωĝ (ω)|2 dω

)
= ∞, (1.36)

which basically means that the window g cannot have good concentration in time and
frequency at the same time. This restriction does not apply for Gabor frames, and this
is the main motivation for considering Gabor frames instead of Gabor bases. Several
variations of BLT exists, see i.e. [8, 41].

The BLT is a statement about Gabor systems for L2 (R), and it is not directly trans-
ferrable to the �nite, discrete case. One, obvious reason is that a sum of a �nite number
of terms cannot sum to in�nity, so doing the obvious substitution of the integral with
�nite sums makes no sense.

However, the problem consist not just in �nding a new formulation of the BLT that will
work for �nite, discrete systems. It is possible to �nd windows in CL having exponential
behaviour in both time and frequency that generates �nite, discrete Gabor frames. One
such example is presented in [8]. Another closely related example is to consider ϕD

w,0

and ϕD
w,1/2 de�ned by (1.35). Both functions have exponential decay in both time and

frequency, but ϕD
w,1/2 generates a Gabor frame and ϕD

w,0 does not.
In the following, we shall consider this relation between a critically sampled Gabor

system (g, 1, 1) and the Gabor system (gsp, a, b) with b = L/a for CL. The following has
been derived from [111]. We wish to relate the Zak-transform of g with the �nite, discrete

20

20
40

60

20

40

60

0

0.005

0.01

0.015

0.02

0
20

40
60

0
20

40
60

0

0.5

1

1.5

x 10
−3

Figure 1.2: The �gure shows the absolute value of the Zak transform of the �-
nite, discrete Gaussian of length L = 4096 computed by zak(pgauss(4096),64)

(to the left) and the Zak transform of a second order spline computed by
zak(pbspline('ec',4096,2,64),64) (to the right). For both functions, the Zak trans-
form is zero in a single point at (32, 32).

Zak transform of

gsp (k) = QLDa/bg =
1√
a

∑
j∈Z

g

(
k

a
− jb

)
, k = 0, . . . , L− 1. (1.37)

The Zak transform of g for α = 1 is given by:

(Zg) (x, ω) =
∑
k∈Z

g (x− k) e2πiωk. (1.38)

We consider the value of Zg sampled on a grid on the unit square:

(Zg)
(r
a
,
s

b

)
=
∑
k∈Z

g
(r
a
− k
)
e2πiks/b, (1.39)

for r = 0, . . . , a− 1 and s = 0, . . . , b− 1. We split k = l+ jb with l = 0, . . . , b− 1, l, r ∈ Z:

(Zg)
(r
a
,
s

b

)
=

b−1∑
l=0

∑
j∈Z

g
(r
a
− l − jb

)
e2πisl/b

From this we can recognize ZKg
sp:

(Zg)
(r
a
,
s

b

)
=
√
LZag

sp (r, s) . (1.40)

The relation (1.40) can be used two ways: It can be used to e�ciently make a plot of
the Zak transform of a continuous function, such as shown on Figure 1.2. This shows the

21

 1

 10

 100

 1000

 1 10 100 1000

F
ra

m
e

bo
un

d
ra

tio
, B

/A

q/(q-p)

GAUSS
SPLINE

Figure 1.3: The �gure show the connection between the inverse distance of the density
to critical sampling given by 1/

(
1− p

q

)
= q/ (q − p) and the frame bound ratio B/A.

The experiment was done for Gabor frames (g, a, a+ 1) for CL with L = (a+ 1) a for
increasing a and windows pgauss(L) and pbspline('ec'L,2,a).

�nite, discrete Zak transform of a sampling and periodization of a Gaussian and a second
order spline, and using (1.40) it can also be seen as a plot of the Zak transform of the
functions on the unit square.

The relation (1.40) can also be used to explain the behaviour of the �nite, discrete
Zak transform based on knowledge of the continuous counterpart. This explains the single
zero in the graph shown on Figure 1.2. This comes from the zero at

(
1
2
, 1

2

)
in the unit

square of the Zak transform of the Gaussian.
The relation (1.40) explains why the �nite, discrete Gaussian does not generate a Ga-

bor basis: It has a zero in its Zak-transform comming from the continuous Zak-transform.
It also explains why ϕD

w,1/2 given by (1.35) do indeed generate a Gabor basis: The Zak
transform of the continuous, shifted Gaussian is sampled just around the zero-point, but
not in it. Therefore the Zak transform of ϕD

w,1/2 contains no zeros.
This discussion has shown that it is in fact quite easy to generate Gabor bases with

windows constructed by sampling and periodization of S0 (R) windows: We just have to
avoid sampling the Zak-transform in a zero-point. This can be done by just shifting the
function slightly in time or frequency. However, this presents no real solution, because we
will still have to sample very close to the zero, and since the Zak-transform of S0 (R) func-
tions is continuous, we will get very small values in some sampling point, leading to a
lower frame bound close to zero.

Another angle to consider is how the frame bound ratio B/A behaves for Gabor frames
close to critical sampling. Figure 1.3 shows an investigation of what happens with the
frame bound ratio B/A if we construct a series of Gabor frames with redundancy going
to 1. Each point on the graph corresponds the frame bound ratio B/A of a Gabor

22

frame (gsp, a, a) for Ca(a+1) with a window gsp formed by sampling and periodization of a
continuous window. The two windows considered are ϕD

1 given by (1.33) and C2,eW
L,a given

by (3.30).
The density of such a frame is p

q
= a

a+1
and goes to 1 as a increases. The �rst axis of

Figure 1.3 shows the di�erence

1

1− p
q

=
q

q − p
= a+ 1 (1.41)

The �gure shows that for a→∞ we have with strong correlation

B

A
≈ C

1

1− p
q

= C (a+ 1) . (1.42)

where C is some constant depending on the window. This shows that the frame bound
ratio grows as we approach the limit of critical sampling.

1.3 E�cient algorithms

1.3.1 Factorization methods

One of the appealing aspects of Gabor analysis for �nite, discrete systems is that there
exists fast (O (L logL)) algorithms for analysis/synthesis and computation of canonical
dual/tight windows. In this section we shall provide a little of the history of these methods,
as well as a short discussion of the results published in [57, 93], Chapter 4 and 5 in this
thesis.

The basic work was done by Zibulski and Zeevi in [111]. They showed that the Gabor
frame operator for Gabor frames for L2 (R) could be factorized into a set of products of p×q
matrices, where p

q
is the redundancy of the frame written as an irreducible fraction. Each

matrix depends continuously on two parameters r, s ∈ R and the elements in the matrices
are given by elements of the Zak transform of the window. The approach naturally does
not work for Gabor systems with irrational oversampling. They also provided a method
for computing the Gabor coe�cients, but since they worked in the L2 (R) setting, this
involves an integration, and it is not immidiatly apparent how to use this method in the
CL setting.

Zibulski and Zeevi's method was transferred to the �nite, discrete case by Bastiaans
and Geilen in [7] using the �nite, discrete Zak transform. The �nite, discrete Zak trans-
form Za can be calculated e�ciently on the fundamental domain 0, . . . , a−1×0, . . . , L

a
−1

by a series of DFTs. When values outside the fundamental domain is needed, the quasi-
periodizity relation (1.22) must be used.

In [83] Prinz approached the problem in the more general context of Gabor systems
with non-separable lattices, and he used matrix factorizations to present an incomplete
factorization of the Gabor analysis and synthesis operators in the �nite, discrete case.
In the excellent survey paper [96] Strohmer improved this method for the Gabor frame
operator, and ended up with a result similar to Bastians and Geilen and Zibulski and
Zeevi: A system of products of p× q matrices.

23

The slight advantage Strohmer's method has is that is does not use the language of
the Zak-transform, and so the use of (1.22) is not needed. Furthermore, it uses DFTs of
shorter length than the Zak-transform approach.

In the paper [93] (Chapter 4) Strohmer's approach is extended to also cover the Gabor
analysis and synthesis operators yielding the fastest known Gabor transform algorithm
for general windows.

A further simple extension can be made on the algorithm presented in [93]. In [112]
and in other places multiwindow Gabor systems are introduced. This is simply a regular
Gabor system having not one, but several windows. All time-frequency shifts are still
considered on the same grid. In the �nite discrete case the de�nition of the multiwindow
Gabor transform with R windows gr, r = 0, . . . , R− 1 is

c (m,n, r) =
l=L−1∑

l=0

e−2πilmb/Lf(l)gr(l − na). (1.43)

Extending the algorithm in [93] to multiwindows is very simple and it is shown as
Algorithm 1.

If the window is a zero-extension of a relatively short window compared to the size
of the signal then a more e�cient approach is to use a �lter bank approach. This simple
algorithm is shown in (4.18). The fact that Gabor systems are related to �lter banks was
pointed out in [18].

To compute the canonical dual window of a Gabor frame a simple method is to calcu-
late the Moore-Penrose pseudo-inverse of the Gabor analysis operator. This is a general
method from frame theory, [21]. In the �nite-discrete setting all operators are matrices,
so this is simple to do. Because of the special structure of Gabor frames it is faster simply
to invert the frame operator matrix and use the de�nition of the canonical dual window

gd = S−1g, (1.46)

as a matrix inversion is computationally cheaper than a pseudo-inverse.
Taking the factorization method from [7, 93] into account, the picture changes: The

p× q matrices of gd are simpy the pseudo-inverses of the p× q matrices of g. This gives
a very e�cient algorithm for computing the canonical dual window.

Similar to this, it was shown in [57] that the p×q matrices of the canonical tight window
gt can be computed by the polar decomposition of the p × q matrices of the window g,
(5.110). Computing the polar decomposition involves a Singular Value Decomposition
(SVD) of the matrix.

1.3.2 Iterative algorithms

In order to reconstruct a signal f from its Gabor expansion, we might use the canonical
dual window

f =
N−1∑
n=0

M−1∑
m=0

〈f, gm,n〉 gd. (1.47)

One approach to �nd the window gd is to compute it by a direct inversion gd = S−1g or to
consider it as the solution of the equation Sgd = g. Solving for gd can be done by standard

24

Algorithm 1 Multisignal/multiwindow DGT by matrix/matrix products.
We wish to compute the DGT c (m,n, t, w) ∈ CM×N×R×W of f ∈ CL×W using the window
g ∈ CL×R and lattice determined by a and M .

1. De�ne Ψf
r,s (k, l) ∈ Cp×qW and Φg

r,s (k, l) ∈ Cp×qR for r ∈ 〈c〉, s ∈ 〈d〉, t ∈ 〈R〉 and
w ∈ 〈W 〉 by

Ψ̃f
r,s̃ (k, l + wq) = f (r + kM + s̃pM − lhaa, w) ,

Φ̃g
r,s̃ (k, l + tq) =

√
Mdg (r + kM + s̃pM − la, t) .

2. Compute their DFTs along s̃:

Ψf
r,s (k, l + wq) = Fd

(
Ψ̃f

r,· (k, l + wq)
)

(s) ,

Φg
r,s (k, l + tq) = Fd

(
Φ̃g

r,· (k, l + tq)
)

(s) .

3. Multiply the matrices for each r, s:

Υr,s =
(
Φg

r,s

)∗
Ψf

r,s

4. Compute the inverse DFT of Υr,s along s:

Υ̃r,s̃ (u+ tq, l + wq) = F−1
d (Υr,· (u+ tq, l + wq)) (s̃) .

5. Compute K ∈ CM×N×W as:

K (r + lc, u+ s̃q − lha, t, w) = Υ̃r,s̃ (u+ tq, l + wq) (1.44)

6. Finally, the result is given by a DFT of K along the �rst dimension:

c (m,n, t, w) = FM (K (·, n, t, w)) (m) . (1.45)

25

iterative algorithms like the Neumann algorithm or the Conjugate Gradient Algorithm.
The rationale is that it is much cheaper computationally to apply the frame operator S
to a vector than it is to invert it. The Neumann algorithm using special preconditioning
methods have been investigated in [4].

In the paper [57] (Chapter 5 in this thesis) a family of iterative algorithms with
quadratic and quibic convergence is described. The work is based on previous results
presented in [58, 55, 56]. The algorithms provides fast and simple methods to compute
the canonical dual or the canonical tight window of a Gabor frame. They utilize the
factorization methods presented in 1.3.1, in fact any of the factorization methods can be
used. In [57] the factorization method used is that of Bastians and Geilen, mainly because
[93] whas not yet written.

26

Chapter 2

Gabor frames by sampling and

periodization

This chapter is the paper [92], which has been published online by Advances in Compu-
tational Mathematics, 2007.

2.1 Abstract

By sampling the window of a Gabor frame for L2(R) belonging to Feichtinger's algebra,
S0(R), one obtains a Gabor frame for l2(Z). In this article we present a survey of results
by R. Orr and A.J.E.M. Janssen and extend their ideas to cover interrelations among
Gabor frames for the four spaces L2(R), l2(Z), L2([0, L]) and CL. Some new results
about general dual windows with respect to sampling and periodization are presented as
well. This theory is used to show a new result of the Kaiblinger type to construct an
approximation to the canonical dual window of a Gabor frame for L2(R).

2.2 Introduction

To compute an approximation to the Fourier transform of a function supported on an
interval, a common technique is to sample the function regularly and compute the Discrete
Fourier Transform of the obtained sequence. The result is an approximation to the Fourier
transform of the original function computed at regular sampled points.

This relation was �rst transferred to the case of Gabor systems by Orr in [79]. He shows
how the discrete Gabor coe�cients of a sampled and periodized function can be calculated
from a periodization in both time and frequency of their continuous counterparts. Orr
only considers critically sampled Gabor systems.

In [53] Janssen shows that under certain conditions one can obtain a Gabor frame
for l2(Z) by sampling the window function of a Gabor frame for L2(R) at the integers.
Furthermore, it is shown that the canonical dual windows of the two Gabor frames are
also related by sampling. Using the same techniques, he shows how to produce Gabor
frames for CL by periodizing the window function of a Gabor frame for l2(Z).

The results by Orr and Janssen covers the transition from the continuous setting to
the discrete setting. Based on these results, Kaiblinger [62] has constructed a method

27

to go backwards, that is to construct a continuous approximation to the canonical dual
window of a Gabor frame for L2(R) from computations done purely in the discrete setting.
He uses splines to reconstruct the canonical dual window from samples computed in the
�nite discrete setting.

The purpose of this article is to extend the results of Orr and Janssen to all of the four
spaces L2(R), l2(Z), L2([0, L]) and CL. We also provide new results about non-canonical
dual windows. The situation is shown in Figure 2.1: We use these results to construct

L2(R)
sampling−−−−−→ l2(Z)yperiodization

y
L2([0, L]) −−−→ CL

Figure 2.1: Relationship among the four di�erent spaces for which we consider Gabor
frames. Arrows to the right indicate sampling and arrows down indicate periodization.

a new method for computing approximations to the canonical dual window of a Gabor
frame for L2(R). The method uses the same basic approach as that of Kaiblinger.

In Section 2.3 the required background and notation is presented. It includes the
de�nitions of the various operators used, commutation relations between the operators,
window classes for the Gabor frames, and de�nitions of frames and Gabor frames for each
of the four spaces.

Section 2.4 presents a survey of how and under which conditions Gabor frames for the
four spaces L2(R), l2(Z), L2([0, L]) and CL are interrelated by sampling and periodization
operations.

For each relation in Figure 2.1, three types of results are presented:

1. If the window function of a Gabor frame belongs to S0, then a sampling/periodization
of the window generates a Gabor frame with the same parameters and frame bounds
for one of the other spaces. The canonical dual windows of the two Gabor frames
are similarly related by sampling/periodization. These are simple extensions of the
results in [53]

2. For functions f ∈ S0, simple relations hold between the expansion coe�cients of f
in a Gabor frame, and the expansion coe�cients of the sampled/periodized function
in the sampled/periodized Gabor frame. These are results of Orr from [79] made
rigorous by Kaiblinger in [62].

3. If f, γ ∈ S0 are dual windows of a Gabor frame, the sampled/periodized windows are
also dual windows of the sampled/periodized Gabor frame. These are new results.

Proof of the statements in this section will be postponed (unless very short) to Sec. 2.6.
In the last section, Section 2.5, the new method to �go backwards� is presented. We

show how to use the elements of a Gabor frame to construct an approximation to the
canonical dual window of this frame.

28

2.3 Basic theory

The four spaces used in this article, L2(R),L2(Z),L2([0, L]) and CL share two common
properties:

1. They are Hilbert spaces. Therefore common results from frame theory apply to
them.

2. The domains R,Z, [0, L] and C are locally compact Abelian (LCA) groups (the
interval [0, L] will always be thought of as a parameterization of the torus, T). Most
of the theory used in this article can be de�ned solely in terms of LCA-groups.
This includes the Fourier transform, the translation and modulation operators, the
sampling and periodization operators, Gabor systems and the space S0. We will not
use the LCA-de�nitions, but instead de�ne everything for each of the four spaces.

2.3.1 The Fourier transforms

The proofs in this article will make frequent use of various types of Fourier transforma-
tions. They are de�ned by

FR :
(
L1 ∩ L2

)
(R) → L2(R) : (FRf) (ω) =

∫
R
f(x)e−2πiωxdx (2.1)

FZ : l2(Z) → L2([0, 1]) : (FZf) (ω) =
∑
k∈Z

f(k)e−2πikx (2.2)

F[0,L] : L2([0, L]) → l2(Z) :
(
F[0;L]f

)
(k) =

1√
L

∫ L

0

f(x)e−2πikx/Ldx (2.3)

FL : CL → CL : (FLf) (k) =
1√
L

L−1∑
j=0

f(j)e−2πikj/L. (2.4)

FR is the Fourier transform, FZc is known as the frequency domain representation of
c, F[0,L]f is the Fourier coe�cients of f , and FL is the Discrete Fourier Transform. The
notation is heavy, but it helps to avoid confusion when several di�erent transforms are
involved.

The Fourier transform FR can be extended to a bounded, linear, unitary operator,
FR : L2(R) → L2(R). With this extension, all the transforms are unitary operators.

For brevity, we shall use the notation F and f̂ for FR and FRf only ! We shall always
write the other types of Fourier transformation with a subscript.

2.3.2 The translation, modulation and dilation operators

Gabor frames for the four spaces are de�ned in terms of the translation and modulation
operators on the spaces.

29

De�nition 2.3.1. The translation operators:

Tt : L2(R) → L2(R) : (Ttf) (x) = f(x− t), x, t ∈ R (2.5)

Tj : l2(Z) → l2(Z) : (Tjf) (k) = f(k − j), k, j ∈ Z (2.6)

Tt : L2([0, L]) → L2([0, L]) : (Ttf) (x) = f(x− t), x, t ∈ [0, L] (2.7)

Tj : CL → CL : (Tjf) (k) = f(k − j), k, j ∈ {0, . . . , L− 1} . (2.8)

The space L2([0, L]) will always be thought of as a space of periodic functions, such
that if f ∈ L2([0, L]) then f(x) = f(x+ nL) for all x ∈ R and n ∈ Z.

De�nition 2.3.2. The modulation operators:

Mω : L2(R) → L2(R) : (Mωf) (x) = e2πiωxf(x), x, ω ∈ R (2.9)

Mω : l2(Z) → l2(Z) : (Mωf) (j) = e2πiωjf(j), j ∈ Z, ω ∈ [0, 1] (2.10)

Mk : L2([0, L]) → L2([0, L]) : (Mkf) (x) = e2πikx/Lf(x), x ∈ [0, L], k ∈ Z (2.11)

Mk : CL → CL : (Mkf) (j) = e2πikj/Lf(j), j, k ∈ {0, . . . , L− 1} .(2.12)

The space L2([0, L]) only permit modulations with integer parameters, because the
exponential factor must have period L. The modulation operator for l2(Z) is periodic in
its parameter because e2πiωj = e2πi(ω+n)j for all integers j and n.

De�nition 2.3.3. Let d > 0. The dilation operators

Dd : L2(R) → L2(R) : (Ddf) (x) =
√
df(dx), ∀x ∈ R. (2.13)

Dd : L2([0, L]) → L2([0,
L

d
]) : (Ddg) (x) =

√
dg(dx), x ∈ [0,

L

d
]. (2.14)

2.3.3 Window classes

As a convenient window class for the four di�erent types of Gabor frames we shall use the
spaces S0(G), known as Feichtinger's algebra, which can be de�ned for LCA-groups, [30].
For the LCA-groups considered in this article these are the spaces S0(R), l1(Z), A([0, L])
and CL. This gives window classes for L2(R), l2(Z), L2([0, L]) and CLrespectively.

De�nition 2.3.4. A function g ∈ L2(R) belongs to Feichtinger's algebra S0(R) if

‖g‖S0
=

∫
R×R

∣∣∣∣∫
R
g(t)(MωTxϕ) (t)dt

∣∣∣∣ dxdω <∞, (2.15)

where ϕ(t) = e−πt2 is the Gaussian function.

Replacing the Gaussian ϕ in the de�nition of S0 with another non-zero window in
the Schwartz class of smooth, exponentially decaying functions, will give an equivalent
norm. The space S0(R) is invariant under translation, modulation, dilation and the
Fourier transform. Furthermore, S0(R) ⊆ Lp(R) for 1 ≤ p ≤ ∞. Functions in S0(R)
are continuous. These and other useful properties of S0(R) can be found in [37] and [41].
There exists many useful conditions for membership of S0(R), see [37, 41, 76].

30

For Gabor frames on the interval [0, L] we shall use the window class S0([0, L]) =
A([0, L]) = F−1

[0,L]l
1(Z). These are the functions on the interval [0, L] having an absolutely

convergent Fourier series. A([0, L]) is a Banach space with respect to the norm

‖f‖A([0,L]) =
∥∥∥F−1

[0,L]f
∥∥∥

l1(Z)
, (2.16)

and is a Banach algebra with respect to point-wise multiplication. If g ∈ A([0, L]) then g
is a continuous function.

The Gabor coe�cients of an S0-function with respect to an S0-window belongs to l1.
The precise relations are as follows, see [30, 37] and [41, Cor. 12.1.12].

Proposition 2.3.5. Summability of Gabor coe�cients.

S0(R) Let g, γ ∈ S0(R) and α, β > 0. Then∑
m,n∈Z

|〈γ,MmβTnαg〉| <∞ (2.17)

l1(Z) Let g, γ ∈ l1(Z) and a,M ∈ N. Then

M−1∑
m=0

∑
n∈Z

∣∣〈γ,Mm/MTnag
〉∣∣ <∞ (2.18)

A([0, L]) Let g, γ ∈ A([0, L]) and N, b ∈ N with L = Na. Then

∑
m∈Z

N−1∑
n=0

|〈γ,MmbTnag〉| <∞ (2.19)

2.3.4 The sampling and periodization operators

The process of sampling is well-de�ned on S0(R):

De�nition 2.3.6. Let α > 0 and a ∈ N. The sampling operators are given by

Sα : S0(R) → l1(Z) : (Sαf) (j) =
√
αf(jα), ∀j ∈ Z (2.20)

Sa : l1(Z) → l1(Z) : (Saf) (j) =
√
af(ja), ∀j ∈ Z (2.21)

Sα : C([0;αL]) → CL : (Sαf) (j) =
√
αf(jα), j = 0, ..., L− 1 (2.22)

Sa : CaL → CL : (Saf) (j) =
√
af(ja), j = 0, ..., L− 1 (2.23)

The fact that the sampling operator is a bounded operator from S0(R) into l1(Z) is
proved in [37, Lemma 3.2.11]. The factor

√
α appearing in the de�nition of the sampling

operator gives the sampling operators the following important properties:

• Composition with dilations:

SaDb = Sab on S0(R) (2.24)

SaDb = Sab on C([0, L]) (2.25)

31

• If f ∈ S0(R) then ‖Sαf‖ < C ‖f‖S0
for some C > 0 independent of α. This is

proved in [41, Prop. 11.1.4].

De�nition 2.3.7. The periodization operators are given by

PL : S0(R) → A([0, L]) : PLg(x) =
∑
k∈Z

g(x+ kL), x ∈ [0, L] (2.26)

PL : l1(Z) → CL : PLg(j) =
∑
k∈Z

g(j + kL), j = 0, ..., L− 1 (2.27)

PM : A([0,ML]) → A([0, L]) : PMg(x) =
∑
k∈Z

g(x+ kM), x ∈ [0, L] (2.28)

PM : CML → CL : PMg(j) =
∑
k∈Z

g(j + kM), j = 0, ..., L− 1(2.29)

The fact that PL : S0(R) → A([0, L]) is proved in [33] in the more general context of
LCA-groups.

2.3.5 Frames for Hilbert spaces

Since we will deal with Gabor frames for four di�erent spaces, it will be bene�cial to note
what can be said about frames for general Hilbert spaces.

De�nition 2.3.8. A family of elements {ej}j∈J in a separable Hilbert space H is called
a frame if constants 0 < A ≤ B <∞ exist such that

A ‖f‖2
H ≤

∑
j∈J

∣∣〈f, ej〉H
∣∣2 ≤ B ‖f‖2

H , ∀f ∈ H. (2.30)

The constants A and B are called lower and upper frame bounds, respectively.

Two frames for a Hilbert space H, {ej} and {fj}, are called dual frames if and only if
f =

∑
j∈J 〈f, ej〉 fj, ∀f ∈ H.

The frame operator of a frame {ej}j∈J for a Hilbert space H is de�ned by

S : H → H : Sf =
∑

j

〈f, ej〉H ej, (2.31)

where the series de�ning Sf converges unconditionally for all f ∈ H.
The condition (4.9) ensures that the frame operator is both bounded and invertible

on H.
The inverse frame operator can be used to give a decomposition of any function f ∈ H:

f =
∑

j

〈
f, S−1ej

〉
ej, ∀f ∈ H. (2.32)

The frame {S−1ej} is known as the canonical dual frame.

32

2.3.6 Gabor systems

Gabor systems can be de�ned for the four spaces using the corresponding translation and
modulation operators.

De�nition 2.3.9. Gabor systems for each of the four spaces:

L2(R) A Gabor system (g, α, β) for L2(R) is de�ned as

(g, α, β) = {MmβTnαg}m,n∈Z , (2.33)

where g ∈ L2(R) and α, β > 0.

l2(Z) A Gabor system
(
g, a, 1

M

)
for l2(Z) is de�ned as(

g, a,
1

M

)
=
{
Mm/MTnag

}
m=0,...,M−1,n∈Z , (2.34)

where g ∈ l2(Z) and a,M ∈ N.

L2([0, L]) A Gabor system (g, a, b) for L2([0, L]) is de�ned as

(g, a, b) = {MmbTnag}m∈Z,n=0,...,N−1 , (2.35)

where g ∈ L2([0, L]), a, b,N ∈ N and L = Na.

CL A Gabor system for (g, a, b) for CL is de�ned as

(g, a, b) = {MmbTnag}m=0,...,M−1,n=0,...,N−1 , (2.36)

where g ∈ CL, a, b,M,N ∈ N and Mb = Na = L.

A Gabor frame is a Gabor system that is also a frame. For a good introduction to
Gabor systems see [35, 36] and [41].

The Gabor frame operator (and its inverse) commute with the translation and modu-
lation operators. If this is applied to the the decomposition formula (2.32), it shows that
the canonical dual frame of a Gabor frame (g, α, β) is again a Gabor frame (γ0, α, β),
where γ0 = S−1g is known as the canonical dual window.

If a Gabor frame is not a Riesz basis, it has more than one dual frame, and some of
these dual frames will even be Gabor frames.

2.4 Between the spaces

The section is a survey of existing results of how Gabor frames behave with respect to
samplings and periodization. Some new results about non-canonical dual window for
Gabor frames are presented as well.

We present the results for the interrelations show on Fig. 2.1. This reason for this is
that the four di�erent types of Gabor systems each has their place in applications. Gabor
frames for l2 (Z) and L2 ([0, L]) are less common in literature, but there are several good
reasons for considering them:

33

• The space l2 (Z) is a good model of a possibly in�nite stream of discrete data, as it
occurs in �lter bank theory. It is also the correct place to study decay properties
of discrete Gabor windows. Results about decay properties of windows for Gabor
frames for l2 (Z) can be transferred to the �nite, discrete case by the results presented
in Sec. 2.4.4.

• The space L2 ([0, L]) is a good model of continuous phenomena with �nite duration.
An advantage of using L2 ([0, L]) as opposed to L2 (R) is that discretizing a Gabor
frame is straightforward, see Sec. 2.4.3.

A generalization that will not be explicitly mentioned in the following is, that all state-
ments about a canonical dual window also holds for the corresponding tight window.
Proofs of this appear in [24].

2.4.1 From L2(R) to l2(Z).

In [53] Janssen proved, that if the window g of a Gabor frame
(
g, a, 1

M

)
for L2(R), a,M ∈

N, satis�es the so-called condition R then by sampling it at the integers one obtains
the window S1g of a Gabor frame

(
S1g, a,

1
M

)
for l2(Z) with the same frame bounds.

Furthermore he proved that if g additionally satis�es the so-called condition A then S1γ
0

will be the canonical dual window of
(
S1g, a,

1
M

)
.

Condition R is a regularity condition, that requires the function to have some smooth-
ness around sampling points and decay as well. It is much weaker than requiring the
function to be in S0 (R). Most remarkably, it only places restrictions on g in a neigh-
bourhood of the sampling points. The downside of condition R is that it depends on the
position of the sampling points.

Condition A is a statement about the decay of inner products between g and certain
time-frequency shifts of g. It depends on the parameters α, β, and is in general hard to
verify.

All functions in S0 (R) satis�es condition R and A for all sampling distances and for
any combination of α and β. For condition R this is mentioned in [24]. For condition A
this is a simple fact of Proposition 2.3.5. A direct proof is in [41, Corr. 12.1.12], along
with a nice coverage of the topic.

In [62], new proofs of the combined transition L2(R) → CL is presented. These use
S0 (R) as a su�cient condition, and does not consider condition R and A.

The following result is a simple generalization of Janssen's sampling result to hold for
Gabor frames with rational oversampling.

Theorem 2.4.1. Let g ∈ S0(R), α, β > 0 with αβ = a
M

for some M,a ∈ N, and
assume that (g, α, β) is a Gabor frame for L2(R) with canonical dual window γ0. Then(
Sα/ag, a,

1
M

)
is a Gabor frame for l2(Z) with the same frame bounds and canonical dual

window Sα/aγ
0.

In [79] Orr showed that the expansion coe�cients c(m,n) of a function f in a Gabor
frame for L2(R) with dual window γ is related to the expansion coe�cients d(m,n) of
the sampled function Sα/af in a Gabor frame for l2(Z) with the sampled dual window
Sα/aγ. In [79] the result is stated without explicit conditions on the involved functions
and only in the case of critical sampling (when αβ = 1). In [62] Kaiblinger has shown

34

that S0 (R) is a su�cient condition, and that the statements also holds for oversampled
Gabor frames. The result [62, Lem. 9] covers the complete transition L2(R) → CL. The
proof of the following statement can be found by modifying this.

Proposition 2.4.2. Let f, γ ∈ S0(R), α, β > 0 with αβ = a
M

for some M,a ∈ N. With

c(m,n) = 〈f,MmβTnαγ〉L2(R) , m, n ∈ Z, (2.37)

d(m,n) =
〈
Sα/af,Mm/MTnaSα/aγ

〉
l2(Z)

, m = 0, ...,M − 1, n ∈ Z (2.38)

then
d(m,n) =

∑
j∈Z

c(m− jM, n), ∀m = 0, ...,M − 1, n ∈ Z (2.39)

The sum in the previous proposition is well de�ned because of Prop. 2.3.5.
Theorem 2.4.1 shows that if γ is the canonical dual window of g, Sα/aγ is the canonical

dual window of Sα/ag. This relation holds not only for the canonical dual window, but in
fact for ALL dual windows γ ∈ S0(R).

Proposition 2.4.3. Let (g, α, β), g ∈ S0(R), α, β > 0 with αβ = a
M

for some M,a ∈ N,
be a Gabor frame for L2(R) and let γ ∈ S0(R) be a dual window. Then Sα/aγ is a dual
window of

(
Sα/ag, a,

1
M

)
.

In [52] it is shown that if g satis�es Condition A then the canonical dual window γ0

of (g, α, β) also satis�es Condition A. In [31, 43] it is shown that if g ∈ S0(R) then also
γ0 ∈ S0 (R). Because of these results, the only assumption needed in Theorem 2.4.1 is
g ∈ S0(R). In Proposition 2.4.3 we need to impose γ0 ∈ S0 (R) as a separate condition.

2.4.2 From L2(R) to L2([0, L])

The results from the previous section can be easily extended to prove how a Gabor frame
for L2([0, L]) can be obtained from a Gabor frame for L2(R) by periodizing the window
function.

Gabor frames for L2([0, L]) are not as widely studied as Gabor frames for L2(R).
From a practical point of view, they are interesting because they can be used to model
continuous phenomena of �nite duration.

Interrelations between Wilson bases for L2(R) and L2([0, L]) are described in [10,
Corollary 9.3.6].

Theorem 2.4.4. Let g ∈ S0(R), α, β > 0 with αβ = b
N

for some N, b ∈ N and assume
that (g, α, β) is Gabor frame for L2(R) with canonical dual window γ0. Then

(
Pb/βg, α, b

)
is a Gabor frame for L2([0, b

β
]) with the same frame bounds and canonical dual window

Pb/βγ
0.

The proof of the following can by modifying [62, Lem. 9].

Proposition 2.4.5. Let f, γ ∈ S0(R), α, β > 0 with αβ = b
N
for some N, b ∈ N. With

c(m,n) = 〈f,MmβTnαγ〉L2(R) , m, n ∈ Z (2.40)

d(m,n) =
〈
Pb/βf,MmbTnaPb/βγ

〉
L2([0, b

β
])
, m ∈ Z, n = 0, ..., N − 1 (2.41)

35

then
d(m,n) =

∑
j∈Z

c(m,n− jN), ∀m ∈ Z, n = 0, ..., N − 1. (2.42)

The sum in the previous proposition is well de�ned because of Prop. 2.3.5.

Proposition 2.4.6. Let (g, α, β) with g ∈ S0(R), α, β > 0 and αβ = b
N
for some N, b ∈ N

be a Gabor frame for L2(R) and let γ ∈ S0(R) be a dual window. Then Pb/βγ is a dual
window of

(
Pb/βg, α, b

)
.

The proof has the same structure as that of Proposition 2.4.3, using Proposition 2.4.5
as the main ingredient.

2.4.3 From L2([0, L]) to CL

A Gabor frame for CL can be obtained by sampling the window function of a Gabor frame
for L2([0, L]). The proofs are very similar to the proofs presented in Section 2.4.1 for the
L2(R) → l2(Z) case.

Theorem 2.4.7. Let g ∈ A([0, L1]), L2,M,N, a2, b ∈ N with L1 = Na1 and L2 = Mb =
Na2. Assume that (g, a1, b) is a Gabor frame for L2([0, L1]) with canonical dual window
γ0. Then

(
SL1/L2g, a2, b

)
is a Gabor frame for CL2 with the same frame bounds and

canonical dual window SL1/L2γ
0.

The proof can be found by carefully modifying the proof in [53] for the L2(R)-case.
The modi�cations consist in replacing integration over R with integrations over [0, L] and
similar changes.

The proof of the following can by modifying [62, Lem. 9].

Proposition 2.4.8. Let f, γ ∈ A([0, L1]), L2,M,N, a2, b ∈ N with L1 = Na1 and L2 =
Mb = Na2. With

c(m,n) = 〈f,MmbTna1γ〉L2([0,L1]) , m ∈ Z, n = 0, ..., N − 1 (2.43)

d(m,n) =
〈
SL1/L2f,MmbTna2SL1/L2γ

〉
CL , m = 0, ...,M − 1, n = 0, ..., N − 1(2.44)

then

d(m,n) =
∑
j∈Z

c(m− jM, n), ∀m = 0, ...,M − 1, n = 0, ..., N − 1 (2.45)

The sum in the previous proposition is well de�ned because of Prop. 2.3.5.

Proposition 2.4.9. Let (g, a1, b) g ∈ A([0, L1]), L2,M,N, a2, b ∈ N with L1 = Na1 and
L2 = Mb = Na2, be a Gabor frame for L

2([0, L1]) and let γ ∈ A([0, L1]) be a dual window.
Then SL1/L2γ is a dual window of

(
SL1/L2g, a2, b

)
.

The proof has the same structure as that of Proposition 2.4.3, using Proposition 2.4.8
as the main ingredient.

36

2.4.4 From l2(Z) to CL

Similarly to the results presented in the previous sections, one can obtain a Gabor frame
for CL by periodizing the window function of a Gabor frame for l2(Z).

The following result appears in[53].

Theorem 2.4.10. Let g ∈ l1(Z), M,N, a, b ∈ N with Mb = Na = L and assume that(
g, a, 1

M

)
is a Gabor frame for l2(Z) with canonical dual window γ0. Then (PLg, a, b) is a

Gabor frame for CL with the same frame bounds and canonical dual window PLγ
0.

The proof of the following can by modifying [62, Lem. 9].

Proposition 2.4.11. Let f, γ ∈ l1(Z), M,N, a, b ∈ N with Mb = Na = L. With

c(m,n) = 〈f,MmbTnaγ〉l2(Z) , m = 0, ...,M − 1, n ∈ Z (2.46)

d(m,n) = 〈PLf,MmbTnaPLγ〉CL , m = 0, ...,M − 1, n = 0, ..., N − 1, (2.47)

then

d(m,n) =
∑
j∈Z

c(m,n− jN), ∀m = 0, ...,M − 1, n = 0, ..., N − 1 (2.48)

The sum in the previous proposition is well de�ned because of Prop. 2.3.5.

Proposition 2.4.12. Let
(
g, a, 1

M

)
g ∈ l1(Z), M,N, a, b ∈ N with Mb = Na = L, be a

Gabor frame for l2(Z) and let γ ∈ l1(Z) be a dual window. Then PLγ is a dual window
of (PLg, a, b).

The proof has the same structure as that of Proposition 2.4.3, using Proposition 2.4.11
as the main ingredient.

2.4.5 From L2(R) to CL

With the results from the previous sections, any Gabor frame for L2(R), (g, α, β) with
g ∈ S0(R) and rational sampling, αβ ∈ Q, can be sampled and periodized to obtain a
Gabor frame for CL with corresponding sampled and periodized canonical dual window.
Direct proofs of the two �rst statements are given in [62]. The proofs of the three following
statements can also found by simply combining the similar from the previous sections.
Going through L2([0, b

β
]) or l2(Z) produces the same result, because PLSα/a = Sb/β/LPb/β

on S0(R). This shows that the two directions on Fig. 2.1 commute.

Theorem 2.4.13. Let g ∈ S0(R), αβ = a
M

= b
N
andMb = Na = L with a, b,M,N,L ∈ N

and assume that (g, α, β) is a Gabor frame for L2(R) with canonical dual window γ0. Then(
PLSα/ag, a, b

)
is a Gabor frame for CL with the same frame bounds and canonical dual

window PLSα/aγ
0.

Fully written out then PLSα/ag is

(
PLSα/a

)
g(j) =

√
α

a

∑
k∈Z

g
(α
a

(j − kL)
)
, j = 0, ..., L− 1. (2.49)

37

Proposition 2.4.14. Let f, γ ∈ S0(R), α, β > 0 with αβ = a
M

= b
N
, L = Mb = Na with

a, b,M,N,L ∈ N. With

c(m,n) = 〈f,MmβTnαγ〉L2(R) , m, n ∈ Z (2.50)

d(m,n) =
〈
PLSα/af,MmbTnaPLSα/aγ

〉
CL , m = 0, ...,M − 1, n = 0, ..., N − 1,(2.51)

then

d(m,n) =
∑
j,k∈Z

c(m− kM, n− jN), ∀ = 0, ...,M − 1, n = 0, ..., N − 1. (2.52)

The sum in the previous proposition is well de�ned because of Prop. 2.3.5.

Proposition 2.4.15. Let (g, αβ), αβ = a
M

= b
N

and Mb = Na = L with a, b,M,N,L ∈
N, be a Gabor frame for L2(R) and let γ ∈ S0(R) be a dual window. Then PLSα/aγ is a
dual window of

(
PLSα/ag, a, b

)
.

2.5 Going back

Theorem Theorem 2.4.13 provides an easy way to compute samples of the canonical dual
window γ0 of a Gabor frame (g, α, β) for L2(R) using �nite-dimensional methods. The
question is whether it is possible to use this to construct a sequence of functions converging
to γ0 in some norm.

Kaiblinger showed in [62] that this is indeed possible. By using a standard inter-
polation scheme to interpolate the computed samples, one can construct functions that
converges to γ0 in the S0(R)-norm. This implies convergence for all Lp-spaces, 1 ≤ p ≤ ∞.

Some other methods of approximating the inverse frame operator of Gabor frame is
presented in [22, 24].

The following method works the same way as the method proposed by Kaiblinger, but
it uses another interpolation scheme. We will use the Gabor atoms of the Gabor frame
(g, α, β).

The result is presented only for M,N being even. The case of odd M,N is similar.

Theorem 2.5.1. Let g ∈ S0(R), α, β > 0 with αβ = a
M

and assume that (g, α, β) is a
Gabor frame for L2(R) with canonical dual window γ0.

For each even M,N ∈ N such that L = Mb = Na with a, b, L ∈ N denote the
canonical dual window of

(
PLSα/ag, a, b

)
by ϕM,N . De�ne dM,N ∈ CM×N by dM,N(m,n) =

〈ϕM,N ,MmbTnaϕM,N〉CL and γ0
M,N ∈ S0(R) by

γ0
M,N =

N/2−1∑
n=−N/2

M/2−1∑
m=−M/2

dM,N(m,n)MmβTnαg. (2.53)

Then
∥∥γ0 − γ0

M,N

∥∥
S0
→ 0 as M,N →∞.

De�ne c ∈ l1(Z × Z) by c(m,n) = 〈γ0,MmβTnαγ
0〉L2(R). The crucial fact that c ∈

l1(Z× Z) follows from Prop. 2.3.5. Then

γ0 =
∑

m,n∈Z

c(m,n)MmβTnαg. (2.54)

38

This is the standard frame expansion, since γ0 and g are dual windows.
By (2.53) and (2.54) both γ0 and γ0

M,N can be written using the frame (g, α, β).
Subtracting them gives

γ0 − γ0
M,N =

∑
m,n∈Z

rM,N(m,n)MmβTnαg, (2.55)

where

rM,N(m,n) =

c(m,n)− dM,N(m,n)
if − M

2
≤ m ≤ M

2
− 1 and

−N
2
≤ n ≤ N

2
− 1

c(m,n) otherwise

(2.56)

By Proposition 2.4.14,

dM,N(m,n) =
∑
j,k∈Z

c(m− kM, n− jN), (2.57)

for all −M
2
≤ m ≤ M

2
− 1 and −N

2
≤ n ≤ N

2
− 1. This gives the following expression of

the residual r:

rM,N(m,n) =

=

−
∑

j,k∈Z\{0} cM,N(m− kM, n− jN)
if − M

2
≤ m ≤ M

2
− 1 and

−N
2
≤ n ≤ N

2
− 1

c(m,n) otherwise

From 2.3.4 it can be seen that the translation and modulation operators are unitary
on S0 (R). Using this, we get the following estimate.

∥∥γ0 − γ0
M,N

∥∥
S0

=

∥∥∥∥∥ ∑
m,n∈Z

rM,N(m,n)MmβTnαg

∥∥∥∥∥
S0

(2.58)

≤ ‖g‖S0

∑
m,n∈Z

|rM,N(m,n)| (2.59)

≤ ‖g‖S0

N/2−1∑
n=−N/2

M/2−1∑
m=−M/2

∑
j,k∈Z\{0}

|cM,N(m− kM, n− jN)|+ (2.60)

+ ‖g‖S0

∑
m/∈{−M

2
,..., M

2
−1}

∑
n/∈{−N

2
,..., N

2
−1}

|c(m,n)| (2.61)

In the last term, only the coe�cients outside the rectangle indexed bym ∈
{
−M

2
, ..., M

2
− 1
}

and n ∈
{
−N

2
, ..., N

2
− 1
}
appears, and they all appear twice. From this∥∥γ0 − γ0

M,N

∥∥
S0

≤ 2 ‖g‖
∑

m/∈{−M
2

,..., M
2
−1}

∑
n/∈{−N

2
,..., N

2
−1}

|c(m,n)| (2.62)

When M,N →∞, the last term goes to zero.

39

Remark 2.5.2. Since each γ0
M,N is a �nite linear combination of Gabor atoms from (g, α, β),

they inherit properties from g: Since g ∈ S0(R) then each γ0
M,N ∈ S0(R). Similarly, if

g or ĝ has exponential decay, then so does γ0
M,N or γ̂0

M,N . This is a main di�erence
to the method of Kaiblinger [62], where the smoothness properties of the constructed
approximation depend on the interpolation method.

Remark 2.5.3. If additionally g ∈ S(R), where S(R) is the Schwartz-space of rapidly
decaying, smooth functions, then also γ0 ∈ S(R), [51]. Is this case then by Remark 2.5.2
each γ0

M,N ∈ S(R), so the convergence of γ0
M,N to γ0 is purely within S(R).

To use this method, the two main numerical calculations to be carried out are the
inversion of the frame operator for (gM,N , a, b) and the calculation of the coe�cients
dM,N ∈ CM×N . Algorithms based on FFTs and matrix-factorisations can be found in
[96]. These calculations can be performed in O (Lq) + O (NM logM) time, where q

p
is

the oversampling factor written as an irreducible fraction.

2.6 Proofs

2.6.1 Some additional theory.

The dilation operators are unitary operators for all d > 0, and the following commutation
relations between the translation and modulation operators holds:

DdMωTt = MdωT t
d
Dd on L2(R) (2.63)

DdMkTt = MkT t
d
Dd on L2([0, L]) (2.64)

Notice that the parameter of the modulation operator is unchanged in (2.64), as opposed
to (2.63). This is caused by the de�nition of the modulation operator.

For the various Fourier transforms and the modulation and translation operators the
following commutation relations hold:

FRMωTt = e2πitωM−tTωFR on L2(R) (2.65)

FZMωTj = e2πitωM−jTωFZ on l2(Z) (2.66)

F[0,L]MkTt = e2πitk/LM−t/LTkF[0,L] on L2([0, L]) (2.67)

FLMkTj = e2πijk/LM−jTkFL on CL (2.68)

We shall need the Poisson summation formula on L2 (R) stated as a relation between
Fourier transformation and the sampling- and periodization operators. A proof can be
found in [41, p. 105].

Theorem 2.6.1. The Poisson summation formula:

PM = F−1
[0,M]S1/MFR on S0(R) (2.69)

The following simple lemma [23, Lemma 5.3.3] shall be used frequently.

Lemma 2.6.2. Let T be a unitary operator on H, and assume that {ej} is a frame for
H. Then {Tej} is also a frame for H with the same frame bounds.

40

The dual frames that have Gabor structure are characterized by the Wexler-Raz rela-
tions:

Theorem 2.6.3 (Wexler-Raz). If g and γ both generates Gabor systems as in De�nition
2.3.9 with �nite upper frame bounds, then they are dual windows if and only if

L2(R) 1
αβ

〈
γ,Mm/αTn/βg

〉
= δmδn, m, n ∈ Z

l2(Z) M
a

〈
γ,Mm/aTnMg

〉
= δmδn, m = 0, ..., a− 1, n ∈ Z

L2([0, L]) N
b

〈
γ,MmNTnM/Lg

〉
= δmδn, m ∈ Z, n = 0, ..., b− 1

CL MN
L
〈γ,MmNTnMg〉 = δmδn, m = 0, ..., a− 1, n = 0, ..., b− 1

Proof of the original result for L2(R) and CL can be found in [107]. More rigorous
proofs with a minimal su�cient condition appear in [51, 26] and equally in [50]. Also see
[54, Subsecs. 1.4.2 and 1.6.4].

Combining Lemma 2.6.2 with the relations (2.63), (2.64) and (2.65)-(2.68) yields the
following well known results. The �rst relation appears as [41, 6.36].

Lemma 2.6.4. Dual Gabor frames under Fourier transforms and dilations.

FR: Let γ0 be the canonical dual window of (g, α, β), g ∈ L2(R). The canonical
dual window of (FRg, β, α) is FRγ

0.

FZ: Let γ0 be the canonical dual window of
(
g, a, 1

M

)
, g ∈ l2(Z). The canonical

dual window of
(
FZg,

1
M
, a
)
is FZγ

0.

F[0,L]: Let γ0 be the canonical dual window of (g, a, b), g ∈ L2([0, L]). The canonical
dual window of

(
F[0,L]g, b,

a
L

)
is F[0,L]γ

0.

FL: Let γ0 be the canonical dual window of (g, a, b), g ∈ CL. The canonical dual
window of (FLg, b, a) is FLγ

0.

Dd on L2(R) : Let γ0 be the canonical dual window of (g, α, β), g ∈ L2(R). The canonical
dual window of

(
Ddg,

α
d
, βd
)
is Ddγ

0.

Dd on L2([0, L]) : Let γ0 be the canonical dual window of (g, a, b), g ∈ L2([0, L]). The
canonical window of

(
Ddg,

a
d
, b
)
is Ddγ

0.

The proofs can be found by direct calculation. They are very simple, and almost identical.
The only di�erence is which of the commutation relations (2.63), (2.64) and (2.65)-(2.68)
to use.

Proof of Proposition 2.4.3. De�ne c ∈ l2(Z× Z) and d ∈ l2({0, ..., a− 1} × Z) by

c(m,n) =
〈
γ,Mm/αTn/βg

〉
L2(R)

, m, n ∈ Z, (2.70)

d(m,n) =
〈
Sα/aγ,Mm/aTnMSα/ag

〉
l2(Z)

(2.71)

=
〈
S1/Mβγ,Mm/aTnMS1/Mβg

〉
l2(Z)

, m = 0, ...,M − 1, n ∈ Z (2.72)

41

It is well known, that if g, γ ∈ S0(R) then (g, α, β) and (γ, α, β) have �nite upper frame
bounds, see e.g. [41, Chapter 6]. Since g, γ are dual windows, they satisfy the Wexler-Raz
condition for L2(R), Theorem 2.6.3:

1

αβ
c(m,n) = δmδn, m, n ∈ Z. (2.73)

We wish to show that Sα/ag and Sα/aγ satis�es the Wexler-Raz condition for l2(Z) :

M

a

〈
S1/Mβγ,Mm/aTnMS1/Mβg

〉
l2(Z)

(2.74)

=
M

a
d(m,n) (2.75)

= δmδn, m = 0, ..., a− 1, n ∈ Z (2.76)

By Theorem 2.4.1,
(
Sα/ag, a,

1
M

)
and

(
Sα/aγ, a,

1
M

)
also has �nite upper frame bounds.

By Proposition 2.4.2:

M

a
d(m,n) =

∑
j∈Z

1

αβ
c(m− ja, n) (2.77)

=
∑
j∈Z

δm−jaδn (2.78)

= δmδn, ∀m = 0, ..., a− 1, n ∈ Z. (2.79)

This shows that Sα/ag and Sα/aγ satis�es the Wexler-Raz condition for l2(Z), and therefore
they are dual windows.

2.6.2 Proofs of section 2.4.2

Proof of Theorem 2.4.4. By Lemma 2.6.2 and Lemma 2.6.4, (Fg, β, α) is also a Gabor
frame for L2(R) with frame bounds A and B and canonical dual window Fγ0.

Since ĝ ∈ S0(R), Theorem 2.4.1 can be used:
(
Sβ/bFg, b, 1

N

)
is a Gabor frame for l2(Z)

with frame bounds A and B and canonical dual window Sβ/bFγ0.

By Lemma 2.6.2 and Lemma 2.6.4,
(
F−1

[0, b
β

]
Sβ/bFg, a, b

)
is a Gabor frame for L2([0, b

β
])

with frame bounds A and B and canonical dual window F−1

[0, b
β

]
Sβ/bFγ0.

By the Poisson summation formula (2.69) then F−1

[0, b
β

]
Sβ/bF = Pb/β. From this the

result follows.

42

Chapter 3

Symmetric, discrete fractional splines

and Gabor systems

This chapter is the paper [94], which has been submitted to International Journal of
Wavelets, Multiresolution and Information Processing, 2007.

3.1 Abstract

In this paper we consider fractional splines as windows for Gabor frames. We introduce
two new types of symmetric, fractional splines in addition to one found by Unser and Blu.
For the �nite, discrete case we present two families of splines: One is created by sampling
and periodizing the continuous splines, and one is a truly �nite, discrete construction. We
discuss the properties of these splines and their usefulness as windows for Gabor frames
and Wilson bases..

3.2 Introduction

Fractional splines are a simple generalization of regular B-splines to fractional orders.
They have been developed by Unser and Blu in a series of papers [101, 12, 13] mostly in
the context of wavelets and fractional Brownian motion.

Fractional splines are interesting in relation to Gabor frames, because they provide a
smooth parameter family of functions ranging from the rectangular box function, which
generates an orthonormal Gabor basis, to the Gaussian function, which is the function
with the best time/frequency concentration. The fact that splines converge to the Gaus-
sian as the order grows is shown in [99] along with some considerations of B-splines as
Gabor windows for continuous Gabor frames. A result about the non-existence of certain
Gabor frames with spline windows was reported in [42].

Fractional splines retain most of the well-known properties of regular B-splines, but
they are no longer compactly supported. This makes them less useful for applications
where data is continuously produced and analyzed (e.g. processing long music signals).
However, in many applications (e.g. image processing) all data are available at the time
of processing, and fast algorithms exists for these kinds of Gabor systems, [111, 7, 96].

43

A regular B-spline of order n can be de�ned as n convolutions of the rectangular func-
tion. Because a convolution of two functions can be computed by pointwise multiplication
of their Fourier transforms, we get the classical expression for the B-spline βn of order
n = 0, 1, 2, . . . in the Fourier domain:

β̂n (ω) = sinc (ω)n+1 , ω ∈ R. (3.1)

This de�nition extends naturally to fractional orders α > −1
2
:

β̂α
+ (ω) = sinc (ω)α+1 , ω ∈ R. (3.2)

This is a simple shift of the βα
+ spline de�ned in [101]. This spline is not even around

x = 0, because is has a complex valued Fourier transform.
Symmetry is an important goal for window construction because symmetric windows

are a requirement for Wilson bases [25, 15] and the modi�ed discrete cosine transform
(MDCT) [81, 82]. Both Wilson bases and the MDCT are cosine modulated �lter banks
closely related to Gabor frames of twice the redundancy. In [12] Blu and Unser's presents
a family of symmetric, fractional splines. In this paper, we present two other de�nitions,
yielding splines that generates tighter (better conditioned) Gabor frames than Blu and
Unsers de�nition.

A central property of B-splines is that they form a partition of unity, PU, meaning
that the sum of integer translates of a B-spline is a constant function. This property can
be important i.e. in image processing, where it is advantageous to be able to represent
a large, almost constant area of an image using few coe�cients. In relation to local,
trigonometric bases, this has been investigated in [60, 9].

In [12, 101] Unser and Blu have shown methods to generate discrete fractional splines
by sampling. In this paper, we present two other methods for producing discrete and �nite
splines. In Section 3.5 we present a method to obtain �nite, discrete fractional splines by
sampling and periodizing their continuous counterparts. In Section 3.6 we present another
method where we transfer the de�nition of the continuous splines to the �nite, discrete
setting. Finally, in Section 3.7 we make numerical comparisons of the di�erent types of
splines and study their usefullness as windows for Gabor / Wilson / MDCT frames and
bases.

3.3 De�nitions

We de�ne the Fourier transform F : L2 (R) 7→ L2 (R) as

(Ff) (ω) = f̂ (ω) =

∫
x∈R

f (x) e−2πiωxdx, ω ∈ R, (3.3)

and the Discrete Fourier Transform (DFT) of h ∈ CL as

(Fh) (k) = ĥ (k) =
1√
L

L−1∑
l=0

h (k) e−2πikl/L, k = 0, . . . , L− 1, (3.4)

where i denotes the imaginary unit. The sinc function is given by

sinc (x) =

{
sin(πx)

πx
x ∈ R \ {0}

1 x = 0
. (3.5)

44

The sinc function is the Fourier transform of the box function β0
+, which is explicitly given

by

β0
+ (x) =

1 if |x| < 1

2
1
2

if |x| = 1
2

0 if |x| > 1
2
.

(3.6)

Convolution of two functions is given by

(f ∗ g) (x) =

∫
y∈R

f(y)g(x− y)dy, x ∈ R, f, g ∈ L1 (R) (3.7)

(f ∗ g) (l) =
L−1∑
k=0

f(k)g(l − k), l = 0, . . . , L− 1, f, g ∈ CL. (3.8)

The convolution of two functions can be computed in the Fourier domain:

f̂ ∗ g (ω) = f̂ (ω) ĝ (ω) , ω ∈ R, ∀f, g ∈ L1 (R) , (3.9)

f̂ ∗ g (k) =
√
Lf̂ (k) ĝ (k) , k = 0, . . . , L− 1, ∀f, g ∈ CL. (3.10)

A family of elements {ej}j∈J in a separable Hilbert space H is called a frame if con-
stants 0 < A ≤ B <∞ exist such that

A ‖f‖2
H ≤

∑
j∈J

∣∣〈f, ej〉H
∣∣2 ≤ B ‖f‖2

H , ∀f ∈ H. (3.11)

The constants A and B are called lower and upper frame bounds, respectively.
We de�ne the Wiener space by

W (R) =

{
f

∣∣∣∣∑
n∈Z

ess sup
x∈[0,1]

|f (x+ n)| <∞

}
. (3.12)

The Wiener space is a subspace of L1(R) and L2(R).
We de�ne Gabor systems for L2 (R) and CL by

De�nition 3.3.1. A Gabor system (g, α, β) for L2 (R) with g ∈ L2 (R) and α, β > 0 is
given by

gm,n (x) = e2πimβxg (x− na) , ,m, n ∈ Z. (3.13)

De�nition 3.3.2. A Gabor system
(
gD, a, b

)
for CL with g ∈ CL, a, b ∈ N is given by

gD
m,n (l) = e2πimbl/Lg (l − na) , ,m = 0, . . . ,

L

b
− 1, n = 0, . . . ,

L

a
− 1. (3.14)

For more information about Gabor systems and frames, see the books [41, 23, 35, 36].
We consider the following symmetries of discrete signals:

De�nition 3.3.3. Let g ∈ CL. We say that g is whole point even (WPE) if

g (l) = g (−l) = g (L− l)

for l = 0, . . . , L − 1. This implies that g (0) must always be real, and so must g
(

L
2

+ 1
)

if L is even.

45

De�nition 3.3.4. Let g ∈ CL. We say that g is half point even (HPE) if

g (l) = g (L− 1− l)

for l = 0, . . . , L− 1. This implies that g
(

L−1
2

)
must be real if L is odd.

If g is HPE then
ĝ (k) = h (k) eπik/L, (3.15)

where h is some real-valued signal: h ∈ RL.
It is relevant to consider these two symmetries, because WPE and HPE windows are

a requirement for discrete Wilson bases [15] and the MDCT [81, 82].

De�nition 3.3.5. The basis functions wm,n ∈ CL of a Wilson basis for CL with M ∈ N
channels and where g ∈ CL is WPE if ct = 0 or HPE if ct = 1

2
are given by:

If m = 0:

w0,n(l) = g (l − 2nM)

If m is odd and less than M :

wm,n(l) =
√

2 sin(2π
m

2M
(l + ct))g (l − 2nM)

wm+M,n(l) =
√

2 cos(2π
m

2M
(l + ct))g (l − (2n+ 1)M)

If m is even and less than M :

wm,n(l) =
√

2 cos
(
2π

m

2M
(l + ct)

)
g (l − 2nM)

wm+M,n(l) =
√

2 sin
(
2π

m

2M
(l + ct)

)
g (l − (2n+ 1)M)

If m = M and M is even:

wM,n(l) = (−1)lg (l − 2nM)

else if m = M and M is odd:

wM/2,n(l) = (−1)lg (l − (2n+ 1)M) .

3.4 Symmetric splines for the real line

The βα
+ spline de�ned by (3.2) is not symmetric for α not being an integer, which means

in cannot be used as a window function with Wilson bases. In the following, we shall
present three ways to overcome this problem.

The �rst way is to add βα
+ to its own reverse:

βα
e (x) =

βα
+ (x) + βα

+ (−x)
2

. (3.16)

In the Fourier domain, this has the expression

β̂α
e =

β̂α
+ + β̂α

+

2
= <

(
β̂α

+

)
. (3.17)

46

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

(a) β0
+ = β0

e = β0
×

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-3 -2 -1 0 1 2 3

(b) β0
∗

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

(c) β1
+ = β1

e = β1
∗

 0

 0.2

 0.4

 0.6

 0.8

-3 -2 -1 0 1 2 3

(d) β1
×

Figure 3.1: The �gure shows the B-splines of order 0 and 1.

Another way of looking at this is, that βα
e is the even part of βα

+. This can be seen from
(3.16).

In [12] Blu and Unser's presents a family of symmetric, fractional splines, βα
∗ . These

splines coincides with the regular B-splines only when α is an odd integer. In particular,
β0
∗ is not the box function. For our purpose, namely Gabor analysis, this is a downside,

because the box function often (depending on the parameters α and β) generates a tight
Gabor frame. We will therefore de�ne another family of B-splines, βα

×, which coincides
with the regular B-splines for α being an even integer.

The de�nition of βα
∗ and βα

× comes from substituting the normal power function xα

with its signed and unsigned |x|α counterparts. The signed power of a real number is
given by:

s〈α〉 = |s|α−1 s = |s|α sign(s), ∀s ∈ R. (3.18)

We can now de�ne the three types of B-splines:

De�nition 3.4.1. Let α > −1
2
. Then βα

e , β
α
∗ , β

α
× ∈ L2 (R) are given in the Fourier domain

by

β̂α
e (ω) = <

(
sinc (ω)α+1) , ω ∈ R, (3.19)

β̂α
∗ (ω) = |sinc (ω)|α+1 , ω ∈ R, (3.20)

β̂α
× (ω) = sinc (ω)〈α+1〉, ω ∈ R. (3.21)

We shall use the notation βα in results that hold for all three type of B-splines. When

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-3 -2 -1 0 1 2 3

-0.5

 0

 0.5

 1

 1.5

 2

-3 -2 -1 0 1 2 3

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

Figure 3.2: The three splines of order α = 0.3. From left to right: βα
e , β

α
∗ and βα

×.

α > −1
2
then sinc raised to α+1 is an L2(R) function, and because the Fourier transform

maps L2(R) to L2(R), then βα ∈ L2(R).

It is clear from the de�nition that βα
e = βα

× for even values of α, and βα
e = βα

∗ for
odd values of α. Contrary to the regular B-splines then βα

× is not compactly supported
for odd values of α, and βα

∗ is not compactly supported for even values of α. For integer
values of α, βα

e is equal to the normal, compactly supported B-splines. Figure 3.1 shows
the B-splines of order 0 and 1, where these di�erences are most visible. All the splines
quickly start to resemble the Gaussian function as α → ∞. Figure 3.2 shows the three
symmetric B-splines for order α = 0.3.

From the de�nition and (3.9) it can be seen that the splines have the following simple
convolution properties for α > −1

2
:

βα+1
e = βα

e ∗ β0
+ (3.22)

βα+1
∗ = βα

∗ ∗ β0
∗ (3.23)

βα+1
× = βα

∗ ∗ β0
+ (3.24)

In [101], pure time domain expressions are given for βα
+ and βα

∗ . By adapting the
proof, the same decay result can be shown for βα

e and βα
×:

|βα (x)| ≤ Ct |x|−(α+2) , (3.25)

where Ct is a constant independent of x.
The decay in frequency is straightforward to show from the de�nition:∣∣∣β̂α (ω)

∣∣∣ ≤ Cf |ω|−(α+1) , (3.26)

where Cf is a constant independent of ω. Using the decay results, it is easy to show that
βα ∈ W (R) when α ≥ 0 and β̂α ∈ W (R) when α > 0.

The three types of splines all form a partition of unity (PU):∑
k∈Z

βα (x+ k) = 1, a.e.x ∈ R. (3.27)

Since βα ∈ L1(R), this is a consequence of the fact that

β̂α (n) =

{
1 if n = 0

0 if n ∈ Z \ {0}
(3.28)

For a simple proof, see [105, Cor. 7.54].

48

3.5 Discrete splines by sampling and periodization

In the papers [79, 53, 62, 92] a theory for �nite, discrete Gabor frames obtained from
sampled and periodized Gabor frames for CL has been developed. The main results are
as follows: Suppose that g ∈ L2 (R) (satisfying certain conditions) generates a Gabor
frame for L2 (R). Then

• gD ∈ CL obtained from g by sampling and periodization will generate a Gabor frame
for CL with the same (or better) frame bounds.

• The canonical dual/tight windows of these two Gabor systems are related by sam-
pling and periodization as well.

• If f ∈ L2 (R) and fD ∈ CL are also related by sampling and periodization then〈
fD, gD

m,n

〉
=
∑
r∈Z

∑
s∈Z

〈
f, gm+ rL

b
,n+ sL

a

〉
. (3.29)

This corresponds to an aliasing in time and frequency of the expansion coe�cients
from the continuous Gabor system, very similar to the well known phenomena for
Fourier series and the DFT.

This theory is the reason for trying to de�ne �nite, discrete fractional splines by sampling
and periodization.

We de�ne the �nite, discrete splines by sampling and periodization of their continuous
counterparts. We shall denote splines that are WPE by a capital 'W' and similarly denote
splines that are HPE by a capital 'H', see De�nition 3.3.3 and 3.3.4:

De�nition 3.5.1. We de�ne the discrete splines Cα,+W
L,a , Cα,eW

L,a , Cα,∗W
L,a , Cα,×W

L,a , Cα,+H
L,a ,

Cα,eH
L,a , Cα,∗H

L,a , Cα,×H
L,a by sampling and periodization of their continuous counterparts:

Cα,W
L,a (l) =

1

a

∑
n∈Z

βα

(
l

a
+ nN

)
, l = 0, . . . , L− 1 (3.30)

Cα,H
L,a (l) =

1

a

∑
n∈Z

βα

(
2l + 1

2a
+ nN

)
, l = 0, . . . , L− 1. (3.31)

The splines Cα,+W
L,a , Cα,eW

L,a , Cα,×W
L,a Cα,+H

L,a , Cα,eH
L,a Cα,×H

L,a are de�ned for α ≥ 0, while Cα,∗W
L,a

and Cα,∗H
L,a are only de�ned for α > 0. This is because the periodization of β0

∗ is divergent.

To �nd Fourier domain expressions for α > 0 for these splines, the main tool will be
the Poisson summation formula:

Lemma 3.5.2 (The Poisson summation formula). . Let f ∈ L2 (R) then∑
n

f (x+ nN) =
1

L

∑
k

f̂

(
k

N

)
e2πikx/N , a.e. x ∈ R. (3.32)

49

When both f, f̂ ∈ W (R), the Poisson summation formula hold with pointwise con-
vergence everywhere, [41], and this is exactly the case for βα when α > 0.

We shall make use of Hurwitz' zeta function [47], also known as the generalized zeta
function:

ζ (z, v) =
∞∑

k=0

1

(k + v)z , z > 1, v > 0 (3.33)

In the following, we set β = α+ 1 to shorten the formulas. Using the Poisson summation
formula (3.32) and Hurwitz' zeta function, we obtain Fourier domain expressions for for
the splines de�ned in De�nition 3.5.1:

Proposition 3.5.3. For α > 0 we have the following. For even a and m = 1, . . . , L− 1.

Ĉα,eW
L,a (m) =

1√
L
<

(sin
(

πm
N

)
πa

)β (
ζ
(
β,
m

L

)
+ e−πiβζ

(
β, 1− m

L

)) (3.34)

Ĉα,∗W
L,a (m) =

1√
L

∣∣∣∣∣sin
(

πm
N

)
πa

∣∣∣∣∣
β (
ζ
(
β,
m

L

)
+ ζ

(
β, 1− m

L

))
(3.35)

Ĉα,×W
L,a (m) =

1√
L

(
sin
(

πm
N

)
πa

)〈β〉 (
ζ
(
β,
m

L

)
− ζ

(
β, 1− m

L

))
(3.36)

For odd a and m = 1, . . . , L− 1 we get the expressions

Ĉα,eW
L,a (m) =

1√
L
<

((
sin
(

πm
N

)
2πa

)β (
(−1)−β ζ

(
β, 1− m

2L

)
+ ζ

(
β,

m

2L

)
+

+ζ

(
β,

1

2
− m

2L

)
+ (−1)β ζ

(
β,

1

2
+
m

2L

)))
(3.37)

Ĉα,×W
L,a (m) =

1√
L

(
sin
(

πm
N

)
2πa

)〈β〉(
ζ
(
β,

m

2L

)
− ζ

(
β, 1− m

2L

)
+

+ζ

(
β,

1

2
− m

2L

)
− ζ

(
β,

1

2
+
m

2L

))
. (3.38)

The expression (3.35) holds for both even and odd a. For m = 0 and all values of a we
get

Ĉα,eW
L,a (0) = Ĉα,∗W

L,a (0) = Ĉα,×W
L,a (0) =

1√
L
. (3.39)

For a derivation, see Sec. 3.9.
The discrete splines de�ned in this manner does not satisfy the discrete equivalent of

the convolution properties (3.22)-(3.24). Instead, because these splines are formed from
sampling and periodization, they have the subsampling property

Cα,W
L,a (k) =

√
cCα,W

Lc,ac (ck) , k = 0, . . . , L− 1, (3.40)

where c ∈ N. This means, that if one picks out a regularly spaced subsequence of the
splines containing the �rst element, then this sequence is again a spline of the same order
and type. Another consequence is that interleaving a WPE spline with the corresponding
HPE spline will form the WPE spline (di�erently scaled) of twice L and a.

50

3.6 Discrete splines by the DFT

In the previous section we de�ned �nite, discrete splines by means of sampling and pe-
riodization. In this section we will de�ne �nite, discrete splines by transferring the con-
tinuous de�nition to the discrete case. We wish to create both WPE and HPE spline
functions. For this the following simple observations can be used:

• The convolution of two WPE functions is again a WPE function.

• The convolution of an HPE and a WPE function is a again an HPE function.

However, it does not hold that the convolution of two HPE functions is again a HPE
function. Contrary, it is a WPE function shifted by one sample.

We can construct splines by repeated convolution of a rectangular function, just as in
the continuous case. The zeroth order splines is de�ned by a sampling and periodization of
the box spline. Because the box spline is compactly supported, the periodization consists
of only two terms:

De�nition 3.6.1. Let a = {0, . . . , L− 1}. We de�ne D0,+W
L,a , D0,+H

L,a ∈ CL by:

D0,+W
L,a (l) =

1√
a

(
β0

+

(
l − L

a

)
+ β0

+

(
l

a

))
, (3.41)

D0,+H
L,a (l) =

1√
a

(
β0

+

(
l + 1

2
− L

a

)
+ β0

+

(
l + 1

2

a

))
, (3.42)

for l = 0, . . . , L− 1.

By standard trigonometric formulas, we �nd that the DFT of D0,W
L,a is

D̂0,+W
L,a (k) =

2√
L

d(a−1)/2e∑
l=1

b(l) cos (2πkl/L)

 (3.43)

=

sin(a πl

L)
sin(πl

L)
if a is odd

sin((a−1)πl
L)+sin((a+1)πl

L)
2 sin(πl

L)
if a is even

(3.44)

where

b(l) =

{
1
2

if l = 0 or l = a
2

1 otherwise.
(3.45)

We de�ne the discrete, fractional WPE B-splines in the same way as their continuous
counterparts.

51

De�nition 3.6.2. Let α > −1 and a = {0, . . . , L− 1}. We de�neDα,eW
L,a , Dα,∗W

L,a , Dα,×W
L,a ∈

CL

D̂α,eW
L,a = L

α
2<

((
D̂α,W

L,a

)α+1
)

(3.46)

D̂α,∗W
L,a = L

α
2

∣∣∣∣D̂α,W
L,a

∣∣∣∣α+1

(3.47)

D̂α,×W
L,a = L

α
2

(
D̂α,W

L,a

)〈α+1〉

(3.48)

The constant term L
α
2 is necessary to ensure the proper normalization. It comes from

the
√
L appearing in (3.10).

The Fourier domain methods used so far need to be modi�ed for de�ning the HPE
splines, because the Fourier transform of an HPE function is not real valued. Instead we
will use the convolution properties (3.22)-(3.24) as the de�nition. We de�ne the zero-order
splines by:

The unsigned power spline of order zero can be de�ned in the Fourier domain using
(3.15):

De�nition 3.6.3. Let a = {0, . . . , L− 1}. We de�ne D0,∗H
L,a ∈ CL in the Fourier domain

by

D̂0,∗H
L,a (k) =

∣∣∣∣B̂0,+HD

L,a (k)

∣∣∣∣ eπik/L if 0 ≤ k <
⌊

L
2

⌋
−
∣∣∣∣B̂0,+HD

L,a (k)

∣∣∣∣ eπik/L otherwise
.

Using the two zero order HPE splines just de�ned, we can de�ne all the HPE splines:

De�nition 3.6.4. Let a = {0, . . . , L− 1} and α > 0. We de�ne Dα,eH
L,a , Dα,∗H

L,a , Dα,×H
L,a ∈

CL in the Fourier domain by:

D̂α,eH
L,a = L

α
2<
((

D̂0,W
L,a

)α)
D̂0,+H

L,a , (3.49)

D̂α,∗H
L,a = L

α
2

∣∣∣∣D̂0,W
L,a

∣∣∣∣α D̂0,∗H
L,a , (3.50)

D̂α,×H
L,a = L

α
2

∣∣∣∣D̂0,W
L,a

∣∣∣∣α D̂0,H
L,a . (3.51)

3.7 Numerical results

In this section we consider Gabor frames and Wilson bases as de�ned in De�nition 3.3.2
and 3.3.5.

The six di�erent types of splines (both in WPE and HPE variation) have been im-
plemented in the Linear Time Frequency Toolbox (LTFAT) available from http://www.

52

 1

 10

 0 0.5 1 1.5 2 2.5 3

ec
*c
xc
ed
*d
xd

(a) odd a, WPE

 1

 10

 0 0.5 1 1.5 2 2.5 3

ec
*c
xc
ed
*d
xd

(b) even a, WPE

 1

 10

 0 0.5 1 1.5 2 2.5 3

ec
*c
xc
ed
*d
xd

(c) odd a, HPE

 1

 10

 0 0.5 1 1.5 2 2.5 3

ec
*c
xc
ed
*d
xd

(d) even a, HPE

Figure 3.3: The �gure show the frame bound ratio B
A
of a Gabor frame using one of the

six types of splines as window function. The parameters for the left plot are L = 48,
a = 3 and M = 4. For the right plot they are L = 96, a = 6 and M = 8. The top row
shows WPE windows and the bottom row shows HPE windows.

53

 1

 10

 0 0.5 1 1.5 2 2.5 3

ec
*c
xc
ed
*d
xd

(a) WPE

 1

 10

 0 0.5 1 1.5 2 2.5 3

ec
*c
xc
ed
*d
xd

(b) HPE

Figure 3.4: The �gure show the frame bound ratio B
A

of a Wilson basis as de�ned in
De�nition 3.3.5 using one of the six types of splines as window function. The parameters
are L = 36 using M = 6 channels. The left �gure shows a Wilson basis with ct = 0 using
WPE splines as window. The right plot show a Wilson basis with ct = 1

2
using HPE

splines as windows.

univie.ac.at/nuhag-php/ltfat as the function pbspline (Periodic B-spline). Imple-
mentations of Gabor systems, Wilson bases and frame bound calculations are available
as well.

Implementations of Hurwitz' zeta function needed for the 'C' splines can (among other
places) be found in GSL (the GNU Scienti�c Library), Maple and Mathematica. Octave
uses the GSL implementation and Matlab uses the Maple implementation.

Figure 3.3 show a comparison of the frame bound ratio B
A
of Gabor frames using splines

windows with di�erent values of α. The windows that consistently generates the lowest
frame bound ratios are the signed power splines, Cα,× and Dα,×, and the unsigned power
splines Cα,∗ and Dα,∗ generate the highest. The even splines, Cα,e and Dα,e, oscillates
between these two, as would be expected.

For values of α close to zero, using a WPE spline when a is odd and an HPE spline
when a is even gives much lower frame bounds that doing the opposite. The cause of
this is that D0,+W

L,a for a odd and D0,+H
L,a for a even consists of only the values 0 and 1.

Because D0,+W
L,a forms a PU, then also g (k) =

∣∣∣D0,+W
L,a (k)

∣∣∣2 forms a PU. This is exactly
the requirement for generating a tight Gabor frame for this case.

Figure 3.4 show the same investigation for Wilson bases. We have constructed a Wilson
basis for which the unmodulated terms form a PU. This means that we must choose the
parameter a for the splines as a = 2M , and therefore the value of a cannot be odd. We
see similar result as for Gabor frames, except that the 'e' splines may sometimes generate
frames with a lower frame bound ratio than those generated by the 'x' splines.

Figure 3.5 shows the e�ect of using a window that forms a PU in image compression.
The image used is a standard test image, the 'cameraman', which has a large background
area of almost constant color. For each of the three windows C0,eW , C0.4,eW and the Gaus-
sian, the test image has been heavily compressed so as to produce visible artifacts of the
compression. The two spline windows that form a PU provides a smooth resolution of the
background, while the Gaussian produces a visibly disturbing pattern in the background.

54

(a) Original (b) Box WPE window

(c) 'ec' WPE spline window with α = .4 (d) Gauss window

Figure 3.5: The �gure shows a test done on a standard test image, the Cameraman.
The image in the upper left corner is the original 256x256 greyscale image. The other
3 images have been compressed using a 2D Wilson basis with M = 16 channels and
di�erent window functions as speci�ed below each image. The speci�ed window was used
for synthesis and the corresponding canonical dual window was used for analysis. The 1%
largest coe�cients have been kept, and all other coe�cients set to zero.

55

The box function on the other hand produces a sharp image but with visible horizontal
and vertical lines, because of the sharp cuto�.1 The image produced by the fractional
spline C0.4,eW shows a smoother background without disturbing lines or patterns.

3.8 Conclusion

We have introduced two families of �nite, discrete, symmetric B-splines suitable for dis-
crete Gabor analysis:

• A family of discrete splines constructed by sampling and periodization of the con-
tinuous splines. These splines are suitable for Gabor analysis if we are working with
signals coming from a sampling of continuous signals, and desire a precise estimate
of sampling errors. To compute these splines, evaluation of Hurwitz' zeta function
is needed, which can be slow if not properly implemented.

• A family of discrete splines de�ned in the same manner as their continuous coun-
terparts. These splines are very similar to the splines produced by sampling and
periodization, but lack the close relationship to the continuous splines. They are
very fast to compute, requiring only a single DFT.

For Gabor systems, the splines formed by raising the sinc function to a signed power
consistently generated Gabor frames with a lower frame bound ratio than the other types
of splines.

An implementation of the di�erent type of splines discussed in this paper is available
in the LTFAT toolbox as the function pbspline. By default this function will return
a spline of type Be,D

L,a , as this spline coincides with the normal B-splines for all integer
orders, and because it is fast and reliable to compute (computation does not depend on
an external library to be available).

3.9 Derivation of the periodic, discrete fractional splines

by sampling and periodization

We wish to �nd an explicit expression for the DFT of

Cα,+W
L,a (l) =

1

a

∑
n

βα
+

(
l

a
+ nN

)
. (3.52)

To derive this, we will need to consider the following two sums: For the �rst one, we
expand the sum in (3.33) to run through all whole numbers:

1When using this window a 2D Wilson transform is almost the same transform as the 2D block DCT
that is used in JPEG encoding of images.

56

∑
k∈Z

(z + k)−β =
∞∑

k=1

(z − k)−β +
∞∑

k=0

(z + k)−β (3.53)

=
∞∑

k=0

(z − (k + 1))−β +
∞∑

k=0

(z + k)−β (3.54)

= (−1)−β ζ (β, 1− z) + ζ (β, z) (3.55)

For the second one, we consider a sum with alternating signs. We split it for k even and
k odd and use (3.55):

∑
k∈Z

(
(−1)k

)β

(z + k)β
=

∑
k∈Z

1

(z + 2k)β
+
∑
k∈Z

(−1)β

(z + 2k + 1)β
(3.56)

= 2−β

(∑
k∈Z

(z
2

+ k
)−β

+ (−1)β
∑
k∈Z

(
z + 1

2
+ k

)−β
)

(3.57)

= 2−β

(
(−1)−β ζ

(
β, 1− z

2

)
+ ζ

(
β,
z

2

)
+

+ ζ

(
β,

1

2
− z

2

)
+ (−1)β ζ

(
β,

1

2
+
z

2

))
(3.58)

Using the Poisson summation formula (3.32) and the well-known aliasing of high-mode
waves to low mode waves (also a form of Poisson-summation) we obtain

Cα,+W
L,a (l) =

1

a

∑
n

βα
+

(
l

a
+ nN

)
(3.59)

=
1

L

∑
k∈Z

sinc
(
k

N

)α+1

e2πikl/L (3.60)

=
1

L

L−1∑
m=0

(∑
k∈Z

sinc
(
m+ kL

N

)α+1
)
e2πilm/L (3.61)

=
1

L

L−1∑
m=0

(∑
k∈Z

sinc
(m
N

+ ka
)α+1

)
e2πilm/L (3.62)

for j = 0, . . . , L− 1 and α > 0. The in�nite sum is absolute convergent because we have
assumed α > 0. From the last expression we recognize the discrete Fourier transform of
Cα,+W

L,a :

Ĉα,+W
L,a (m) =

1√
L

∑
k∈Z

sinc
(m
N

+ ka
)α+1

, m = 0, . . . , L− 1. (3.63)

To get rid of the in�nite sum, we rewrite for m = 1, . . . , L− 1:

57

Ĉα,+W
L,a (m) =

1√
L

∑
k∈Z

sinc
(m
N

+ ka
)α+1

(3.64)

=
1√
L

∑
k∈Z

(
sin
(

πm
N

+ πka
)

πm
N

+ πka

)α+1

(3.65)

=
1√
L

sin
(πm
N

)α+1∑
k∈Z

(
(−1)ka

)α+1

(
πm
N

+ πka
)α+1 (3.66)

=
1√
L

(
sin
(

πm
N

)
πa

)α+1∑
k∈Z

(
(−1)ka

)α+1

(
m
L

+ k
)α+1 (3.67)

The last expression (3.67) simpli�es when a is even. We therefore �rst treat the case when
a is even and use (3.55) with β = α+ 1:

B̂α,+WC
L,a (m) (3.68)

=
1√
L

(
sin
(

πm
N

)
πa

)α+1∑
k∈Z

1(
m
L

+ k
)α+1 (3.69)

=
1√
L

(
sin
(

πm
N

)
πa

)α+1 (
(−1)−(α+1) ζ

(
α+ 1, 1− m

L

)
+ ζ

(
α+ 1,

m

L

))
. (3.70)

To treat the case when a is odd, we use use (3.58) on (3.67):

B̂α,+WC
L,a (m) =

1√
L

(
sin
(

πm
N

)
πa

)α+1∑
k∈Z

(
(−1)k

)α+1

(
m
L

+ k
)α+1 (3.71)

=
1√
L

(
sin
(

πm
N

)
2πa

)α+1(
(−1)−(α+1) ζ

(
α+ 1, 1− m

2L

)
+ ζ

(
α+ 1,

m

2L

)
+

+ζ

(
α+ 1,

1

2
− m

2L

)
+ (−1)α+1 ζ

(
α+ 1,

1

2
+
m

2L

))
(3.72)

For m = 0 we get trivially from the properties of the sinc function that

Ĉα,+W
L,a (0) =

1√
L
. (3.73)

The derivations of Ĉα,∗W
L,a and Ĉα,×W

L,a are very similar.

58

Chapter 4

An E�cient Algorithm for the Discrete

Gabor Transform using full length

Windows

This chapter is the paper [93], which has been submitted to IEEE Signal Processing
Letters, 2007.

4.1 Abstract

This paper extends the e�cient factorization of the Gabor frame operator developed by
Strohmer in [96] to the Gabor analysis/synthesis operator. This provides a fast method
for computing the discrete Gabor transform (DGT) and several algorithms associated
with it. The algorithm is used for the case when the involved window and signal have the
same length.

4.2 Introduction

The �nite, discrete Gabor transform (DGT) of a signal f of length L is given by

c (m,n,w) =
L−1∑
l=0

f(k, w)g (l − an)e−2πiml/M . (4.1)

Here g is a window that localizes the signal in time and in frequency. The DGT is
equivalent to a Fourier modulated �lter bank with M channels and decimation in time a,
[18].

E�cient computation of a DGT can be done by several methods: If the window g
has short support, a �lter bank based approach can be used. We shall instead focus on
the case when g and f are equally long. In this case a factorization approach developed
by Zibulski and Zeevi in [111] for the case of the frame operator of Gabor frames for
L2 (R) can be used. The method was adapted for the �nite, discrete setting by Bastiaans
and Geilen in [7], and extended to cover also the analysis/synthesis operator. A simple,
but not so e�cient, method was developed for the Gabor analysis/synthesis operator by

59

Prinz in [83] and later extended by Strohmer [96] to provide the fastest known method for
computing the Gabor frame operator. This paper extends Prinz' and Strohmer's method
to also cover the Gabor analysis and synthesis methods on multisignals.

The advantage of the method developed in this paper as compared to the one developed
in [7], is that it works with FFTs of shorter length, and do not require multiplication by
complex exponentials. The asymptotic running time of the two method are the same.

We shall study the DGT applied to multiple signals at once. This is a common case
for instance when computing a multidimensional, separable DGT, then this can be done
by applying several multisignal DGTs. The DGT de�ned by (4.1) works on a multisignal
f ∈ CL×W , where W ∈ N is the number of signals.

4.3 De�nitions

We shall denote the set of integers between zero and some number L by

〈L〉 = 0, . . . , L− 1. (4.2)

The Discrete Fourier Transform (DFT) of a signal f ∈ CL is de�ned by

(FLf) (k) =
1√
L

L−1∑
l=0

f(l)e−2πikl/L. (4.3)

We shall use the · notation in conjunction with the DFT to denote the variable over which
the transform is to be applied.

The folding f ∗ g of two functions f, g ∈ CL and the involution f ∗ is given by

(f ∗ g) (l) =
L−1∑
k=0

f (k) g (l − k) , l ∈ 〈L〉 (4.4)

f ∗ (l) = f (−l), l ∈ 〈L〉 . (4.5)

Both folding and involution has special properties with respect to the Fourier transform

f̂ ∗ g =
√
Lf̂ ĝ (4.6)

f̂ ∗ = f̂ (4.7)

The Poisson summation formula in the �nite, discrete setting is given by

FM

(
b−1∑
k=0

g(·+ kM)

)
(m) =

√
b (FLg) (mb), (4.8)

where g ∈ CL, L = Mb with b,M ∈ N.
A family of vectors ej, j ∈ 〈J〉 of length L is called a frame if constants 0 < A ≤ B

exist such that

A ‖f‖2 ≤
J−1∑
j=0

|〈f, ej〉|2 ≤ B ‖f‖2 , ∀f ∈ CL. (4.9)

60

The constants A and B are called lower and upper frame bounds. If A = B, the frame
is called tight. If J > L, the frame is redundant (oversampled). Finite- and in�nite
dimensional frames are described in [23].

A �nite, discrete Gabor system (g, a,M) is a family of functions gm,n ∈ CL of the
following form

gm,n (l) = e2πilm/Mg (l − na) , (4.10)

for m ∈ 〈M〉 and n ∈ 〈N〉 where L = aN and M/L ∈ N. A Gabor system that is also a
frame is called a Gabor frame. The analysis operator Cg : CL 7→ CM×N associated to a
Gabor system (g, a,M) is given by

c (m,n) = Cgf =
L−1∑
l=0

f(k)e−2πiml/Mg (l − an). (4.11)

This is exactly the DGT from (4.1). The adjoint operator is the Gabor synthesis operator
Dγ : CM×N 7→ CL associated to a Gabor system (γ, a,M) given by

f = Dγc =
N−1∑
n=0

M−1∑
m=0

c (m,n) e2πiml/Mγ (l − an) . (4.12)

In (4.1) it must hold that L = Na = Mb for some M,N ∈ N. Additionally, we de�ne
c, d, p, q ∈ N by

c = gcd (a,M) , d = gcd (b,N) , (4.13)

p =
a

c
=
b

d
, q =

M

c
=
N

d
, (4.14)

where GCD denotes the greatest common divisor of two natural numbers. With these
numbers, the redundancy of the transform can be written as L/ (ab) = q/p, where q/p is
an irreducible fraction. It holds that L = cdpq.The Gabor frame operator Sg : CL 7→ CL

of a Gabor frame (g, a,M) is given by the composition of the analysis and synthesis
operators Sg = DgCg. The Gabor frame operator is important because it can be used to
�nd the canonical dual window gd = S−1

g g and the canonical tight window gt = S
−1/2
g g

of a Gabor frame. The canonical dual window is important because Cg and Dgt are each
others inverses. This gives an easy way to construct the inverse transform of the DGT.
Similarly, then Cgt and Dgt are each others inverses. For more information on Gabor
systems and properties of the operators C, D and S see [41, 35, 36].

4.4 The method

We wish to make an e�cient calculation of all the coe�cients of the DGT. Using (4.1)
literally to compute all coe�cients c (m,n,w) would require 8MNLW �ops.

To derive a faster DGT, an approach would be to consider the analysis operator Cg

as a matrix, and derive a faster algorithm through unitary matrix factorizations of this
matrix. This is indeed the approach taken by [85, 96]. Unfortunately, this approach
tends to introduce many permutation matrices and Kronecker product matrices, so in

61

Algorithm 2 Multisignal DGT by matrix/matrix products.
We wish to compute the DGT c (m,n,w) ∈ CM×N×W of f ∈ CL×W using the window
g ∈ CL and lattice determined by a and M .

1. De�ne Ψf
r,s (k, l) ∈ Cp×qW and Φg

r,s (k, l) ∈ Cp×q for r ∈ 〈c〉, s ∈ 〈d〉 and w ∈ 〈W 〉 by

Ψ̃f
r,s̃ (k, l + qw) = f (r + kM + s̃pM − lhaa, w) ,

Φ̃g
r,s̃ (k, l) =

√
Mdg (r + kM + s̃pM − la) .

2. Compute their DFTs along s̃:

Ψf
r,s (k, l + qw) = Fd

(
Ψ̃f

r,· (k, l + qw)
)

(s) ,

Φg
r,s (k, l) = Fd

(
Φ̃g

r,· (k, l)
)

(s) .

3. Multiply the matrices for each r, s:

Υr,s =
(
Φg

r,s

)∗
Ψf

r,s

4. Compute the inverse DFT of Υr,s along s:

Υ̃r,s̃ (u, l + wq) = F−1
d (Υr,· (u, l + wq)) (s̃) .

5. Compute K ∈ CM×N×W as:

K (r + lc, u+ s̃q − lha, w) = Υ̃r,s̃ (u, l + wq) (4.15)

6. Finally, the result is given by a DFT of K along the �rst dimension:

c (m,n,w) = FM (K (·, n, w)) (m) . (4.16)

62

this paper we have chosen to derive the algorithm by directly manipulating the sums of
the de�nition.

To �nd more e�cient algorithms, the �rst step is to recognize that the summation and
the modulation term in (4.1) can be expressed as a DFT:

c (m,n,w) =
√
LFL

(
f(·, w)g (· − an)

)
(mb) . (4.17)

We can improve on this because we do not need all the coe�cients computed by the Fourier
transform appearing in (4.17), only every b'th coe�cient. Therefore, we can rewrite by
the Poisson summation formula (4.8):

c (m,n,w) =
√
MFM

(
b−1∑
m̃=0

f(·+ m̃M,w)g (·+ m̃M − an)

)
(m)

= (FMK (·, n, w)) (m) , (4.18)

where

K (j, n, w) =
√
M

b−1∑
m̃=0

f (j + m̃M,w) g (j + m̃M − na) , (4.19)

for j ∈ 〈M〉 and n ∈ 〈N〉. From (4.18) it can be seen that computing the DGT of a signal
f can be done by computing K followed by a DFT along the �rst dimension of K.

We split j as j = r + lc with r ∈ 〈c〉, l ∈ 〈q〉 and introduce ha, hM ∈ Z such that the
following is satis�ed:

c = hMM − haa. (4.20)

The two integers ha, hM can be found by the extended Euclid algorithm for computing
the GCD of a and M .

Using (4.20) and the splitting of j we can express (4.19) as

K (r + lc, n, w) =
√
M

b−1∑
m̃=0

f (r + lc+ m̃M,w)×

×g (r + l (hMM − haa) + m̃M − na) (4.21)

=
√
M

b−1∑
m̃=0

f (r + lc+ m̃M,w)×

×g (r + (m̃+ lhm)M − (n+ lha) a) (4.22)

We set m̃′ = m̃+ lhm and n′ = n+ lha and get

K (r + lc, n′ − lha, w)

=
√
M

b−1∑
m̃′=0

f (r + lc+ (m̃′ − lhm)M,w) g (r + m̃′M − n′a) (4.23)

=
√
M

b−1∑
m̃′=0

f (r + m̃′M + l (c− hmM) , w) g (r + m̃′M − n′a) (4.24)

63

For simplicity, we continue without the primes in (4.24). We split m̃ = k + s̃p with
k ∈ 〈p〉 and s̃ ∈ 〈d〉 and n = u+ sq with u ∈ 〈q〉 and s ∈ 〈d〉 and use that M = cq, a = cp
and c− hmM = −haa:

K (r + lc, u+ sq − lha, w)

=
√
M

p−1∑
k=0

d−1∑
s̃=0

f (r + kM + s̃pM − lhaa, w)×

×g (r + kM − ua+ (s̃− s) pM) (4.25)

De�ne

Ψ̃f
r,s̃ (k, l + wq) = f (r + kM + s̃pM − lhaa, w) , (4.26)

Φ̃g
r,s̃ (k, u) =

√
Mg (r + kM + s̃pM − ua) , (4.27)

We can then write (4.25) as

K (r + lc, u+ sq − lha, w)

=

p−1∑
k=0

d−1∑
s̃=0

Ψ̃f
r,s̃ (k, l + wq) Φ̃g

r,s̃−s (k, u) (4.28)

The sum over s̃ can be seen as a special form of convolution. The combination (4.6) and
(4.7) yields

(f ∗ g∗) (l) =
L−1∑
k=0

f (k) g (k − l) (4.29)

f̂ ∗ g∗ =
√
Lf̂ ĝ, (4.30)

and it is the kind of convolution as in (4.29) the we shall use. Fully written out (4.30) is

(f ∗ g∗) (l) =
√
LF−1

L

(
f̂ (·) ĝ (·)

)
(l) .

De�ne the Fourier transforms along s̃ of Ψ̃ and Φ̃ by

Ψf
r,s (k, l) =

(
FdΨ̃

f
r,· (k, l)

)
(s) (4.31)

Φg
r,s (k, u) =

(
FdΦ̃

g
r,· (k, u)

)
(s) (4.32)

Using (4.30) we can now write (4.28) as

K (r + lc, u+ s̃q − lha, w)

=
√
d

p−1∑
k=0

F−1
d

(
Ψf

r,· (k, l + wq) Φg
r,· (k, u)

)
(s̃) (4.33)

=
√
dF−1

d

(
p−1∑
k=0

Ψf
r,· (k, l + wq) Φg

r,· (k, u)

)
(s̃) (4.34)

If we consider Ψf
r,s and Φg

r,s as matrices for each r and s, then sum over k in the last line
can be written as matrix products. Algorithm 2 follows from this.

64

4.5 Extensions

The algorithm just developed can also be used to calculate the synthesis operator Dγ.
This is done by applying Algorithm 2 in the reverse order and inverting each step in the
algorithm. All the steps can be trivially inverted except step 3, which becomes

Ψf
r,s =

(
Φγ

r,s

)
Υr,s. (4.35)

If the matrices Φγ
r,s are all left-inverses of the matrices Φg

r,s then (4.35) will invert step 3 in
Algorithm 2. This is the case if γ is a dual Gabor window of the Gabor frame (g, a,M).
It also holds that all dual Gabor windows γ of a Gabor frame (g, a,M) must satisfy that
Φγ

r,s are left-inverses of Φg
r,s. This criterion was reported in [52, 54].

A special left-inverse in theMoore-Penrose pseudo-inverse. Taking the pseudo-inverses
of Φg

r,s yields the factorization associated with the canonical dual window of (g, a,M),
[21]. Taking the polar decomposition of each matrix in Φg

r,s yields a factorization of the
canonical tight window (g, a,M). For more information on these methods, as well as
iterative methods for computing the canonical dual/tight windows, see [57].

4.6 Special cases

We shall consider some special cases of the algorithm:

1. Integer oversampling. When the redundancy is an integer then p = 1. Because of
this we see that c = a and d = b. This gives (4.20) the appearance

a = hMqa− haa,

indicating that hM = 0 and ha = −1 solves the equation for all a and q. The algo-
rithm simpli�es accordingly, and reduces to the well known Zak-transform algorithm
for this case, [49].

2. Short time Fourier transform. In this case a = b = 1, M = N = L, c = d = 1,
p = 1, q = L and as in the previous special case hM = 0 and ha = −1. In this case
the algorithm reduces to the very simple, and well known algorithm, for computing
the STFT.

4.7 E�cient implementation

The reason for de�ning the algorithm on multisignals, is that the multiple signals can be
handled at once in the matrix product in step 3. This is a matrix product of two matrices
size q × p and p × qW , so the second matrix grows when multiple signals are involved.
Doing it this way reuse the Φg

r,s matrices as much as possible, and this is an advantage
on standard, general purpose computers with a deep memory hierarchy, see [27, 108].

The are several ways to execute Algorithm 2. One is of course two execute the steps
in the order as they are written. Another possibility comes from the fact that step 1 - 5
can be done in parallel over the variable r. This may be exploited as follows:

65

1. The algorithm can be split such that each processor on a parallel machine handles
step 1-5 for a speci�c range of values for r.

2. One may loop over step 1-5 for each value of r. This lowers the memory requirement
because only a subset of the matrices Ψf

r,s and Φg
r,s needs to be kept in memory at

once.

3. One may do the algorithm as it is written, doing the loop over r as the innermost
loop. This make the memory access more e�cient, because the values indexed by
r are stored consecutively in memory. On typical computing machinery, elements
stored in consecutive memory locations can be loaded much faster than scattered
elements.

Any combination of the above three methods can be done, depending on the number of
processors and memory that is available on the machine.

Implementations of the algorithms described in this paper can be found in the Linear
Time Frequency Toolbox (LTFAT) available from http://www.univie.ac.at/nuhag-php/

ltfat/.

66

Chapter 5

Iterative algorithms to approximate

canonical Gabor windows:

Computational aspects

This chapter is the paper [57] which has been published online by Journal of Fourier
Analysis and Applications. This is joint work with A.J.E.M Janssen.

5.1 Abstract

In this paper we investigate the computational aspects of some recently proposed itera-
tive methods for approximating the canonical tight and canonical dual window of a Gabor
frame (g, a, b). The iterations start with the window g while the iteration steps comprise
the window g, the kth iterand γk, the frame operators S and Sk corresponding to (g, a, b)
and (γk, a, b), respectively, and a number of scalars. The structure of the iteration step
of the method is determined by the envisaged convergence order m of the method. We
consider two strategies for scaling the terms in the iteration step: norm scaling, where
in each step the windows are normalized, and initial scaling where we only scale in the
very beginning. Norm scaling leads to fast, but conditionally convergent methods, while
initial scaling leads to unconditionally convergent methods, but with possibly suboptimal
convergence constants. The iterations, initially formulated for time-continuous Gabor
systems, are considered and tested in a discrete setting in which one passes to the ap-
propriately sampled-and-periodized windows and frame operators. Furthermore, they are
compared with respect to accuracy and e�ciency with other methods to approximate
canonical windows associated with Gabor frames.

5.2 Introduction

We consider in this paper iterative schemes for the approximation of the canonical tight
and canonical dual windows associated with a Gabor frame. There are several motivations
for this study:

• Fast algorithms for computing dual/tight windows allow for more �exibility in choos-
ing the windows. Instead of working with �xed, precomputed windows, fast algor

67

ithms allow for changing the windows on the �y. This can lead to more robust
applications, that be tter adapt to a larger variety of problems.

• When designing Gabor windows meeting an optimality criterion, it is often necessary
to generate sequences of windows, and then speed is important.

We refer to [23, Ch. 8-10] and [41, Ch. 5-9, 11-13] for recent and comprehensive treatments
of the theory of Gabor systems and frames; to �x notations and conventions we brie�y
give here the main features. We denote for g ∈ L2 (R) and a > 0, b > 0 by (g, a, b) the
collection of time-frequency shifted windows

gna,mb, m, n ∈ Z, (5.1)

where for x, y ∈ R we denote

gx,y = e2πiytg(t− x), t ∈ R. (5.2)

We refer to g as the window and to a and b as the time-shift and frequency-shift param-
eters, respectively, of the Gabor system (g, a, b). When there are A > 0, B < ∞, called
the lower and upper frame bound, respectively, such that for all f ∈ L2 (R) there holds

A ‖f‖2 ≤
∞∑

m,n=−∞

|(f, gna,mb)|2 ≤ B ‖f‖2 , (5.3)

we call (g, a, b) a Gabor frame. When in (5.3) the second inequality holds for all f ∈
L2 (R), we have that

f ∈ L2 (R) 7→ Sf :=
∞∑

m,n=−∞

(f, gna,mb) gna,mb (5.4)

is well-de�ned as a bounded, positive, semi-de�nite linear operator of L2 (R). We call
S the frame operator of (g, a, b). The frame operator commutes with all relevant shift
operators, i.e., we have for all f ∈ L2 (R)

Sfna,mb = (Sf)na,mb , m, n ∈ Z. (5.5)

We shall assume in the remainder of this paper that (g, a, b) is a Gabor frame. Thus
the frame operator S is positive de�nite and therefore boundedly invertible. There are
two windows canonically associated to the Gabor frame (g, a, b). These are the canonical
tight window gt and the canonical dual window gd, de�ned by

gt = S−1/2g , gd = S−1g, (5.6)

respectively. The practical relevance of these windows is that they give rise to Gabor
series representations of arbitrary f ∈ L2 (R) according to

f =
∞∑

m,n=−∞

(
f, gt

na,mb

)
gt

na,mb =
∞∑

m,n=−∞

(
f, gd

na,mb

)
gna,mb, (5.7)

68

where both series are L2 (R)-convergent. Furthermore, the Gabor systems (gt, a, b) and(
gd, a, b

)
are Gabor frames themselves with frame operators equal to the identity I and

S−1, respectively.
The computation of gt and gd according to (5.6) requires taking the inverse square

root and the inverse of the frame operator S, respectively. In the often occurring practical
case that ab is a rational number, the frame operator is highly structured which allows
relatively e�cient methods for computing S−1, see [86]. The computation of S−

1
2 is much

more awkward, even in the case that ab is rational, and often requires advanced techniques
from numerical linear algebra, see for instance [45].

In [58] the calculus of Gabor frame operators was combined with a use of the spectral
mapping theorem and Kantorovich's inequality to analyze an iteration scheme for the
approximation of gt that was proposed around 1995 by Feichtinger and Strohmer (inde-
pendently of one another). In this iteration scheme one sets γ0 = g and for k = 0, 1, . . .

I. γk+1 =
1

2
αkγk +

1

2
βkS

−1
k γk; αk =

1

‖γk‖
, βk =

1∥∥S−1
k γk

∥∥ , (5.8)

where Sk is the frame operator corresponding to (γk, a, b). It was shown in [58] that
(γk, a, b) is indeed a Gabor frame, and that γk

‖γk‖
converges (at least) quadratically to

gt

‖gt‖ . From the numerical results in [58] for the case that g is the standard Gaussian

window 21/4 exp (−πt2) and a = b = 1/
√

2 it appears that the resulting method compares
favorably with other iterative techniques for computing inverse square roots, [64, 66, 91].

The investigations in [58] were followed by the introduction in [55, 56] of two families
of iterative algorithms for the approximation of gt and gd, in which the iteration step
involves the initial window g and the frame operator S as well as the current window
γk and frame operator Sk, but frame operator inversion as in (5.8) do not occur. The
following instances of these two families were analyzed in [55, 56]. Again we set γ0 = g,
and for k = 0, 1, . . .

II. γk+1 =
3

2
αkγk −

1

2
βkSkγk; αk =

1

‖γk‖
, βk =

1

‖Skγk‖
, (5.9)

III.
γk+1 =

15

8
εk0γk −

5

4
εk1Skγk +

3

8
εk2S

2
kγk;

εk0 =
1

‖γk‖
, εk1 =

1

‖Skγk‖
, εk2 =

1

‖S2
kγk‖

, (5.10)

for the approximation of gt, and

IV. γk+1 = 2αkγk − βkSkg; αk =
1

‖γk‖
, βk =

1

‖Skg‖
, (5.11)

V.
γk+1 = 3δk0γk − 3δk1Skg + δk2SSkγk;

δk0 =
1

‖γk‖
, δk1 =

1

‖Skg‖
, δk2 =

1

‖SSkγk‖
, (5.12)

for the approximation of gd.
The algorithms II-V are, contrary to algorithm I, conditionally convergent in the sense

that the frame bound ratio A
B
of the initial Gabor frame (g, a, b) should exceed a certain

69

lower bound. Accordingly, in algorithm II and III we have that γk

‖γk‖
converges to gt

‖gt‖
quadratically and cubically when A

B
> 1

2
and A

B
> 3

7
, respectively. In algorithm IV and

V we have that γk

‖γk‖
converges to gd

‖gd‖ quadratically and cubically when A
B
> 1

2

(√
5− 1

)
and A

B
> 0.513829766 . . ., respectively. A remarkable phenomenon that emerged from

the preliminary experiments done with the algorithms around 2002, was the fact that
the lower bounds for the algorithms II, III seem far too pessimistic while those for the
algorithms IV and V appear to be realistic.

In the algorithms just presented, all computed windows are normalized. We shall
refer to this as norm scaling. Another possibility that we will investigate, is to replace
all scalars α's, β's, ε's and δ's that occur in (5.9-5.12) by 1, and then initially scale the
windows by replacing

g by g/B̂1/2 , S by S/B̂. (5.13)

We shall refer to this scaling strategy as initial scaling. If B̂ is (an estimate for) the best
upper frame bound maxσ (S) then the algorithms will be unconditionally convergent,
with guaranteed desired convergence order, but with convergence constants that may not
be as good as the ones that can be obtained by using the norm scaling as described by
(5.9-5.12).

Matrix versions of algorithms II-III without any scaling have been treated in [11].
In [46, 63] the matrix version of algorithm II is considered using norm scaling and a
scaling method that approximates the optimal scaling. The matrix version of algorithm
IV is known as a Schulz iteration, see [90]. The fact that S, and therefore ϕ (S) with ϕ
continuous and positive on the spectrum of S, commutes with all relevant shift operators,
allows us to formulate the iteration steps on the level of the windows themselves.

In this paper we investigate the algorithms II-V, using both norm and initial scaling,
with more emphasis on computational aspects than in [58, 55, 56]. Here it is necessary
to consider sampled-and-periodized Gabor systems in the style of [53]. This allows for
a formulation and analysis of the algorithms I-V in an entirely similar way as was done
in [58, 55, 56]. Thanks to the fact that the involved (canonical) windows and frame
operators behave so conveniently under the operations of sampling and periodization,
the observations done on the sampled-and-periodized systems are directly relevant to the
time-continuous systems. We must restrict here to rational values of ab, and this gives
the frame operator additional structure which can be exploited in the computations as
dictated by the recursion steps, also see [5, 86, 92] for this matter.

The notions "smart" (or, rather, "smart but risky") and "safe" (or, rather, "safe but
conservative") were introduced in a casual way in [56] to distinguish between cases where
the stationary point(s) of the function transforming (frame) operators according to (5.22),
(5.29) has a good chance to be well-placed in the middle of and on the "safe" side of the
relevant spectral set, respectively. In the present paper, we choose to refer to the strategies
leading to smart and safe modes as "norm scaling" and "initial scaling", respectively, and
discard the terms "smart" and "safe" altogether.

70

5.3 Paper outline and results

In Section 5.4 and 5.5 we present the basic results of [55, 56] on transforming g into
γ = ϕ (S) g, where ϕ is a function positive and continuous on σ (S), so as to obtain a
window γ whose frame operator Sγ (for approximating gt) or the operator (SSγ)

1/2 =: Zγ

(for approximating gd) is closer to (a multiple of) the identity I than S itself. Here we
recall that (gt, a, b) has frame operator I and that

(
gd, a, b

)
has frame operator S−1. Thus

we relate the operators S and Sγ and their frame bounds, and we present a bound for the
distance between (the normed) γ and gt in terms of the frame bounds of Sγ. Similarly,
we relate the frame bounds of (g, a, b) and the minimum and maximum of σ (Zγ), and
we present a bound for the di�erence between (the normed) γ and gd in terms of the
latter minimum and maximum. Next, in Section 5.5, the choice of ϕ is speci�ed so as
to accommodate the recursions of type II, III and of type IV, V which gives us a means
to monitor the frame bound ratio Ak

Bk
(for gt) and of the ratio between minimum and

maximum of σ (Zk) (for gd) during the iteration process.
In Section 5.6 we present the algorithms using only initial scaling. In Section 5.7

we elaborate on the observation that all algorithms take place in the closed linear span
Lg of the adjoint orbit

{
gj/b,l/a

∣∣j, l ∈ Z
}
. Here the dual lattice representation of frame

operators is relevant as well as an operator norm to measure the distance of Sk (for gt) and
of (SSk)

1/2 (for gd) from (a multiple of) the identity. The consideration of the algorithms
in the space Lg reveals a fundamental di�erence between the algorithms for computing
gt and gd that manifests itself in the totally di�erent after-convergence behaviour of the
two families of algorithms.

In Section 5.8 we give some considerations in the Zak transform domain, so as to
produce examples of Gabor frames for which a speci�c algorithm diverges.

In Section 5.9 we discuss the discretization and �nitization aspects (through sampling
and periodization) that have to be taken into account since the algorithms are to be tested
numerically.

In Section 5.10 we show how the algorithms can be expressed for discrete, �nite Gabor
systems, and show that the algorithms are scalar iterations of the singular values of certain
matrices. We present an e�cient implementation of the iterative algorithms, and we list
the window functions we have used to test the algorithms.

In Section 5.11 we present our experimental results, compare them with what the
theory predicts and with other methods to compute tight and dual windows. We provide
examples that show the quadratic and cubic convergence of the algorithms, and the expo-
nential divergence of the dual iterations after the initial convergence. We give an example
that breaks the norm scaling schemes for both the tight and dual iterations, and show how
various error norms of the iteration step behave. Comparisons with other methods are
made: we show that the tight iterations are competitive with respect to computing time
and superior with respect to precision. Finally, we show that the number of iterations
needed for full convergence of the algorithms are dependent on the frame bound ratio,
but independent of the structural properties of the discretization. For initial scaling, we
show that it is easy to choose a scaling parameter that gives almost optimal convergence.

71

5.4 Frame operator calculus and basic inequalities

The basic theory to analyze the recursions appears somewhat scattered in [58, 55, 56];
for the reader's convenience, we give in Section 5.4 and 5.5 a concise yet comprehensive
summary of the basic results and ideas. We let (g, a, b) be a Gabor frame with frame
operator S and best frame bounds A = minσ (S) > 0, B = maxσ (S), where σ (S)
is the spectrum of S. In this section we present the basic inequalities expressing the
approximation errors in terms of the (frame) bounds on the involved (frame) operators.
These inequalities are a consequence of the calculus of Gabor frame operators, the spectral
mapping theorem and Kantorovich's inequality.

Proposition 5.4.1. Let ϕ be continuous and positive on [A,B], and set γ := ϕ (S) g.
The following holds.

(i) (γ, a, b) is a Gabor frame with frame operator Sγ := Sϕ2 (S) and best frame bounds

Aγ := min
s∈σ(S)

sϕ2 (s) , Bγ := max
s∈σ(S)

sϕ2 (s) . (5.14)

Furthermore,
gt = S−1/2g = S−1/2

γ γ = γt, (5.15)

and ∥∥∥∥ γ

‖γ‖
− gt

‖gt‖

∥∥∥∥ ≤ (1−Q1/4
γ

)√ 2

1 +Qγ

; Qγ =
Aγ

Bγ

. (5.16)

(ii) Let Zγ := (SSγ)
1/2 = Sϕ (S), and

Eγ := minσ (Zγ) = min
s∈σ(S)

sϕ (s) , (5.17)

Fγ := maxσ (Zγ) = max
s∈σ(S)

sϕ (s) . (5.18)

Then

gd = Z−1
γ γ , Zγγ = Sγg, (5.19)

and ∥∥∥∥ γ

‖γ‖
− gd

‖gd‖

∥∥∥∥ ≤ (1−R1/2
γ

)√ 2

1 +Rγ

; Rγ =
Eγ

Fγ

. (5.20)

The basic result (i) gives us a clue how to produce a good approximation γ
‖γ‖ of gt

‖gt‖ :
take ϕ such that sϕ2 (s) is �at on σ (S) ⊂ [A,B] so that the number Qγ in (5.16) is close
to 1. Similarly, by the basic result (ii), the number Rγ in (5.20) is close to 1 when ϕ is
such that sϕ (s) is �at on σ (S) ⊂ [A,B], and then we obtain a good approximation of

gd

‖gd‖ . In the next two subsections, we use this basic result repeatedly with polynomials

ϕ of �xed degree m so as to obtain iterative approximations of gt and gd.

72

5.5 Norm scaling

5.5.1 Iterations for approximating gt

We consider iteration schemes

γ0 = g; γk+1 = ϕk (Sk) γk, k = 0, 1, . . . , (5.21)

for the approximation of gt, where Sk is the frame operator of (γk, a, b). We use here the
basic result (i) repeatedly with

g = γk, S = Sk and γ = γk+1, Sγ = Sk+1 = Skϕ
2
k (Sk) . (5.22)

For k = 0, 1, . . . we have that γt
k = gt and that∥∥∥∥ γk

‖γk‖
− gt

‖gt‖

∥∥∥∥ ≤ (1−Q
1/4
k

)√ 2

1 +Qk

; Qk =
Ak

Bk

, (5.23)

where Ak and Bk are the best frame bounds of Sk. The numbers Ak, Bk can be computed
and estimated recursively according to A0 = A, B0 = B and

Ak+1 = min
s∈σ(Sk)

sϕ2
k (s) ≥ min

s∈[Ak,Bk]
sϕ2

k (s) , (5.24)

Bk+1 = max
s∈σ(Sk)

sϕ2
k (s) ≤ max

s∈[Ak,Bk]
sϕ2

k (s) , (5.25)

for k = 0, 1,
We should choose ϕk such that sϕ2

k (s) is �at on σ (Sk). To that end there is proposed
in [56, Subsec. 5.1] for m = 2, 3, . . . the choice

ϕk (s) =
m−1∑
j=0

amjαkjs
j, αkj =

∥∥Sj
kγk

∥∥−1
, (5.26)

where the amj are de�ned by
m−1∑
l=0

(−1)l

(
−1/2
l

)
(1− x)l =

m−1∑
j=0

amjx
j, x > 0. (5.27)

The motivation for this choice is as follows. The left-hand side of (5.27) is the (m− 1)th

order Taylor approximation of x−1/2 around x = 1, while (when Qk is su�ciently close to
1)

αkjS
j
k ≈

(
Sk

‖Sk‖

)j
1

‖γk‖
, j = 0, . . . ,m− 1. (5.28)

Hence sϕ2
k (s) =

(
s1/2ϕk (s)

)2
should be expected to be �at on σ (Sk), with 1 − Qk+1

potentially of order (1−Qk)
m.

When m = 2, 3 we get the iterations II, III in (5.9), (5.10). It is shown in [55, Sec. 4]
and [56, Sec. 6] that for m = 2 the quantity Qk = Ak

Bk
increases to 1 and that γk

‖γk‖
→ gt

‖gt‖
quadratically when k → ∞, provided that A

B
> 1

2
. For m = 3 it is shown in [55, Sec. 8]

that Qk increases to 1 and that γk

‖γk‖
→ gt

‖gt‖ cubically when k →∞, provided that A
B
> 3

7
.

In [55, 56] it was observed for m = 2, 3 that the choice of αkj causes sϕ2
k (s) to have one

or more stationary points in [Ak, Bk] so that the odds for �atness of sϕ2
k (s) on [Ak, Bk]

are favourable.

73

5.5.2 Iterations for approximating gd

We consider iteration schemes

γ0 = g; γk+1 = ϕk (Zk) γk, k = 0, 1, . . . , (5.29)

for the approximation of gd, where Zk = (SSk)
1/2 with Sk the frame operator of (γk, a, b).

It is seen from (5.29) by induction that γk = ψk (S) g for some function ψk. Hence by the
basic result (i) with ϕ = ψk, we have that

Sk = Sψ2
k (S) , Zk = Sψk (S) , (5.30)

and, by the basic result (ii), that∥∥∥∥ γk

‖γk‖
− gd

‖gd‖

∥∥∥∥ ≤ (1−R
1/2
k

)√ 2

1 +Rk

; Rk =
Ek

Ek

, (5.31)

where Ek = minσ (Zk), Fk = maxσ (Zk). A further use of the calculus of frame operators
as given by the basic result (i), yields

Zk+1 = Zkϕk (Zk) . (5.32)

Consequently, the numbers Ek, Fk can be computed and estimated recursively according
to E0 = A, F0 = B and

Ek+1 = min
z∈σ(Zk)

zϕk (z) ≥ min
z∈[Ek,Fk]

zϕk (z) , (5.33)

Fk+1 = max
z∈σ(Zk)

zϕk (z) ≤ max
z∈[Ek,Fk]

zϕk (z) , (5.34)

for k = 0, 1,
We should choose ϕk such that zϕk (z) is �at on σ (Zk). To that end there is proposed

in [56, Subsec. 5.2] for m = 2, 3, . . . the choice

ϕk (z) =
m−1∑
j=0

bmjβkjz
j, βkj =

∥∥Zj
kγk

∥∥−1
, (5.35)

where the bmj are de�ned by

m−1∑
l=0

(1− x)l =
m−1∑
j=0

bmjx
j, x > 0. (5.36)

The motivation for the proposal is similar to the one for the choice of ϕk in (5.26) in
Subsec. 5.5.1; we now note that the left-hand side of (5.36) is the (m− 1)th order Taylor
approximation of x−1 around x = 1. The implementation of the resulting recurrence step

γk+1 =
m−1∑
j=0

bmj
Zj

kγk∥∥Zj
kγk

∥∥ , Zk = (SSk)
1/2 , (5.37)

74

is made feasible by the observation that, thanks to the second item in (5.19), Zkγk = Skg
so that

Z2r
k γk = (SSk)

r γk, Z2r+1
k γk = (SSk)

r Skg, r = 0, 1, (5.38)

When m = 2, 3 we get the recurrences IV, V in (5.11) and (5.12). It is shown in [55,
Sec. 5] and [56, Sec. 7], that for m = 2 the quantity Rk = Ek

Fk
increases to 1 and that

γk

‖γk‖
→ gd

‖gd‖ quadratically when k → ∞, provided that A
B
> 1

2

(√
5− 1

)
. For m = 3

it is shown in [55, Sec. 9] that Rk increases to 1 and that γk

‖γk‖
→ gd

‖gd‖ cubically when

k →∞, provided that A
B
> 0.513829766 In [55, 56] it was observed for m = 2, 3 that

the choice of βkj causes zϕk (z) to have one or more stationary points in [Ek, Fk].

5.6 Initial scaling

The algorithms II-V are guaranteed to converge when the lower bound ratio A
B
of (g, a, b)

exceeds a certain value. The proofs, as given in [55] and [56], require a careful analysis
of the extreme values of the functions ϕk on the spectra of the relevant operators and
can become quite complicated, especially in the cases of algorithms III, V. However, the
algorithms are e�cient in the sense that the envisaged convergence order m is realized
with favourable convergence constants. In practice, as the experiments in Section 5.11
show, the algorithms II, III turn out to converge in almost all cases, even when the frame
bound ratio is close to 0. However, divergence of the algorithms IV, V occurs much more
frequently. In Section 5.8 we present examples, using the Zak transform, of frames (g, a, b)
such that algorithm II and IV diverges.

It would be desirable to have versions of the algorithms that are guaranteed to con-
verge, no matter how small the frame bound ratio of the initial frame is (as long as it is
positive). In the following, we present the initial scaling versions of the algorithms that
converge at the envisaged convergence order m, possibly with suboptimal convergence
constants. Since we can freely switch scaling strategy, a possible strategy is to initially
scale such that convergence is guaranteed, and to continue until one is con�dent that the
relevant condition number exceeds the speci�c lower bound so that the norm scaling mode
can be applied from that point onwards.

The introduction in [56] of the notion of �safe modes� was prompted by an observation
by M. Hampejs who prescaled the window g (and the frame operator) and deleted all
normalization operations in the recursion step of algorithms II, IV. In the present paper,
the prescaling is done in such a way that the scaled S has its spectrum exclusively in the
attraction region of the function ϕ describing the simpli�ed recursion. More speci�cally,
we consider the iteration steps as given in Subsections 5.5.1, 5.5.2, with all α's and β's
equal to 1. The ϕ's thus obtained are independent of k and are given by

ϕt
m (s) :=

m−1∑
l=0

(−1)l

(
−1/2
l

)
(1− s)l =

m−1∑
j=0

amjs
j, s > 0, (5.39)

and

ϕd
m (z) :=

m−1∑
l=0

(1− z)l =
m−1∑
j=0

bmjz
j, z > 0, (5.40)

75

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

m=1
m=2
m=3
m=4

(a) s > 0 7→ s (ϕt
m (s))2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

m=1
m=2
m=3
m=4

(b) z > 0 7→ zϕd
m (z) .

Figure 5.1: The �gure shows the two set of functions governing the convergence of the tight
and dual iterations using initial scaling for order m = 1, 2, 3, 4 with ϕt

m and ϕd
m de�ned

by (5.39) and (5.40). For (a), the attraction point 1 has attraction regions m = 2 : (0, 3),
m = 3 : (0, 7/3), m = 4 : (0, 2.525847988). For (b), the attraction point 1 has attraction
region (0, 2) for m = 2, 3, 4.

respectively. The relevant spectra transform by the spectral mapping theorem according
to

σ (Sk) →
{
s
(
ϕt

m (s)
)2 ∣∣∣∣ s ∈ σ (Sk)

}
= σ (Sk+1) , (5.41)

and

σ (Zk) →
{
zϕd

m (z)

∣∣∣∣ z ∈ σ (Zk)

}
= σ (Zk+1) , (5.42)

respectively.
The functions ϕt

m and ϕd
m are (m− 1)th order Taylor approximations of s−1/2 and

z−1 around s = 1 and z = 1, respectively. Hence s (ϕt
m (s))

2 and zϕd
m (z) approximate 1

around s = 1 and z = 1, respectively. In Fig. 5.1 we have shown plots of the mappings

s > 0 7→ s
(
ϕt

m (s)
)2

, z > 0 7→ zϕd
m (z) (5.43)

for m = 1, 2, 3, 4, respectively. Fig. 5.1(a) also appears in [11]. In all cases, the point
s = 1 = z is an attractor for the region (0, 2). Consequently, when S0 = S, Z0 = S
have spectrum in (0, 2), the spectra σ (Sk), σ (Zk) converge to 1 as k → ∞, and the
convergence is of order m in the sense that the ratio of minimum and maximum of the

spectra converge to 1 at order m. Thus we should replace g by g/
(
B̂
)1/2

and S by S/B̂

where B̂ is such that σ
(
S/B̂

)
⊂ (0, 2) to obtain iterations having mth order convergence

to gt and to
(
B̂
)1/2

gd, respectively.

To guarantee convergence an estimate of maxσ (S) is needed. In [5] a number of
upper bounds of maxσ (S) are developed for discrete-time, periodic Gabor systems. A

76

Table 5.1:

Method. B̂ or F̂
I.

√
AB

II. 1
3

(
A+

√
AB +B

)
III. 3

10
(B + A) + 2

5

√
1
2
(B2 + A2) + 1

16
(B − A)2

IV. 1
2
(E + F)

V. 1
3
(F + E) + 1

3

√
1
2
(F 2 + E2) + 1

2
(F − E)2

The table shows the optimal scaling constant, B̂ or F̂ , for doing initial scaling of the �ve
iteration types.

convenient upper bound for our purposes follows from the dual lattice representation of
the frame operator S, see Section 5.7 for more details, as

maxσ (S) ≤ 1

ab

∑
j,l

∣∣(g, gj/b,l/a

)∣∣ . (5.44)

We make some comments for scaling optimally in the �rst iteration step. We shall
refer to this method as initial optimal scaling. Assume that σ (S) consists of the entire
interval [A,B]. Consider the tight iterations as described in this Section, and assume that
we replace S by S/B̂. Then

A1 = min

{
s
(
ϕt

m (s)
)2 ∣∣∣∣s ∈ [A/B̂,B/B̂]} , (5.45)

B1 = max

{
s
(
ϕt

m (s)
)2 ∣∣∣∣s ∈ [A/B̂,B/B̂]} . (5.46)

Initial optimal scaling occurs for that value of B̂ for which the ratio A1/B1 is maximal.
The optimal value of the scaling parameter F̂ for the dual iterations is de�ned in a similar
way. For the �ve iteration types, the optimal B̂ or F̂ is shown in Table 5.1. All these
numbers are close to the center of the interval [A,B] or [E,F]. It is not hard to show
that all optimally scaled operators S and Z have their spectra in the attraction regions
given in Fig. 5.1 for the algorithms II-V.

If we scale optimally in each iteration step, and not just the �rst, we get the best
possible convergence constants. However, this method is not practically feasible because
of the repeated calculations of frame bounds, and we shall use it only as a reference
method. We refer to it as constant optimal scaling, see Fig. 5.4.

5.7 Considerations in the adjoint orbit space

We consider the closed linear span Lg of the adjoint orbit
{
gj/b,l/a

∣∣ j, l ∈ Z
}
. According

to the duality principle of Gabor analysis we have that the adjoint orbit is a Riesz basis

77

for Lg (for this matter we refer to [23, Secs. 3.6 and 9.2], and [41, Ch. 7]). Furthermore,
when f ∈ L2 (R), the orthogonal projection of f onto Lg is given by

Pgf =
1

ab

∑
j,l

(
f,
(
gd
)

j/b,l/a

)
gj/b,l/a

=
1

ab

∑
j,l

(
f,
(
gt
)

j/b,l/a

) (
gt
)

j/b,l/a
. (5.47)

As a consequence of γt
k = gt in all our algorithms, we see that γk ∈ Lg. There is also the

Wexler-Raz biorthogonality relation,(
g,
(
gd
)

j/b,l/a

)
=

(
gt,
(
gt
)

j/b,l/a

)
= abδj0δl0, (5.48)

where δ is Kronecker's delta. Finally, there is the following fundamental identity of Gabor
analysis. Assume that f, ξ, γ, h ∈ L2 (R) and that the three Gabor systems (f, a, b),
(ξ, a, b), (γ, a, b) have �nite upper frame bounds. Then we have∑

m,n

(f, γna,mb) (ξna,mb, h) =
1

ab

∑
j,l

(
ξ, γj/b,l/a

) (
fj/b,l/a, h

)
(5.49)

with absolute convergence at either side. We can regard (5.49) as a representation result
for the frame-type operator

Sγ,ξ : f →
∑
n,m

(f, γna,mb) ξna,mb, (5.50)

viz. as

Sγ,ξ =
1

ab

∑
j,l

(
ξ, γj/b,l/a

)
Uj,l, (5.51)

where Uj,l is the unitary operator

Uj,l : f → fj/b,l/a. (5.52)

This is the dual lattice representation (also known as the Janssen representation, see [23,
Sec. 7.2] and [41, Corr. 9.3.7]) of the frame operator. In order for (5.51) to be well-de�ned,
we assume that γ, ξ satis�es the so-called Condition A':

A': ∑
j,l

∣∣(ξ, γj/b,l/a

)∣∣ <∞, (5.53)

see [41, Def. 7.2.1]. If ξ = γ then this is the Condition A introduced by Tolimieri and Orr
in [98]. We refer to Appendix 5.12 where an instance, relevant in the present context, of
a pair ξ, γ satisfying condition A' is given.

78

5.7.1 Estimate for upper frame bound

If g satis�es Condition A, the frame operator S of (g, a, b) has the representation

S =
1

ab

∑
j,l

(
g, gj/b,l/a

)
Uj,l, (5.54)

with absolute convergence in the operator norm. Therefore, there is the upper bound

B̂ =
1

ab

∑
j,l

∣∣(g, gj/b,l/a

)∣∣ (5.55)

for the best upper frame bound maxσ (S) of (g, a, b).

5.7.2 Error measure

We measure convergence of γk to gt and gd by inspecting L2-distances of the normed
windows. This quantity is bounded in terms of the numbers Qk and Rk in (5.16) and
(5.20) that measure how close the operators Sk and Zk are to being a multiple of the
identity operator. In the converse direction, it would be useful to have a measure on
the windows that translates directly to the distance of Sk and Zk to (a multiple of) the
identity operator. Such a measure can indeed be found. As to gt we note that when g
satis�es Condition A then Sk has the representation

Sk =
1

ab

∑
j,l

(
γk, (γk)j/b,l/a

)
Uj,l, (5.56)

whence ∥∥∥∥Sk −
1

ab
‖γk‖2 I

∥∥∥∥ ≤ 1

ab

∑
j,l 6=0,0

∣∣∣(γk, (γk)j/b,l/a

)∣∣∣ . (5.57)

As to gd we note that Zk = Sϕk (S) and with γk = ϕk (S) g there holds by frame operator
calculus

Sϕk (S) f =
∑
m,n

(
f, (γk)na,mb

)
gna,mb. (5.58)

Hence there is the representation

Zk = Sϕk (S) =
1

ab

∑
j,l

(
g, (γk)j/b,l/a

)
Uj,l. (5.59)

Therefore ∥∥∥∥Zk −
1

ab
(g, γk) I

∥∥∥∥ ≤ 1

ab

∑
j,l 6=0,0

∣∣∣(g, (γk)j/b,l/a

)∣∣∣ . (5.60)

Note that the quantities of the right-hand sides of (5.57) and (5.60) measure to what
extent the Wexler-Raz condition (5.48) is violated. In Appendix 5.12 it is shown for
a ∈ N, b−1 ∈ N and g satisfying condition A that the γk occurring in (5.57) and the g,
γk occurring in (5.60) satisfy condition A and A', respectively. We shall refer to the right
hand sides of (5.57) and (5.60) as the dual lattice norm.

79

5.7.3 In�uence of out-of-space components

In this subsection, we give some heuristic observations that may serve to explain the dif-
ference in after-convergence behaviour between the algorithms to compute tight windows
and those to compute dual windows.

We have seen that all iterands γk of the algorithms are in Lg. We brie�y comment on
the impact on the algorithms of γk having non-zero components orthogonal to Lg (one
can think here of round-o� errors generating these components). To that end we consider
the algorithms II and IV (assuming appropriate scaling has been carried out), and we
assume that they have converged to the extent that the operators Sk and Zk agree within
machine precision with the identity operator.

As for algorithm II we thus have that

γk+1 =
3

2
γk −

1

2
Skγk = γk (5.61)

within machine precision. Hence, possible out-of-space components in γk are reproduced
within machine precision. As a consequence, we should expect that the error stays at its
converged level when the iteration is continued beyond the point where machine precision
is reached.

Next we consider algorithm IV using initial scaling so that

γk+1 = 2γk − Skg. (5.62)

The term Skg has the representation

Skg =
1

ab

∑
j,l

(
γk, (γk)j/b,l/a

)
gj/b,l/a ∈ Lg. (5.63)

Furthermore,

Pgγk =
1

ab

∑
j,l

(
γk,
(
gd
)

j/b,l/a

)
gj/b,l/a. (5.64)

Hence, Skg = Pgγk ∈ Lg to machine precision, and, to machine precision,

Pgγk+1 =
1

ab

∑
j,l

(
γk, (γk)j/b,l/a

)
gj/b,l/a = Pgγk. (5.65)

On the other hand the orthogonal component γk−Pgγk is per (5.62) multiplied by 2, i.e.,
to machine precision,

γk+1 − Pgγk+1 = 2 (γk − Pgγk) . (5.66)

As a consequence, the algorithm starts to diverge beyond the point where machine preci-
sion is reached.

The observations just made continue to hold for the more general algorithms in Sub-
sections 5.5.1 and 5.5.2. Thus no substantial after-convergence error build-up occurs for

80

the algorithms of Subsection 5.5.1. For the algorithms of Subsection 5.5.2, with basic
recursion step

γk+1 =
m−1∑
j=0

bmjZ
j
kγk (5.67)

the terms with odd j all lie in Lg, and those with even j are given within machine precision
by bmjγk. Since

∑
j even

bmj = 2m−1, the out-of-space component in γk gets multiplied by
2m−1 in each iteration step.

5.8 Zak domain considerations

We consider the case that ab =p
q
with integer p, q > 0 such that gcd (p, q) = 1, and we

de�ne the Zak transform Z as (the extension to L2 (R) of) the mapping

h → (Zh) (t, ν) = b−1/2

∞∑
k=−∞

h

(
t− k

b

)
e2πikν , t, ν ∈ R. (5.68)

We refer to [111] and to [54, Sec. 1.5], for more details on the Zak transform and its role
in Gabor analysis.

For f, h ∈ L2 (R) we set (when t, ν ∈ R)

Φf (t, ν) = p−1/2

(
(Zf)

(
t− l

p

q
, ν +

k

p

))
k=0,...,p−1, l=0,...,q−1

, (5.69)

and

Af,h (t, ν) =
(
Af,h

k,r (t, ν)
)

k,r=0,...,p−1
= Φf (t, ν)

(
Φh (t, ν)

)∗
, (5.70)

where the ∗ denotes conjugate transpose. Now (g, a, b) is a Gabor frame, with frame
bounds A > 0, B < ∞ if and only if we have AIp×p ≤ Agg (t, ν) ≤ BIp×p for almost
all t, ν ∈ R, with A and B the largest and smallest positive real number for which the
respective inequalities hold. The frame operator S of (g, a, b) is �represented� by Agg

through the formula

ΦSf = AggΦf , f ∈ L2 (R) , (5.71)

with matrix multiplication at each point (t, ν) ∈ R on the right-hand side of (5.71). This
formula extends as follows. Assume that ϕ is continuous and positive on [A,B]. Then

Φϕ(S)f = ϕ (Agg) Φf , f ∈ L2 (R) , (5.72)

which is the basic formula for functional calculus in the Zak transform domain.
We consider in this section the critical case a = b = 1 (in Sections 5.10 and 5.11 more

general rational ab will be dealt with). Then considerable simpli�cations occur since all
the matrices Φ, A reduce to scalars. The formula (5.72) then becomes

(Z (ϕ (S) f)) (t, ν) = ϕ
(
|(Zg) (t, ν)|2

)
(Zf) (t, ν) , t, ν ∈ R, (5.73)

81

for f ∈ L2 (R). In particular we have(
Zgt
)
(t, ν) =

(
Z
(
S−1/2g

))
(t, ν) =

(Zg) (t, ν)

|(Zg) (t, ν)|
, t, ν ∈ R, (5.74)

(
Zgd

)
(t, ν) =

(
Z
(
S−1g

))
(t, ν) =

(Zg) (t, ν)

|(Zg) (t, ν)|2

=
1

(Zg)∗ (t, ν)
, t, ν ∈ R. (5.75)

To illustrate the relevance for the algorithms, we consider algorithms II and IV for
all scaling strategies. As to initial scaling, we assume that g and S are scaled such
that (g, a = 1, b = 1) has best upper frame bound B < 2, which means that |Zg|2 < 2
everywhere. We let

G = Zg , Γk = Zγk. (5.76)

Then by functional calculus in the Zak transform domain, the algorithms II and IV (initial
scaling) assume the form

Γ0 = G ; Γk+1 =
3

2
Γk −

1

2
|Γk|2 Γk, k = 0, 1, . . . , (5.77)

and

Γ0 = G ; Γk+1 = 2Γk − |Γk|2G, k = 0, 1, . . . , (5.78)

respectively, where the relations in (5.77) and (5.78) are to be considered at each point
(t, ν) ∈ R. These recursions are then quite easily analyzed by elementary means. For
instance, one sees that the assumption B < 3 is necessary and su�cient for (5.77) to
converge to exp (i arg (G)) everywhere, while the assumption B < 2 is necessary and
su�cient for (5.78) to converge to 1/G∗ everywhere. Unbounded recursions result when
we would have allowed B to be larger than 5 and 2, respectively.

Next we consider algorithms II, IV using norm scaling so that (5.77) and (5.78) are to
be replaced by

Γ0 = G ; Γk+1 =
3

2

Γk

‖Γk‖
− 1

2

|Γk|2 Γk

‖Γ3
k‖

, k = 0, 1, . . . , (5.79)

and

Γ0 = G ; Γk+1 = 2
Γk

‖Γk‖
− |Γk|2G
‖Γ2

kG‖
, k = 0, 1, (5.80)

The norms used here are L2
(
[0, 1)2)-norms. We consider the case that

Zg = 1 on N , Zg = x > 0 on M, (5.81)

where N,M are two measurable sets ⊂ [0, 1)2 such that N ∩M = ∅, N ∪M = [0, 1)2.
Then (g, a = 1, b = 1) is a Gabor frame with best frame bounds A = min (1, x2), B =
max (1, x2). Furthermore,

Zgt = 1 on [0, 1)2 ; Zgd =
1

x
on M. (5.82)

82

We have for both algorithms II and IV that

Γk = ck on N , Γk = dk on M, (5.83)

where ck, dk follow recursions that can be made completely explicit (using that, for in-
stance, ‖Γk‖ = ((1− ε) c2k + εd2

k)
1/2, where ε = µ (M)). Due to the norming operations

in the recursion steps, either recursion stays bounded.
We consider the case that ε = µ (M) � 1. Then an elementary analysis shows the

following: there is a δ > 0 such that for recursion (5.79), (5.83) there holds

• x ∈
(
0,
√

3− δ
)
⇒ ck, dk → 1,

• x ∈
(√

3 + δ,
√

5− δ
)
⇒ ck → 1, dk → −1

• x ∈
(√

5 + δ,∞
)
⇒ chaotic behaviour.

Also, there is a δ > 0 such that for recursion (5.80), (5.83) there holds

• x ∈
(
0,
√

2− δ
)
⇒ ck → 1, dk → 1

x
,

• x ∈
(√

2 + δ,∞
)
⇒ dk < 0.

5.9 Sampling and periodization of Gabor frames

The algorithms considered in this paper and in [58, 55, 56] have been formulated for
time-continuous Gabor frames while the tests we perform must take place in a �nite
setting. The transition from continuous to discrete/�nite Gabor frames by sampling and
periodization has been discussed in [53] and later in [62, 92], see also [24, Subsec. 8.4]
and [23, Secs. 10.2 and 10.3]. Let a, M be positive integers, and assume that (g, a, 1/M)
is a Gabor frame with frame bounds A > 0, B <∞. Furthermore, assume that g satis�es
the aforementioned condition A and the so-called condition R:

R:

lim
ε→0

∞∑
j=−∞

1

ε

∫ ε/2

−ε/2

|g (j + u)− g (j)|2 du = 0. (5.84)

The conditions R and A are not very restrictive; they are, for instance, satis�ed by all
members g of Feichtinger's algebra S0, see [24, comment after Thm. 8.4.2]. Then the
system

gD
na,m/M :=

(
gna,m/M (r)

)
r∈Z , n ∈ Z,m = 0, . . . ,M − 1 (5.85)

is a discrete Gabor frame with frame bounds A, B, the dual window gd of the frame
(g, a, 1/M) satis�es conditions R and A, and the dual window

(
gD
)d

corresponding to the
discrete Gabor system in (5.85) is obtained by sampling gd:(

gD
)d

(r) =
(
gd
)D

(r) , r ∈ Z. (5.86)

83

The transition from discrete Gabor frames to discrete, periodic Gabor frames is just
as convenient. Assume that we have a g ∈ l1 (Z) such that the discrete Gabor system(
gna,m/M

)
n∈Z,m=0,...,M−1

is a discrete Gabor frame with frame bounds A > 0 B <∞. Let
L = Na = Mb for some positive integers N, b, and de�ne

gP (r) =
∞∑

j=−∞

g (r − jL) , r ∈ Z. (5.87)

Then the system(
gP

an,m/M (r)
)

r∈Z , n = 0, . . . , N − 1,m = 0, . . . ,M − 1, (5.88)

is a discrete, periodic Gabor system with frame bounds A, B, the dual window gd of
the discrete Gabor system is in l1 (Z), and the dual window

(
gP
)d

corresponding to the
discrete periodic Gabor system in (5.88) is obtained by periodizing gd:

(
gP
)d

(r) =
(
gd
)P

(r) =
∞∑

j=−∞

gd (r − jL) , r ∈ Z. (5.89)

An important extension of these results is given in [24, Subsec. 8.4]. Assume that ϕ is
analytic in an open neighbourhood containing [A,B], where A > 0, B < ∞ are frame
bounds of the Gabor frame (g, a, 1/M) with g satisfying condition R and A. Then ϕ (S) g
satis�es R and A as well, and

(ϕ (S) g)D = ϕ
(
SD
)
gD, (5.90)

where SD is the frame operator corresponding to the system in (5.85). The approach in [24,
Subsec. 8.4] (which uses the Dunford representation of operators as well as theorems of the
Wiener 1/f -type) can be mimicked so as to generalize the transition result from discrete
Gabor systems as above with g ∈ l1 (Z) to discrete, periodic Gabor systems. Thus, with
ϕ as above and

(
gna,m/M

)
n∈Z,m=0,...,M−1

a discrete Gabor system with g ∈ l1 (Z), frame
bounds A > 0, B <∞ and frame operator S, we have ϕ (S) g ∈ l1 (Z) and

(ϕ (S) g)P = ϕ
(
SP
)
gP , (5.91)

where SP is the frame operator of the system in (5.88). In particular, we see that the
sampling-and-periodization approach is valid for the tight window gt in which case we
should consider ϕ (s) = s−1/2.

It follows from the above results that the algorithms can be considered for discrete and
for discrete, periodic Gabor frames. The �ndings for these systems are of direct relevance
to the algorithms we have considered for the time-continuous case.

5.10 Implementational aspects

All implementations are done in the �nite, discrete setting of Gabor frames. We denote
for g ∈ CL and a, b ∈ N by (g, a, b) the collection of time-frequency shifted windows

gna,mb, n ∈ Z,m ∈ Z, (5.92)

84

where for j, k ∈ Z we denote

gj,k = e2πikl/Lg(l − j), l = 0, . . . L− 1. (5.93)

Note that it must hold that L = Na = Mb for some M,N ∈ N. Additionally, we de�ne
c, d, p, q ∈ N by

c = gcd (a,M) , d = gcd (b,N) , p =
a

c
=
b

d
, q =

M

c
=
N

d
. (5.94)

With these numbers, the density of the Gabor system can be written as (ab) /L = p/q,
where p/q is an irreducible fraction. It holds that L = cdpq.

5.10.1 Matrix representation and the SVD

Let Og ∈ CL×MN be the matrix representation of the synthesis operator of a Gabor frame
so that

(Og)l,m+nM = gma,nb (l) , l = 0, . . . , L− 1, (5.95)

for m = 0, . . . ,M − 1, n = 0, . . . , N − 1. Hence Og has the column vectors gma,nb. The
matrix representation of the frame operator corresponding to (g, a, b) is then given as
OgO

∗
g . Since (g, a, b) is a frame we have that Og has full rank L ≤MN .
Assume that ϕ is continuous and positive on σ (S). From

(ϕ (S) g)na,mb = ϕ (S) gna,mb, (5.96)

we have that

Oϕ(S)g = ϕ (S)Og = ϕ
(
OgO

∗
g

)
Og. (5.97)

Furthermore, note that for the Frobenius norm ‖Og‖fro we have ‖Og‖2
fro

= MN ‖g‖2 , since
all columns of Og have norm ‖g‖.

The iterations can be written in terms of the synthesis operator matrices as follows.
Denote the synthesis operator matrix corresponding to the Gabor frame (γk, a, b) by Ωk.
Then we can write the iteration step for algorithm II with norm scaling as

Ω0 = Og; Ωk+1 =
3

2

Ωk

‖Ωk‖fro
− 1

2

(ΩkΩ
∗) Ωk

‖(ΩkΩ∗
k) Ωk‖fro

, k = 0, 1, (5.98)

We shall consider the thin SVD of the synthesis operator matrices. Thus we let
Og = UΣV ∗, where U ∈ CL×L is unitary (Og has full rank), Σ ∈ RL×L is a diagonal
matrix with positive diagonal elements and V ∈ CMN×L has orthonormal columns. With
ϕ as above, we compute the thin SVD of Oϕ(S)g as

Oϕ(S)g = ϕ
(
OgO

∗
g

)
Og = ϕ

(
UΣ2U∗)UΣV ∗

= Uϕ
(
Σ2
)
U∗UΣV ∗ = UΣϕ

(
Σ2
)
V ∗. (5.99)

85

Here we have used that ϕ (UΣ2U∗) = Uϕ (Σ2)U∗, a basic fact in the functional calculus
of matrices. The equation (5.99) shows that Oϕ(S)g has the same right and left singu-
lar vectors as Og, and the singular values transform according to ϕ → σϕ2 (σ). As a
consequence we have,

Ogt = UV ∗ , Ogd = UΣ−1V ∗, (5.100)

for the synthesis operators corresponding to (gt, a, b) and
(
gd, a, b

)
, respectively, for which

we should take ϕ (s) = s−1/2 and ϕ (s) = s−1 in (5.99). We thus see that we have
obtained the matrices occurring in the polar decomposition of Og and the Moore-Penrose
pseudo-inverse of Og.

A further observation is that ‖Og‖2
fro

=
∑j=L

j=1 σ
2
j , where σj, j = 0, . . . , L − 1, are the

singular values of Og. Letting ϕk,j be the singular values of Ωk and using that Ωk =
UΣkV

∗, we can write the iteration step in (5.98) on the level of singular values as

σk+1,j =
3

2
αkσk,j −

1

2
βkσ

3
k,j,

αk =
1√∑j=L

j=1 σ
2
k,j

, βk =
1√∑j=L

j=1 σ
6
k,j

, (5.101)

where j = 0, . . . , L− 1, and k = 0, 1,

5.10.2 Factorization of �nite, discrete Gabor systems

Similar to the Zibulski-Zeevi representation of the Gabor frame operator in the continuous
case, see [111, 112, 54], it is possible to compute the actions of the �nite, discrete Gabor
frame operator (and also the analysis and synthesis operators) very e�ciently. Several
equivalent methods exists using almost the same number of operations, but di�ering in
the order. In [7] a �nite, discrete version of the Zibulski-Zeevi representation is developed.
Another method was developed in [83] and [96]. Unfortunately, [96] contains some errors,
which have been corrected in [3]. In the following we shall present the Zak-transform
method from [7].

For h ∈ CL and K ∈ {0, . . . , L− 1} such that L
K
∈ N, we de�ne the �nite, discrete

Zak transform ZKh by

(ZKh) (r, s) =

√
K

L

L/K−1∑
l=0

h (r − lK) e2πislK/L, r, s ∈ Z. (5.102)

The �nite, discrete Zak transform is quasi-periodic in its �rst variable and periodic in the
second,

(ZKh)

(
r + kK, s+ l

K

L

)
= e2πiksK/L (ZKh) (r, s) , (5.103)

see [48] for more details. The values (ZKh) (r, s) of a �nite, discrete Zak-transform on the
fundamental domain r = 0, . . . , K − 1, s = 0, . . . , K/L − 1 can be calculated e�ciently

86

by K FFT's of length K/L. To obtain values outside the fundamental domain, the quasi-
periodicity relation (5.103) can be used.

We de�ne the cd matrices Φf
r,s of size p× q and the p× p matrices Af

r,s by

Φf
r,s =

√
cdq ((Zaf) (r + kM, s+ ld))k=0,...,p−1; l=0,...,q−1 , (5.104)

where r = 0, . . . , c− 1, s = 0, . . . , d− 1 and

Af,h
r,s =

(
Af,h

r,s

)
k,l=0,...,p−1

= Φf
r,s

(
Φh

r,s

)∗
. (5.105)

With these de�nitions is holds that the frame operator S of (g, a, b) is �represented� by
Agg through the formula

ΦSf = AggΦf , f ∈ CL, (5.106)

see [7].
With this e�cient representation of the frame operator of a �nite, discrete Gabor

system, we may express the iterations schemes in the �nite, discrete Zak domain. We let

G = Φg , Γk = Φγk , Ak = Aγk,γk = Γk (Γk)
∗ . (5.107)

By functional calculus, algorithm II in the �nite, discrete Zak transform takes the form

Γ0 = G ; Γk+1 =
3

2
Γk −

1

2
AkΓk, k = 0, 1, (5.108)

The expressions for the other iterations types are similar.

5.10.3 Other methods

We have considered two other methods of computing the canonical tight window utilizing
the factorization (5.104). To calculate the factorization of the canonical tight window
gt,Φgt

, we use an eigenvalue decomposition of the factorization of the frame operator
of (g, a, b): for each r = 0, . . . , c − 1, s = 0, . . . , d − 1 compute Ur,s, Dr,s such that
Agg

r,s = Ur,sDr,sU
∗
r,s, where Ur,s is unitary and Dr,s is diagonal and set

Φgt

r,s = Ur,sD
−1/2
r,s U∗

r,sΦ
g
r,s. (5.109)

We shall refer to this method as the EIG method. The other method uses (5.100) applied
to the matrices of the factorization: for each r = 0, . . . , c − 1, s = 0, . . . , d − 1 compute
Ur,s, Dr,s, Vr,s such that Φg

r,s = Ur,sDr,sV
∗
r,s, where Ur,s is unitary, Dr,s is diagonal and Vr,s

has orthonormal columns. Then it follows from functional calculus in the Zak transform
domain (pretty much as in (5.99); also see (5.72)) that

Φgt

r,s = Ur,sV
∗
r,s. (5.110)

We shall refer to this method as the SVD method.
For computing the canonical dual window we have considered simply inverting the

matrices of the factorization of the frame operator:

Φgd

r,s =
(
Agg

r,s

)−1
Φg

r,s.

We shall refer to this as the INV method.

87

Table 5.2:

Method: Flop count per iteration:
I. 16Lp+ 4

3
cdp3.

II. 16Lp.
III. 24Lp.
IV. 16Lp.
V. 24Lp+ 8cdp3.

Total �op count:
INV. 16Lp+ 4

3
cdp3.

EIG. 24Lp+ 14cdp3.
SVD. 64Lp+ 32cdp3.

This table shows the �op count of each of the considered methods. The �op count does
not include the cost of the pre- and post-factorization. The application of an inverse
matrix needed for the algorithms I and INV is done using a Cholesky factorization
followed by two substitutions. An iteration step of V takes more �ops to compute than
an iteration step of III, because we need to compute the two terms Skg and Skγk. The
�op counts for EIG and SVD methods are only approximations, because eigenvalues and
singular values can be calculated by many di�erent methods with di�erent �op counts,
and because the process usually involves an iterative step, see [40].The term cdp3 is less
than or equal to Lp for a Gabor frame.

5.10.4 Implementational costs

The computation of Φg needs to be done before the iteration step. It can be computed
using 5L log2N �ops. This transforms the initial window g into the �nite, discrete Zak
domain. All computations in this domain are then done by multiplication of p × q and
p× p matrices. The transform Φ is unitary from CL with Euclidean norm into Cc×d×p×q,
also with Euclidean norm. This gives an easy way to calculate the norms needed for the
norm scaling.

We count the number of real �oating point operations needed, and assume that ev-
erything is done using complex arithmetics. The �op count for a single iteration step in
the transform domain for each of the 5 algorithms can be seen in Table 5.2.

A quick comparison show that the iterative methods for computing the tight win-
dow are comparable in number of �ops to the EIG and SVD methods, if the number of
necessary iterations is not to big. For the inverse iterations, the situation is di�erent:
computing the inverse of the block matrices by a direct approach requires only slightly
more �ops than a single iteration step of algorithm IV, so an iterative method will always
use more �ops than the direct approach. However, there might be situations were it is not
desirable to compute the inverse. For instance, if the initial window g has small support
then the iteration steps can be performed by multiple passes through a �lter bank.

88

5.10.5 Stopping criterion

Because of the guaranteed quadratic/cubic convergence of the algorithms, it is possible
to devise a simple yet powerful stopping criterion: we consider the di�erence

‖γk+1 − γk‖
‖γk+1‖

. (5.111)

When this di�erence is close to the machine precision eps, the considered algorithm has
converged. This is a standard stopping criterion, but using it this way means that we have
done exactly one iteration step too much. Therefore, we stop when (5.111) is less than√
eps and 3

√
eps for the algorithms having quadratic and cubic convergence, respectively.

5.10.6 Window functions

As the basic window functions we shall use the Gaussian ϕw ∈ L2 (R) and the hyperbolic
secant ψw ∈ L2 (R) given by

ϕw (t) =
(w

2

)−1/4

e−πt2/w, t ∈ R, (5.112)

ψw (t) =

√
π

2
w−1/4sech

(
t
π√
w

)
, t ∈ R. (5.113)

It holds that the Fourier transform of ϕw is ϕ1/w and similarly for ψw. As window functions
for the testing of the iterative algorithms we shall use �nite, discrete versions of these,
obtained by the sampling-and-periodization process described in Sec. 5.9:

ϕD
w (l) =

(
wL

2

)−1/4∑
k∈Z

e−π(l/
√

L−k
√

L)
2
/w, (5.114)

ψD
w (l) =

√
π

2
(wL)−1/4

∑
k∈Z

sech
((

l√
L
− k

√
L

)
π√
w

)
, (5.115)

for l = 0, . . . , L− 1. The properties from the continuous setting carry over: the functions
have almost unit norm, and the Discrete Fourier Transform of ϕD

w is ϕD
1/w and similarly

for ψD
w . For more details on the hyperbolic secant as a Gabor window, see [59].

To produce examples for which the norm scaling methods diverges, we have con-
structed a function (MONSTER) which is a Gaussian function modi�ed in such a way
that the �rst singular value, σreal, of the matrix representation of the Gabor synthesis
operator that corresponds to a real and symmetric singular vector, is given a large value.
The function is shown on Fig. 5.3. This function is a generalization to the case of rational
oversampling of the counterexample given in Sec. 5.8 and exploits the fact that the itera-
tions can be considered as scalar iterations of the singular values of the Gabor synthesis
operator, (5.101).

5.11 Experiments

This section contains the results from the experiments we have done in order to test the
algorithms thoroughly and to demonstrate the various aspects of the algorithms that have

89

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600

(a) MONSTER

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

(b) DFT of MONSTER

Figure 5.2: Fig. (a) shows the function MONSTER of length 600 with a single sin-
gular value set to σreal = 6. Fig. (b) shows the Discrete Fourier Transform of the function.

been shown analytically. The computations have been done in Matlab and Octave, and
the full source code is available for download from http://www2.mat.dtu.dk/software/

iteralg/. We will show �gures demonstrating the important aspects, but since we cannot
include all material, the reader is encouraged to download the software and do experiments
with it.

5.11.1 Convergence and divergence of norm scaling

Figure 5.3 shows the convergence behaviour for a well-conditioned problem. The �gure
shows that algorithm I,II and IV exhibit quadratic convergence, while III and V exhibit
cubic convergence as proved in Subsections 5.5.1 and 5.5.2. Furthermore, the algorithms
for computing the tight window stay converged close to the machine precision, while the
algorithms for computing the dual window diverge. Algorithm V also diverges faster than
IV. This is as proved in Subsection 5.7.3; the slopes of the two line segments beyond the
5th iteration in Fig. 5.3(b) corresponds to divergence factors 2 (for IV) and 4 (for V). A
visible numerical aspect is that iteration V is not able to reach full precision, because the
iterand is quickly a�ected by the buildup of numerical errors. The convergence behaviour
of the algorithms for the initial window being a hyperbolic secant is almost the same.

Two examples of using di�erent scaling strategies are shown in Fig. 5.4(a) and 5.4(b).
The �gures show that initially scaling by the best scaling constant is as good as using norm
scaling, and using initial scaling by an easily computable scaling constant results in only
1-2 more iterations than using norm scaling. Comparing these methods to the method
using optimal scaling, we see that for a well-conditioned problem the norm-scaling and
optimal initial scaling are close to matching optimal convergence. For a worse conditioned
problem (Fig. 5.4(b)), optimal scaling clearly outperforms the other methods. However,
this observation has little practical relevance, because the computed canonical windows
gd and gt will have a bad time-frequency localization. Higham [44] uses a scaling strategy
for algorithm I that approximates the optimal scaling. This requires an estimate for the
smallest eigenvalue of the matrix, but this is easy to obtain since the matrix is inverted

90

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0 2 4 6 8 10 12

Iteration step

I
II
III

(a) Tight iterations.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0 2 4 6 8 10 12

Iteration step

IV
V

(b) Dual iterations.

Figure 5.3: The �gure shows the behaviour of the 5 iteration types for the �rst
12 iterations of each. The y-axis shows the l2-norm of the di�erence between the
iteration step and a precomputed, normalized solution. The system considered in the Ga-
bor frame for C432,

(
ϕD

1 , 18, 18
)
. The Gabor frame has a frame bound ratio of B/A = 2.03.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 1 2 3 4 5 6 7

Iteration step

Norm Sc.
Init. Opt. Sc.
Init. DL. Sc.

Opt. Sc.

(a) Gaussian

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 2 4 6 8 10 12 14 16

Iteration step

Norm Sc.
Init. Opt. Sc.
Init. DL. Sc.

Opt. Sc.

(b) Badly scaled Gaussian

Figure 5.4: Fig. (a) shows the convergence behaviour for algorithm II using four di�erent
scaling strategies: norm scaling, initial scaling by the optimal constant, initial scaling by
the dual lattice norm and constant optimal scaling. The system considered in the Gabor
frame for C432,

(
ϕD

1 , 18, 18
)
. Fig (b) shows the same, but instead using the window ϕD

1/5.
This is a very narrow window, and the generated Gabor frame has a frame bound ratio
of B/A = 180.8.

91

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 2 4 6 8 10 12 14

Iteration step

DL.norm
l2-norm

(a) II

 1e-06

 1e-04

 0.01

 1

 100

 5 10 15 20 25 30

Iteration step

A
B

(b) IV

Figure 5.5: Fig. (a) shows the behaviour of the dual lattice norm and the l2-norm of the
di�erence between the iteration step and the normalized solution for a run of algorithm
II using norm scaling. Fig. (b) shows the behaviour of the best upper and lower frame
bound of Zk in each iteration step for a run of algorithm IV using norm scaling. The
system considered is in both cases the Gabor frame for C600 with a = b = 20 using the
MONSTER function.

as part of the iteration step. For algorithms II-V we cannot use inversions, and so an
estimate for the smallest eigenvalue (or lower frame bound) is di�cult to obtain. We have
therefore not pursued such a method for algorithms II-V.

The iterations for computing the tight window are very robust when using norm scal-
ing. It is easy to create examples of Gabor systems with frame bound ratios B/A > 1012

for which the iterations converge, by using badly dilated Gaussians or by using a con-
stant function with a small amount of noise added. However, by using the MONSTER
function, it is possible to create an example for which the norm scaling iterations diverge.
The behaviour of the dual lattice norm and ‖g − γk‖2 in each iteration step for a run of
algorithm II is shown in Fig. 5.5(a). It can be seen that the iteration converges to the
wrong tight window. Another typical behaviour is that the iteration oscillates between
two di�erent functions with the same dual lattice norm. The behaviour of algorithm IV on
the same examples is shown in Fig. 5.5(b), the �gure displays the optimal frame bounds
of Zk for each iteration step. Here we see exponential convergence of the lower frame
bound of Zk to zero.

5.11.2 Comparison with other methods

Figure 5.6 shows a comparison of the numerical precision of the algorithms for computing
the canonical tight window compared to the numerical precision of other standard meth-
ods. The stability of the tight iterations proved in Subsection 5.7.3 is clearly visible. The
method based on computing eigenvalues deteriorates quickly as the frame bound ratio
increases, while the SVD behaves much better. The eigenvalue method should not be
used if the frame bound ratio of the problem is unknown. An explanation for this is that
in the SVD method, the singular values are never considered, they are simply set equal to

92

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1 10 100 1000 10000 100000

P
re

ci
si

on
.

Frame bound ratio.

II - Init.Sc.
EIG

SVD

Figure 5.6: The �gure shows the numerical accuracy of three di�erent methods to
compute the canonical tight window. The plot is parametric in w. For each method, one
line corresponds to a narrow window, w < 1, the other corresponds to a wide window,
w > 1. Almost overlapping points on di�erent lines correspond to values w1, w2 such that
w1 = 1/w2. The error measure used is the dual lattice norm. The Gabor frames used are
the Gabor frames for C432,

(
ϕD

w , 18, 18
)
.

1. Therefore, roundo� errors on the small singular values do not a�ect the computation,
in contrast to the EIG method, where round-o� errors on the smallest eigenvalues are
magni�ed because of the inversion of eigenvalues.1

The actual running time of the methods is determined by the �op count for each
method (see the previous section for details) and of how fast the �oating point operations
can be executed by a computer. We will not give exact timings of the iterative algorithms,
because we have not created optimal implementations of the algorithms, so timing them
makes little sense. We note, however, that the key ingredients in the algorithms are FFTs
of small length and matrix multiplications of small size matrices. Fast implementations
exists for both algorithms, see [108, 39]. This makes it possible to create e�cient imple-
mentations of the iterative algorithms. To present an idea of the speed of the algorithms,
we have timed the computation of the canonical tight window of a Gaussian of length
L = 10800 with a = 120 andM = 160 using algorithm II with norm scaling. On a normal
(at the time of writing) laptop PC using Matlab this computation takes about 1 second.

93

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000

N
um

be
r

of
 it

er
at

io
ns

.

Frame bound ratio.

I - N.Sc.
II - Init.Sc.
III - Init.Sc.

(a) Tight iterations.

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000

N
um

be
r

of
 it

er
at

io
ns

.

Frame bound ratio.

IV - Init.Sc.
V - Init.Sc.

(b) Dual iterations.

Figure 5.7: The �gure shows the number of iterations the algorithms need in order to
reach machine precision. The three algorithms compared are I using norm scaling, and
II-V using initial scaling by (5.55). The Gabor frames used are the Gabor frames for
C432,

(
ϕD

w , 18, 18
)
.

5.11.3 Number of iterations

To study how the number of necessary iterations depends on the frame bound ratio of
the initial Gabor frame, we have plotted the number of iterations for the algorithms to
converge, as a function of the frame bound ratio of the Gabor frame. Figure 5.7 shows
such a plot, using Gaussians to generate Gabor frames with varying frame bound ratios.
The jumps in the curves occur when, according to the stopping criterion, an additional
iteration step is necessary. Even though algorithm III has cubic convergence, it is almost
never able to compete with algorithm I. The jump in the graph for algorithm V is due to
the magni�cation of round-o� errors dominating the convergence, and causing divergence.
The same happens for algorithm IV, but for considerable worse frame bound ratios (not
visible in the graph). The graphs for the hyperbolic secant look similar.

The number of necessary iterations might also depend on the size of the matrix blocks
appearing in the factorization. This issue is slightly problematic to address, since creating
a test problem involving bigger matrices also means altering the frame bound ratio. To
minimize this e�ect, we have considered p, q running through the Fibonacci numbers,
2, 3, 5, 8, . . ., such that p/q →

(√
5− 1

)
/2. This creates a series of irreducible fractions

p/q while keeping p/q close to a certain number away from 1. The result of the test is
that the number of necessary iterations seems to be completely independent of the size of
the matrix blocks! We have omitted the graphs, as they are simply horizontal lines. For
algorithm I, it is proved in [63] that this is indeed the case.

1The slope of the graph for the EIG method in Fig. 5.6 is highly problem dependent. For a Gaussian
window then err ≈ b(B/A)a with a ≈ 2.67 where err can be the dual lattice norm or the l2-norm of the
distance to a reference solution. For a sech window then a ≈ 1.1. For more details on the stability of
computing eigenvalues and singular values, see [1].

94

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5

N
um

be
r

of
 it

er
at

io
ns

.

Initial B.

II
III

(a) tight iterations

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5

N
um

be
r

of
 it

er
at

io
ns

.

Initial B.

IV
V

(b) dual iterations

Figure 5.8: The �gure shows the number of necessary iterations to �nd the tight/dual
window of a Gabor frame for C432,

(
ϕD

1 , 18, 18
)
, as a function of the best upper frame

bounds of the initial window.

5.11.4 Choosing an initial scaling

Figure 5.1 shows that for each iteration type there is a range of values of the upper frame
bound of the scaled window, Bscaled, that will guarantee convergence. Figure 5.8 shows an
example of the e�ect of prescaling the input window to obtain speci�c values of Bscaled. As
shown in Fig. 5.1, algorithm III diverges if Bscaled is larger than 7/3. The dual iterations
IV and V diverge if Bscaled > 2 and II has a chaotic behaviour if 3 < Bscaled < 5 and
diverges if Bscaled > 5 (not shown in the plot).

The choice of B̂ that minimizes the number of iterations is to choose B̂ according to
Table 5.1. An estimate for this is di�cult to calculate, as it involves an estimate for the
lower frame bound. Fortunately, as can be seen on Fig. 5.8 there is a large region around
the optimal scaling point, where only 1 or 2 extra iterations are needed.

5.11.5 Summary from the numerical experiments

We sum up the main points of the numerical experiments.

1. The algorithms are simple to implement, because they do not require implementa-
tion of matrix inversion or the SVD.

2. The algorithms with quadratic convergence are usually faster than the ones with
cubic convergence, because of the lower computational complexity per iteration step.

3. The iterative algorithms for computing canonical dual windows should only be used
in under special circumstances, because they slowly diverge if too many iterations are
done, and because they are usually slower than doing a direct inversion. However,
they are the best choice if a direct inversion is not possible.

4. The iterative algorithms for computing canonical tight windows are extremely pre-
cise and faster than a direct method for well behaved cases.

95

5. Initial scaling by an easily computable bound provides methods that are both fast
and guaranteed to converge.

5.12 A result on Condition A'

Proposition 5.12.1. Assume that (g, a, b = 1/M) is a Gabor frame that satis�es con-
dition A, where a,M ∈ N. Also assume that ϕ is analytic around [A,B] and positive
on [A,B], where A > 0, B < ∞ are lower, upper frame bounds of (g, a, b). Finally, let
γ = ϕ (S) g where S is the frame operator corresponding to (g, a, b). Then g, γ satis�es
the Condition A', i.e., ∑

j,l

∣∣(g, γj/b,l/a

)∣∣ <∞. (5.116)

Proof. We have for f, h ∈ L2 (R) that∑
n,m

(f, γna,mb) (gna,mb, h) =
∑
n,m

(f, (ϕ (S) g)na.mb) (gna,mb, h)

=
∑
n,m

(ϕ (S) f, gna,mb) (gna,mb, h)

= (Sϕ (S) f, h) . (5.117)

We know that (γ, a, b) is a Gabor frame. Now take f, h ∈ L2 (R) such that (f, a, b)
and (h, a, b) have �nite upper frame bounds. Then by the fundamental identity of Gabor
analysis, see [54, Subsecs. 1.4.1 and 1.4.2],∑

n,m

(f, γna,mb) (gna,mb, h) =
1

ab

∑
j,l

(
g, γj/b,l/a

) (
fj/b,l/a, h

)
, (5.118)

with absolute convergence on either side of (5.118) . Thus Sϕ (S) has the dual lattice
representation

Sϕ (S) =
1

ab

∑
j,l

(
g, γj/lb,l/a

)
Uj,l. (5.119)

Now let ψ (s) = sϕ (s). This ψ is analytic around [A,B] and positive on [A,B]. By
functional calculus of frame operators in the time-frequency domain, see [24, Sec. 8.3],
there holds that Sϕ (S) has also the dual lattice representation

Sϕ (S) =
∑
j,l

(
ψ

(
1

ab
HH∗

))
0,0;j,l

Uj,l, (5.120)

where H is the analysis operator with respect to the dual lattice, de�ned for f ∈ L2 (R),
by

Hf =
((
f, gj/b,l/a

))
j,l∈Z . (5.121)

96

It follows from the proof of [24, Thm. 4.3], in particular from uniform boundedness of
(8.4.14) (with ψ instead of ϕ), that

∑
j,l

∣∣∣∣∣
(
ψ

(
1

ab
HH∗

))
0,0;j,l

∣∣∣∣∣ < ∞. (5.122)

By uniqueness of the coe�cients in the dual lattice representation (just consider a well-
behaved h such that (hna,mb)n,m∈Z is a tight frame, i.e. such that Uj,lh, j, l ∈ Z, is an
orthogonal set of functions), it follows that

∑
j,l

∣∣(g, γj/b,l/a

)∣∣ <∞, as required.

Note 5.12.2. It is implicit in the statement and proof of [24, Thm 4.3] that the γ of the
above result is such that condition A is satis�ed by (γ, a, b).

Acknowledgements

The cooperation leading to this paper began in Vienna, 2005, during the �Special Semester
on Modern Methods of Time-Frequency Analysis�, organized by H.G. Feichtinger and K.
Gröchenig under the auspices of the Erwin Schrödinger Institute for Mathematical Physics
(ESI). The authors express their thanks to the organizers and ESI.

97

Chapter 6

Algorithm XXX: The Linear Time

Frequency Toolbox

This chapter is an early version of a paper written together with Bruno Torresani and
Peter Balazs. It will be submitted to Transactions on Mathematical Software.

6.1 Abstract

The Linear Time Frequency Analysis Toolbox is a Matlab/Octave toolbox for doing time-
frequency analysis. It is intended both as an educational and computational tool. The
toolbox provides the basic Gabor, Wilson and MDCT transform along with routines for
constructing windows (�lter prototypes) and routines for manipulating coe�cients.

6.2 Introduction

Time-frequency stands as one of the major recent developments in the �eld of mathemat-
ical signal processing. Besides the very natural (and old) idea of providing a localized
version of the Fourier transformation, that led long ago to the development of short
time Fourier transform (STFT), the theory of Gabor transforms and generalizations has
emerged as a new scienti�c domain, that has found applications in many di�erent areas.

Fourier analysis (see for example the �rst chapter of [41] for a review) provides ex-
pansions for signals as linear combinations of sines and cosines. In the continuous time
setting, one writes

x(t) =

∫ ∞

−∞
x̂(ν)e2iπνt dν ,

where i =
√
−1, t is the time variable, ν is the frequency variable, and the Fourier

transform f̂ of the signal f reads

x̂(ν) =

∫ ∞

−∞
x(t)e−2iπνt dt .

Similar expansions may be written in the in�nite and �nite discrete time settings (see
below for more details), as well as higher dimensional situations.

98

The short time Fourier transform of a signal is essentially a family of Fourier transforms
of localized versions of the signal, obtained by multiplying it with shifted copies of a
window function. Even though the STFT is a commonly used tool in signal analysis (see
e.g. [19, 38] for a number of these), it su�ers from a number of shortcomings in a number of
applications. Among these, one may mention the fact that the STFT generally represents
a vastly overcomplete representations for signals, which is often not suitable (for example
for signal coding, or simply in terms of computational load or memory requirements).
Another consequence of overcompleteness is the non-uniqueness of the signal expansion
as linear combination of localized sine waves; this may be seen as a richness for the STFT,
but also introduces extra di�culties (which one should one use ?).

Gabor analysis encompasses short time Fourier analysis, by introducing a suitable
mathematical framework, within which the role of the window, as well as the sampling of
the time-frequency domain are controlled. Gabor analysis provides expansions for signals
as (discrete) linear combinations of Gabor atoms gmn, de�ned as shifted and modulated
copies of a reference window γ, termed the synthesis window, as

γmn(t) = e2iπmbtγ(t− na) , (6.1)

with t a (discrete or continuous) time variable, and a, b > 0 two time and frequency
sampling constants. Gabor analysis then provides expansions of the type

x =
∑
m,n

c(m,n)γmn , (6.2)

and algorithms for the computation of the (generally non-unique) set of coe�cients c(m,n)
of the expansion, provided that the window γ and the constants a, b have been suitably
chosen.

In a dual point of view, Gabor analysis may also be formulated in terms of the Gabor
transform, which associates with a signal x the family of its inner products

c(m,n) = 〈x, gmn〉 (6.3)

with Gabor atoms gmn, constructed from a single analysis window g. In this language,
Gabor analysis allows one to invert the Gabor transform, i.e. express the signal x in terms
of the coe�cients c(m,n), again provided that the window g and the constants a, b have
been suitably chosen. The (again generally non-unique) inversion formula then assumes
the form (6.2), for some synthesis window γ.

In both situations, the Gabor coe�cients c(m,n) may be used for various purposes:
they can be analyzed, to provide information on the signal. They can also be modi�ed,
which induces a transformation on the signal. Besides analysis and synthesis, signal
transformations via coe�cients modi�cations represents the third main aspect of Gabor
analysis. The simplest way of modifying Gabor coe�cients is to multiply them pointwise
with a given mask, or time-frequency transfer function. The transfer function takes the
form of a doubly labeled sequence m(m,n), and generates the transformation

Mmx =
∑
m,n

m(m,n)c(m,n)γm,n . (6.4)

It may be shown that the transformation Mm, termed Gabor multiplier, is a linear oper-
ator. By analogy with the classical linear �lters commonly used signal processing, which

99

are de�ned as multiplications with a transfer function in the Fourier domain, Gabor mul-
tipliers stand as non-stationary, or time-varying linear �lters.

It was proved (see [41] for a review) that classical Gabor analysis may also su�er
from some drawbacks, which motivated several authors to propose modi�ed versions of
Gabor analysis, or generalizations. One of these drawbacks is the impossibility of �nding
smooth windows g and sampling constants a, b such that the corresponding family of
Gabor atoms would generate an orthonormal basis of the space of signals (the reader not
familiar with the elements of linear algebra relevant for signal processing may want to
consult the �rst chapter of [104] for an outline). Mainly two constructions were proposed
for time-frequency like orthonormal bases: Wilson bases, and MDCT (modi�ed discrete
cosine transform) bases. Both are based upon a subtle modi�cation of the construction
rule of Gabor functions, which overcome the obstruction that prevents Gabor atoms from
forming orthonormal bases. MDCT bases have become extremely popular in practical
applications, as they are commonly used in audio coders such as the standards mp3, ogg
vorbis and mpeg4 aac.

Such linear time-frequency decomposition methods actually o�er a wide variety of
expansion methods, which are adapted to various situations. In the signal processing
domain, redundant representations (for example Gabor expansions with small values of
the product ab) are generally preferred for signal analysis purposes, as they often allow
the user to �read� relevant information from the transform, and proceed to further tasks
such as detection, parameter estimation,... Redundant representations turn out to be
also extremely useful for building time-varying signal �lters, as mentioned above. On the
contrary, applications such as signal coding and compression prefer to avoid redundancy,
and Gabor systems with low redundancy and Wilson or MDCT bases are then preferred.
Such is also the case for signal denoising, even though very little is known regarding
denoising in redundant systems.

The LTFAT toolbox features a number of linear time-frequency transformation tools,
pure frequency transforms, and some signal processing tools including examples and test
signals.

All signals, windows and transforms are considered periodic. This gives the fastest
algorithms and the simplest mathematics, at the expense of the sometimes unnatural
periodic boundary condition.

Section 6.3 introduces the basic tools from discrete Fourier analysis and discrete
time/frequency analysis. These methods are mostly intended for teaching and general
exploration of the �eld.

Section 6.4 introduces the three time/frequency transforms: The Gabor transform,
the Wilson transform and the MDCT. These are the main computational methods in the
toolbox.

Section 6.5 introduces a collection of tools that can be used for the construction of
windows (�lter prototypes) for the transforms.

Section 6.6 introduces the plotting routines and the time-varying �lter method.
Section 6.7 introduces a collection of signal processing tools and examples that com-

plements the time-frequency methods. These tools and examples demonstrates how time-
frequency analysis is useful for a range of signal processing tasks.

Section 6.8 discuss the algorithms and implementation of the toolbox.

100

6.3 Basic Fourier and time-frequency analysis

The toolbox contains some basic Fourier analysis tools intended mostly for teaching.
This includes dft, a unitary discrete Fourier transform (DFT), its inverse idft, periodic
convolution pconv and involution involute.

The DFT c ∈ CL of a signal f ∈ CL is given by

c (k) =
1√
L

L−1∑
l=0

f(l)e−2πikl/L, k = 0, . . . , L− 1. (6.5)

The inverse transform reads

f(l) =
1√
L

L−1∑
k=0

c(k)e2πikl/L, l = 0, . . . , L− 1. (6.6)

The invertibility of the DFT originates from the fact that the family of vectors εk ∈ CL

de�ned by their components

εkl =
1√
L
e2πikl/L , l = 0 . . . L− 1 (6.7)

form an orthonormal basis of CL.
The standard DFT implementation fft that is included in Matlab and Octave is

normalized di�erently. The periodic convolution h ∈ CL of two signals f, g ∈ CL is given
by

h (l) =
L−1∑
k=0

f(k)g(l − k), l = 0, . . . , L− 1. (6.8)

The involution h ∈ CL of a signal f ∈ CL is the signal reversed except for its �rst element:

h (l) = f (−l) l = 0, . . . , L− 1. (6.9)

For more information on the relationship between Fourier transformation, convolution
and involution, see [41, Ch. 1].

The Zak transform is an important tool in relation to non-redundant time/frequency
analysis and critically sampled Filter banks. It is also known as the polyphase represen-
tation. The �nite discrete Zak transform Zaf of a signal f ∈ CL is given by

(Zah) (r, s) =

√
a

L

L/K−1∑
l=0

h (r − la) e2πisla/L. r, s ∈ Z. (6.10)

For r = 0, . . . , a−1 and s = 0, . . . , L
a
−1 the Zak transform can be computed e�ciently by

the routine zak. Values outside this domain can be computed by a simple multiplication
by an exponential function, see [49, 17].

In addition to the Discrete Fourier transform, the toolbox also contains the classical
discrete cosine and sine transforms type I-IV. These transforms are real valued (real valued
input gives real valued output) as opposed to the DFT, and they are therefore sometimes
better suited for practical applications on real valued signals.

The toolbox contains a list of functions with special behavior in time and frequency: A
periodic chirp pchirp, that grows linearly in frequency, two families of Hermite functions
which are invariant with respect to the DFT and the Shah distribution shah (also known
as a pulse train) which is the least concentrated function in time and frequency.

101

6.4 Time/Frequency transforms

The prototype of time-frequency transform is the Short Time Fourier Transform (STFT).
The STFT of a signal f ∈ CL is obtained by Fourier transforming copies of f that are
localized by pointwise multiplication with a sliding window l→ g(l−n), i.e. by computing

stft(m,n) =
L−1∑
l=0

f(l)g(l − n)e−2iπml/L , m, n = 0, . . . L , (6.11)

the bar denoting complex conjugation, and being purely conventional here (for coherence
with the next sections). The simplest choice for the window g, namely a rectangular
window turns out to be quite inappropriate in practice, and smoother window functions
are generally preferred.

The STFT is invertible: a direct calculation yields

f(l) =
1

‖g‖2

L−1∑
m,n=0

stft(m,n)g(l − n)e2iπml/L , (6.12)

where ‖g‖ is the Euclidean norm of the vector g. However, it is worth mentioning that
the STFT of a signal represents highly redundant information, since a signal f ∈ CL is
represented by L2 coe�cients stft(m,n). Such a redundancy may be useful in a number
of applications. However, for large L, the large size of full STFT is often not suitable.
One has to subsample the STFT, which lead to Gabor transforms.

6.4.1 The discrete Gabor transform

The STFT inversion formula (6.12) may be interpreted as an expansion of the signal f
with respect to a (redundant) system of elementary waveforms

l −→ g(l − n)e2iπml/L , m, n = 0, . . . L− 1.

Subsampling this redundant system leads to the so-called Gabor systems, also called
Weyl-Heisenberg systems, or Fourier modulated �lter banks [18]:

l −→ g(l − an)e2iπml/M , m = 0, . . .M − 1, n = 0, . . . N − 1. (6.13)

The following parameters describes the size of a discrete Gabor transform:

a : Time separation.

M : Number of frequency bands.

L : Length of signal.

It must hold that L = Mb = Na. With these parameters, the coe�cients c ∈ CM×N

computed by the DGT of the signal f are given by:

c (m,n) =
L−1∑
l=0

f(k)e−2πiml/Mg (l − an), (6.14)

102

These coe�cients are samples of the discrete short-time Fourier transform of the signal.
They are complex, even if both window and input signal are real.

Regarding inversion from a discrete Gabor transform, it is convenient to introduce the
following notion.

De�nition 6.4.1. A family of vectors ej, j = 0, ..., J − 1 of length L is called a frame if
constants 0 < A ≤ B exist such that

A ‖f‖2 ≤
J−1∑
j=0

|〈f, ej〉|2 ≤ B ‖f‖2 , ∀f ∈ CL. (6.15)

The constants A and B are called lower and upper frame bounds. If A = B, the frame is
called tight. If J > L, the frame is redundant (oversampled).

The redundancy of the frame is the fraction J
L
. Finite- and in�nite dimensional frames

are described in [23].
In the �nite dimensional setting we are concerned with, a frame is essentially a family

of vectors which is complete in the considered signal space. The introduction of frame
bounds is useful, since it allows one to control the convergence rate of the inversion
algorithm. A frame may be a basis, but interesting frames are generally redundant.

A nice and useful feature of frames is the existence of (generally in�nitely many) dual
frame(s), from which signal expansions may be obtained. More precisely, given a frame
{ej, j = 0, ..., J − 1}, there exist a family {ẽj, j = 0, ..., J − 1} such that for all f ∈ CL,

f =
J−1∑
j=0

〈f, ej〉ẽj (6.16)

=
J−1∑
j=0

〈f, ẽj〉ej (6.17)

Among the dual frames, the so-called canonical dual frame has a speci�c status, in the
sense that it is the closest to the original frame. The canonical dual frame is constructed
as follows.

Consider the linear transformation S : CL → CL, de�ned by

(Sf)(l) =
J−1∑
j=0

〈f, ej〉ej(l) , l = 0, . . . L− 1 . (6.18)

It may be shown that S is invertible. The canonical dual frame is then de�ned by

ẽo
j = S−1ej , j = 0, . . . J − 1 . (6.19)

In the particular case of Gabor frames, the canonical dual frame of a Gabor frame is
still a Gabor frame, and is therefore generated using the canonical dual window

gd = S−1g . (6.20)

Another window of special importance is the canonical tight window

gt = S−1/2g. (6.21)

103

This window generates a tight Gabor frame and gives perfect reconstruction if it is used
for both analysis and synthesis, much like the situation of an orthonormal basis. Given
an analysis window g, and lattice constants a and b that generate a Gabor frame, a vector
h is an admissible dual window if for all f ∈ CL,

f =
M−1∑
m=0

N−1∑
n=0

〈f, gmn〉hmn . (6.22)

To obtain perfect reconstruction with well-behaved windows, it is necessary that the
Gabor system be redundant, so the Gabor system is a frame, and not a basis. A Gabor
frame is redundant if ab < L. For detailed information about Gabor systems, see the
books [41, 35, 36].

6.4.2 The discrete Wilson transform

Wilson bases were proposed as substitutes for Gabor frames, because of the impossibility
of constructing Gabor systems that would be simultaneously generated using well behaved
windows, and bases of the considered signal spaces.

A Wilson basis is formed by taking linear combinations of appropriate basis functions
from a Gabor frame with redundancy 2, [15]. This remarkable constructions turns a
tight Gabor frame into an real, orthonormal basis, or turns a non-tight Gabor frame
into a Riesz basis (corresponding to a biorthogonal �lter bank). In [67] this system
is described as a �linear phase cosine modulated maximally decimated �lter bank with
perfect reconstruction�.

The coe�cients w ∈ C2M× L
2M computed by the Discrete Wilson Transform, DWILT,

of the signal f ∈ CL are given by
If m = 0:

w (0, n) =
L−1∑
l=0

f(l)g (l − 2na) (6.23)

If m is odd and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) sin(π
m

M
l)g(l − 2na) (6.24)

w (m+M,n) =
√

2
L−1∑
l=0

f(l) cos(π
m

M
l)g (l − (2n+ 1) a) (6.25)

If m is even and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) cos(π
m

M
l)g(l − 2na) (6.26)

w (m+M,n) =
√

2
L−1∑
l=0

f(l) sin(π
m

M
l)g (l − (2n+ 1) a) (6.27)

104

If m = M and M is even:

w (M,n) =
L−1∑
l=0

f(l)(−1)lg(l − 2na) (6.28)

else if m = M and M is odd:

w (M,n) =
L−1∑
k=0

f(l)(−1)lg (l − (2n+ 1) a) (6.29)

Some notes on this: w0,n and wM,n only have half the bandwidth of the other �lters. This
implies that an M -channel Wilson �lter bank will split a signal into M + 1 frequency
bands, with the highest and lowest frequency band having half the bandwidth.

If a Wilson basis is considered as an 2M -channel �lter bank, then roughly half of the
�lters (M − 1 if M is even, otherwise M + 1) are time-shifted by M samples.

6.4.3 The modi�ed discrete cosine transform (MDCT)

The MDCT (modi�ed discrete cosine transform) is another substitute for the non-existent
Gabor bases, that has become extremely popular recently for its numerous applications,
in audio coding for instance [81, 82, 72]. The main idea is again to provide a local version
for trigonometric bases, using smooth windows rather than rectangular ones.

The coe�cients c ∈ CM×N computed by the MDCT of f ∈ CL are given by:
For m+ n even:

w (m,n) =
√

2
L−1∑
l=0

f(l) cos

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na). (6.30)

For m+ n odd:

w (m,n) =
√

2
L−1∑
l=0

f(l) sin

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na). (6.31)

Notice that this de�nition of the MDCT is not the most common one: the common
de�nition of the MDCT require the window to have the HPE symmetry (see Sec. 6.5),
whereas this de�nition uses WPE windows just as the Gabor and Wilson transforms.

6.5 Window design

The following two types of symmetries are important in discrete time/frequency analysis:

De�nition 6.5.1. Let g ∈ CL. We say that g is whole point even (WPE) if

g (l) = g (−l) = g (L− l) (6.32)

for l = 0, . . . , L − 1. This implies that g (0) must always be real, and so must g
(

L
2

+ 1
)

if L is even.

105

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120

Matlab, half point centered.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120

Toolbox, whole point centered.

Figure 6.1: The �gure to the left shows the output of the Matlab command
gausswin(120) while the �gure to the right show the output of the LTFAT command
pgauss(120).

De�nition 6.5.2. Let g ∈ CL. We say that g is half point even (HPE) if

g (l) = g (L− 1− l) (6.33)

for l = 0, . . . , L− 1. This implies that g
(

L−1
2

)
must be real if L is odd.

A signal g is WPE if and only if the DFT of g is real valued. The HPE symmetry
is typically used in signal processing, as an example all windows generated by the signal
processing toolbox in Matlab are HPE.

The toolbox can use both FIR (�nite impulse response) and IIR (in�nite impulse
response) windows. FIR windows are shorter than the signal to be analyzed, while IIR
windows will have the same length.

The intent of the toolbox is to stay close to the underlying mathematics, and we
have therefore adopted a di�erent layout of windows than what it usually done in Mat-
lab/Octave. This di�erence is visible on Figure 6.1, which shows a Gaussian window
computed by the Matlab/Octave gausswin and the LTFAT command pgauss. The com-
mand gausswin produces a FIR window made from a truncated Gaussian function that
is centered in between the two middle points in the vector (HPE). The command pgauss

produces an IIR window which is the Gaussian window centered around the �rst element
of the vector (WPE).

Centering the window around the �rst element make it look unnatural when plotting,
however it has the bene�t that the Gaussian window is invariant with respect to the DFT,
and that reconstructions are produced with zero delay.

All the other window functions in the toolbox work similarly to pgauss. They return
WPE windows centered around the �rst element of the vector. A routine middlepad is
included to cut or extend these kind of windows.

6.5.1 FIR windows

Finite impulse response (FIR) can be generated by the routines firwin and firkaiser.
The routine firwin generates the classical Hanning, Hamming and Blackman windows

106

de�ned in [78]. In addition to these classical windows, also the square root of Hanning
and Hamming windows may be generated. The advantage of taking the square root of the
Hanning and Hamming window is, that these new windows generates tight Gabor frames
or orthonormal Wilson/MDCT bases.

6.5.2 IIR windows

The toolbox contains routines to generate Gaussian (pgauss), Sech (psech) and Gauss-
Hermite (pherm) windows. These windows are all sampled and periodized version of their
continuous counterparts. They are invariant with respect to a discrete Fourier transform,
just as their continuous counterparts are invariant with respect to the Fourier transform.

The �nite, discrete Gaussian ϕw ∈ CL computed by pgauss is given by:

ϕw(l) =

(
wL

2

)−1/4∑
k∈Z

e−π((l+ct)/
√

L−k
√

L)
2
/w, (6.34)

where the parameter w > 0 controls the ratio of the time-support and the frequency
support of the Gaussian. For a Gabor system (ϕw, a,M) for CL, the value of w that gives
the lowest frame bounds is the choice w = a

b
, where b = L

M
. The routines psech and

pherm work entirely similar to pgauss taking the same parameter w as input.
The routine pbspline can generate several di�erent classes of discrete, fractional

splines. These splines are described in detail in [94]. It may also simply be used to
generate sampling of the classical B-splines.

6.5.3 Symmetries

All the window routines in the toolbox may be used to generate both WPE and HPE
windows. They all take a parameter centering as their last input parameter. Set-
ting centering=0 will result in the output having the WPE symmetry while setting
centering=0.5 will result in the output having the HPE symmetry.

The Wilson and MDCT transform de�ned in Sec. both require WPE windows if
reconstruction is desired. It is easy to de�ne variants of Wilson and MDCT transforms
that instead work with HPE windows. These transforms are available through the object-
oriented interface.

6.5.4 Dual / tight windows

The canonical dual window (6.20) of a Gabor frame may me easily calculated by candual,
and the canonical tight window (6.21) by cantight. For Wilson and MDCT bases the
Riesz dual window is computed by wildual and an orthonormal window may be generated
by wilorth. Wilson and MDCT bases use the same windows.

To judge the quality of a given Gabor system, two methods are supplied. One possi-
bility is to consider the frame bounds (A and B from (6.15)) of a Gabor frame, these can
be calculated by gfbounds. The ratio B

A
of the frame bounds play the exact same role as

the condition number of a matrix.
Another method is to consider the reconstruction quality of a pair of windows g, γ.

The function gfdualnorm will return the maximal reconstruction error of any signal when
using the pair g, γ as windows for analysis and synthesis, [4, 57].

107

6.5.5 Non-canonical dual window

The toolbox contains two routines for fast construction of noncanonical dual windows. The
routine projdual will project any window onto the space of admissible dual windows. This
is very fast and works well if your input window is already close to being a dual window.
Another method is to compute the mixdual of two windows. It works by mixing the
properties of two Gabor systems: The resulting window will be a dual of the �rst Gabor
system, but resemble a mixture of the canonical dual windows of the two Gabor system.
The example examp_mixdual describes how to use this function to get dual windows that
are more or less concentrated than the canonical dual.

To aid in the construction of new windows, a reconstruction measure, gfdualnorm, is
included. Given an analysis and a synthesis window, the function returns an upper bound
for the relative error of analyzing and synthesizing a function f using the two windows.
The estimate depends only on the windows, and not on the signal f .

6.6 Other tools

6.6.1 Time variant �ltering

Time-invariant �lter are systems, where the frequency spectrum is multiplied by a �xed
function, called the transfer function, [78]. Using the Fourier transform to calculate the
spectrum, such an operator can also be called a Fourier multiplier. This technique have
been used for many years and �nds a wide range of applications, e.g. in computer music
[28].

A generalization of this technique is the so called time-variant �ltering, which recently
has grown more and more important [110]. If the STFT is used in its sampled version,
the Gabor transform, one possibility to construct a time variant �lter is the usage of
Gabor multipliers [34], (6.4). These operators have been already used for quite some time
implicitly in engineering applications and recently have been used in signal-processing
applications as time-variant �lters called Gabor �lters [74]. Recent applications can be
found for example in the �eld of system identi�cation [69] or psychoacoustical modeling
[6]. The toolbox contain a routine gabmul for easy application of Gabor multipliers.

6.6.2 Plotting routines

The toolbox includes a few plotting routines:

• A spectrogram plot. This is an easy-to-use function, that displays a spectrogram of
the input function. It is based on a suitable Gabor frame. The spectrogram displays
the squared amplitude of the Gabor transform, i.e. |c (m,n)|2.

• A phase plot. In the spectrogram the information about the complex angle of the
coe�cients c (m,n), i.e. the phase, gets lost. The phase may sometimes reveal
features not visible on the spectrogram, [19].

108

6.7 Signal processing tasks

The toolbox includes special support for some simple signal processing tasks. This has
been done to make the toolbox more self contained, so that is it possible to teach and
demonstrate aspects of time/frequency signal processing using only the tools available in
the toolbox.

6.7.1 Compression

Signal compression aims at representing a signal with maximal �delity, using minimal
storage. Transform coding is one of the most popular signal compression techniques.
Transform coding starts by expanding the signal on a given, suitably chosen basis. Then
only the most signi�cant coe�cients of the expansion are retained, which provide an ap-
proximation of the signal. Finally, the retained coe�cients are quantized, i.e. represented
using a �nite (small) number of bits.

MDCT bases form the main building block for transform coding of audio signals. After
an mdct expansion, the signi�cant coe�cient selection is generally done by keeping the
mdct coe�cients corresponding to lower frequencies, i.e. coe�cients w (m,n) with values
of m lower than some reference value M1. Those retained coe�cients are then quantized,
after suitable weighting. Such schemes are called linear transform coding schemes.

An alternative, called non-linear transform coding, follows a di�erent rule for the
selection of signi�cant coe�cients. Instead of retaining low frequency coe�cients, the
coe�cients with largest magnitude (after frequency dependent weighting if needed) are
retained. The approximation error in such approaches may be proved to be always lower
than the approximation error of the corresponding linear transform coding scheme (for
the same number of retained coe�cients). However, in non-linear coding schemes, recon-
struction from retained coe�cients is only possible if their �addresses (i.e. corresponding
values of (m,n)), termed signi�cance maps, are stored as well, which represents a signif-
icant amount of side information. E�cient strategies for representing signi�cance maps
are then necessary.

6.7.2 Denoising

Denoising is one of the classical tasks in signal processing. The emergence of time-
frequency tools has made it possible to develop e�cient methods for performing denoising
using thresholding strategies. The rationale is the following. If a signal of interest is
represented by a sparse expansion with respect to a given basis, noise is generally not.
Therefore, the signal's energy is concentrated in a small number of coe�cients, while the
noise's energy is spread on all coe�cients. Thresholding the coe�cients of the noisy signal
allows one to get rid of most of the noise contribution. to be finished

6.7.3 Feature extraction using formants

Formants [29] in phonetics are considered as the resonant frequencies of the human vocal
tract and this information is for example used for speaker recognition [89]. In the �le
examp_formants we give a simple example by �nding peaks in the spectrogram and

109

ordering them by frequency. More elaborate methods include using model-based analysis
(e.g. LPC) [73] or homomorphic deconvolution methods [77].

6.7.4 OFDM transmission

Orthogonal Frequency Division Multiplexing is a widely use technique for transmitting
digital signals. The idea is to generate a series of pulses that are mutually orthogonal.
The pulses carry the information, and the orthogonality ensures that the method is robust
again noise, delay, dispersion etc.

Gabor frame theory is very useful in this context because for each Gabor frame (6.13)
with lattice constants a, b there exist a Gabor Riesz sequence on the dual lattice M = L

b
,

N = L
a
, [88]. This Gabor Riesz sequence can be used for OFDM, with the bene�t that all

the methods used for construction of windows for Gabor frames can be reused for OFDM.
The toolbox includes methods for QAM modulation and an example examp_ofdm that
demonstrates the various aspects of OFDM transmission using Gabor frames. For more
information on using Gabor and Wilson systems for OFDM, see [97, 14].

6.8 Implementation

The toolbox uses two di�erent algorithms for computing a DGT, depending on the length
of the window as compared to the length of the signal.

The short window algorithms correspond to a FIR window �lter bank approach. The
algorithms are based on an simple application of the FFT in each timestep. The gives a
computational complexity of O (NM logM +Nd), where M is the number of channels,
N is the number of time shifts, and d is the length of the window.

The long window variants are used when the window has the same length as the signal.
The algorithm of the full-window DGT is described in [93] and is based on previous work
on matrix factorizations of Gabor operators done in [83, 96]. They long window algorithm
require all data to be available before computing the transform. This makes it unsuitable
for streaming data through a DSP, but it poses no problem in Matlab. The full long
window algorithms have complexity O (NM logM + Lq), where L is the length of the
signal, MN is the total number of coe�cients and q appears in the redundancy q

p
written

as an irreducible fraction (i.e. for a Gabor frame with redundancy 1.25, q = 5. For a
Wilson basis q = 2 always).

The DGT algorithms (for either short or full length windows) are also used to calculate
the canonical dual and tight windows, frame bounds and the dual norm measure. Wilson
and MDCT bases are also handled by the DGT algorithm by the use of pre/post processing
stages. This is very convenient, as it make it possible to speed up the whole toolbox by
optimizing a single algorithm. For this reason, a C-implementation of the DGT algorithm
is included in the toolbox, as well as interfaces for Octave and Matlab (Mex) to use this
library. The library links to the e�cient FFT implementation (FFTW, see [39]) included
in both Octave and Matlab.

The discrete sine and cosine transforms are computed by the classic algorithms pub-
lished in [109].

110

Chapter 7

Symmetric Gabor and Wilson systems

In this section we discuss DGTs and Wilson transforms with di�erent symmetry proper-
ties. Everything will be done strictly in the �nite, discrete setting.

7.1 Symmetries of discrete Fourier analysis

A well known property of the Fourier transform is that the Fourier transform of a real
valued function is an even function and vice versa. The same property holds for the
�nite, discrete transform, but the symmetry property is slightly more complicated. In the
continuous case, an even function is symmetric around x = 0. The point x = 0 on which
the mirror axis is placed has measure 0 and therefore the behaviour of a function on the
mirror axis is not important in L2 (R) sense.

In the �nite, discrete case CL, there are no sets of measure zero and even functions
have special behaviour on the point l = 0 where the mirror axis is placed.

This has led to the development of two di�erent approaches: Placing the mirror axis
on l = 0 or placing the mirror axis on l = −1

2
where all indices are considered modulo L.

This leads to the following four types of symmetries.

De�nition 7.1.1. Let g ∈ CL. We say that g is Whole-point even (WPE) if it holds that
g (l) = g (−l) = g (L− l) for l = 0, . . . , L− 1. This implies that g (0) must always be real
and so must g

(
L
2

+ 1
)
if L is even.

De�nition 7.1.2. Let g ∈ CL. We say that g is Half-point even (HPE) if it holds that
g (l) = g (L− 1− l) for l = 0, . . . , L − 1. This implies that g

(
L−1

2

)
must be real if L is

odd.

It can be shown that if g is HPE then the DFT of g is ĝ (k) = h (k) eπik/L, where h is
some real-valued signal: h ∈ RL.

De�nition 7.1.3. Let g ∈ CL. We say that g is Whole-point odd (WPO) if it holds that
g (l) = −g (L− l) for l = 0, . . . , L − 1. This implies that g (0) must always be real and
g
(

L
2

+ 1
)
must be purely imaginary if L is even.

De�nition 7.1.4. Let g ∈ CL. We say that g is Half-point odd (HPO) if it holds that
g (l) = −g (L− 1− l) for l = 0, . . . , L − 1. This implies that g

(
L−1

2

)
must be purely

imaginary if L is odd.

111

In addition we say that a g is WPE in frequency if the DFT of g is WPE and similarly
for HPE, WPO and HPO. If a signal is WPE in frequency, it implies that it is real-valued.
This is a classical property of the DFT.

7.2 The symmetric DGT transforms

If a DGT with a real-valued window is applied to a real-valued signal then the output
coe�cients will be complex. However, they posses the WPE symmetry in the frequency
direction. This means that the upper half plane of the coe�cients is just a complex
conjugate, mirror image of the lower half plane. This an example of a symmetry of the
DGT and in the following we will create a system of DGTs with di�erent symmetries.

We de�ne the General DGT c = CG
g f by

c (m,n) =
L−1∑
l=0

f(l)e−2πi(l+mt)(mb+wf)/Lg(l − na− wt) (7.1)

= e−2πimt(mb+wf)/L
L−1∑
l=0

f(l)e−2πil(mb+wf)/Lg(l − na− wt), (7.2)

where mt =
{
0, 1

2

}
, wt =

{
0,
⌊

a
2

⌋}
and wf =

{
0, b

2

}
. Using wf = b

2
is only allowed when

b is even.
So a GDGT can be computed from a DGT in the following steps:

1. Compute f̃ (l) = f(l)e−2πilwf /L. This is a simple modulation of the input signal.

2. Compute a DGT of f̃ using a shifted window: c̃ = CTwtgf̃ .

3. Correct the phase of the obtained coe�cients: c (m,n) = e−2πimt(mb+wf)/Lc̃ (m,n).

This algorithm show that the GDGT in itself is not particular interesting, as it is so simple
to compute from a regular DGT.

The GDGT will serve as a helping construction to de�ne 8 di�erent DGTs indexed
by roman numerals: DGTI-DGTVIII depending on the choice of variables mt, wt and
wf . Table A.1 shows an overview of the 8 transforms and the value of mt, wt and wf

associated to each transform. We shall denote the coe�cient operator of DGTI-DGTVIII
by CI - CV III .

7.3 The symmetric Wilson transforms

In this section we use the DGTI-DGTIV transform to construct di�erent Wilson trans-
forms.

The motivation is the fact that the �nite, discrete Wilson transform as de�ned in [15]
require the input window to have the WPE symmetry. However, in the signal processing
litterature as well as in Matlab and Octave, the most common symmetry is the HPE.
Therefore, we wish to construct a Wilson basis working with HPE windows.

112

Table 7.1: Symmetries of the CDGT.
Name mt wf wt Real WPE HPE
DGTI 0 0 0 WPE WPE -
DGTII 1

2
0 0 WPO - WPE

DGTIII 0 b
2

0 HPE WPE -
DGTIV 1

2
b
2

0 HPO - WPE
DGTV 0 0

⌊
a
2

⌋
WPE HPE -

DGTVI 1
2

0
⌊

a
2

⌋
WPO - HPE

DGTVII 0 b
2

⌊
a
2

⌋
HPE HPE -

DGTVIII 1
2

b
2

⌊
a
2

⌋
HPO - HPE

The �fth to seventh column display the symmetry of the output coe�cients of the DGT
listed in the �rst column. Fifth column show the symmetry in frequency when both
the signal f and the window g are real-valued. The sixth and seventh column show the
symmetry in time when both f and g are WPE and HPE, respectively. A �-� indicate no
particular symmetry in the output coe�cients.

The other motivation is the fact that a Wilson basis with M channels as de�ned in
Section A.3.1 splits the signal into M + 1 di�erent frequency bands, where the �rst and
last band only have half the bandwidth of the others. We would like to construct a Wilson
transform where all subbands have the same bandwidth. This leads to the construction
of the Modi�ed Discrete Cosine Transform, originally de�ned in [81, 82].

A requirement for all the Wilson transform is that L/M must be even, where g ∈ CL

and M denoted the number of channels. The requirement that L/M be even is due to
the fact that Wilson bases are constructed di�erently depending on whether the number
of the timeshift is even or odd.

7.3.1 DWILT

This is the original �nite, discrete Wilson transform as de�ned in [15].
Let c = CI

(g,a, b
2)
f . We de�ne CW

(g,M)f ∈ C2M×N
2 by

If m = 0:

w (0, n) =
L−1∑
l=0

f(l)g (l − 2na) (7.3)

= c (0, 2n) (7.4)

113

If m is odd and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) sin(π
m

M
l)g(l − 2na) (7.5)

=
i√
2

(c (m, 2n)− c (2M −m, 2n)) (7.6)

w (m+M,n) =
√

2
L−1∑
l=0

f(l) cos(π
m

M
l)g (l − (2n+ 1) a) (7.7)

=
1√
2

(c (m, 2n+ 1) + c (2M −m, 2n+ 1)) (7.8)

If m is even and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) cos(π
m

M
l)g(l − 2na) (7.9)

=
1√
2

(c (m, 2n) + c (2M −m, 2n)) (7.10)

w (m+M,n) =
√

2
L−1∑
l=0

f(l) sin(π
m

M
l)g (l − (2n+ 1) a) (7.11)

=
i√
2

(c (m, 2n+ 1) + c (2M −m, 2n+ 1)) (7.12)

If m = M and M is even:

w (M,n) =
L−1∑
l=0

f(l)(−1)lg(l − 2na) (7.13)

= c (M, 2n) (7.14)

else if m = M and M is odd:

w (M,n) =
L−1∑
k=0

f(l)(−1)lg (l − (2n+ 1) a) (7.15)

= c (M, 2n+ 1) (7.16)

Note that when M is even then the transform is composed of two �lterbanks with
windows T2nag and T2na+1g, respectively. The �rst �lterbanks has both a DC and Nyquest
channel, while the second has neither. When M is odd then the �rst �lterbank has a DC
channel while the second has a Nyquest channel.

7.3.2 DWILTII

This is a modi�cation of the DWILT using HPE windows instead.
Let c = CII

(g,a, b
2)
f . We de�ne w = CW−II

(g,M) f ∈ C2M×N
2 by

114

If m = 0:

w (m,n) =
L−1∑
l=0

f(l)g (l − 2na) (7.17)

= c (0, 2n) (7.18)

If m is odd and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) sin

(
π
m

M

(
l +

1

2

))
g(l − 2na) (7.19)

=
i√
2

(c (m, 2n) + c (2M −m, 2n)) (7.20)

w (m+M,n) =
√

2
L−1∑
l=0

f(l) cos

(
π
m

M

(
l +

1

2

))
g (l − (2n+ 1) a) (7.21)

=
1√
2

(c (m, 2n+ 1)− c (2M −m, 2n+ 1)) (7.22)

If m is even and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) cos

(
π
m

M

(
l +

1

2

))
g(l − 2na)

=
1√
2

(c (m, 2n)− c (2M −m, 2n))

w (m+M,n) =
√

2
L−1∑
l=0

f(l) sin

(
π
m

M

(
l +

1

2

))
g (l − (2n+ 1) a)

=
i√
2

(c (m, 2n+ 1) + c (2M −m, 2n+ 1))

If m = M and M is even:

w (m+M,n) =
L−1∑
l=0

f(l) (−1)l g (l − (2n+ 1) a) (7.23)

= ic (M, 2n+ 1) (7.24)

else if m = M and M is odd:

w (m+M,n) =
L−1∑
l=0

f(l) (−1)l g (l − 2na) (7.25)

= ic (M, 2n) (7.26)

115

7.3.3 DWILTIII

This is the MDCT using Windows.
Let c = CIII

(g,a, b
2)
f . We de�ne w = CW−III

(g,M) f ∈ CM×N by

For m+ n even:

w (m,n) =
√

2
L−1∑
l=0

f(l) cos

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na) (7.27)

=
1√
2

(
e−iπ/4c (m,n) + eiπ/4c (M − 1−m,n)

)
(7.28)

For m+ n odd:

w (m,n) =
√

2
L−1∑
l=0

f(l) sin

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na) (7.29)

=
1√
2

(
eiπ/4c (m,n) + e−iπ/4c (M − 1−m,n)

)
(7.30)

7.3.4 DWILTIV

This is the MDCT using HPE windows. It is the de�nition most commonly referred to
as the MDCT.

Let c = CIV

(g,a, b
2)
f . We de�ne w = CW−IV

(g,M) f ∈ CM×N by

For m+ n even:

w (m,n) =
√

2
L−1∑
l=0

f(l) cos

(
π

M

(
m+

1

2

)(
l +

1

2

)
+
π

4

)
g(l − na) (7.31)

=
1√
2

(
e−iπ/4c (m,n) + e−iπ3/4c (M − 1−m,n)

)
(7.32)

For m+ n odd:

w (m,n) =
√

2
L−1∑
l=0

f(l) sin

(
π

M

(
m+

1

2

)(
l +

1

2

)
+
π

4

)
g(l − na) (7.33)

=
1√
2

(
eiπ/4c (m,n) + eiπ3/4c (M − 1−m,n)

)
(7.34)

116

Appendix A

Symmetric Gabor and Wilson systems

In this section we discuss DGTs and Wilson transforms with di�erent symmetry proper-
ties. Everything will be done strictly in the �nite, discrete setting.

A.1 Symmetries of discrete Fourier analysis

A well known property of the Fourier transform is that the Fourier transform of a real
valued function is an even function and vice versa. The same property holds for the
�nite, discrete transform, but the symmetry property is slightly more complicated. In the
continuous case, an even function is symmetric around x = 0. The point x = 0 on which
the mirror axis is placed has measure 0 and therefore the behaviour of a function on the
mirror axis is not important in L2 (R) sense.

In the �nite, discrete case CL, there are no sets of measure zero and even functions
have special behaviour on the point l = 0 where the mirror axis is placed.

This has led to the development of two di�erent approaches: Placing the mirror axis
on l = 0 or placing the mirror axis on l = −1

2
where all indices are considered modulo L.

This leads to the following four types of symmetries.

De�nition A.1.1. Let g ∈ CL. We say that g is Whole-point even (WPE) if it holds
that g (l) = g (−l) = g (L− l) for l = 0, . . . , L − 1. This implies that g (0) must always
be real and so must g

(
L
2

+ 1
)
if L is even.

De�nition A.1.2. Let g ∈ CL. We say that g is Half-point even (HPE) if it holds that
g (l) = g (L− 1− l) for l = 0, . . . , L − 1. This implies that g

(
L−1

2

)
must be real if L is

odd.

It can be shown that if g is HPE then the DFT of g is ĝ (k) = h (k) eπik/L, where h is
some real-valued signal: h ∈ RL.

De�nition A.1.3. Let g ∈ CL. We say that g is Whole-point odd (WPO) if it holds that
g (l) = −g (L− l) for l = 0, . . . , L − 1. This implies that g (0) must always be real and
g
(

L
2

+ 1
)
must be purely imaginary if L is even.

De�nition A.1.4. Let g ∈ CL. We say that g is Half-point odd (HPO) if it holds that
g (l) = −g (L− 1− l) for l = 0, . . . , L − 1. This implies that g

(
L−1

2

)
must be purely

imaginary if L is odd.

117

In addition we say that a g is WPE in frequency if the DFT of g is WPE and similarly
for HPE, WPO and HPO. If a signal is WPE in frequency, it implies that it is real-valued.
This is a classical property of the DFT.

A.2 The symmetric DGT transforms

If a DGT with a real-valued window is applied to a real-valued signal then the output
coe�cients will be complex. However, they posses the WPE symmetry in the frequency
direction. This means that the upper half plane of the coe�cients is just a complex
conjugate, mirror image of the lower half plane. This an example of a symmetry of the
DGT and in the following we will create a system of DGTs with di�erent symmetries.

We de�ne the General DGT c = CG
g f by

c (m,n) =
L−1∑
l=0

f(l)e−2πi(l+mt)(mb+wf)/Lg(l − na− wt) (A.1)

= e−2πimt(mb+wf)/L
L−1∑
l=0

f(l)e−2πil(mb+wf)/Lg(l − na− wt), (A.2)

where mt =
{
0, 1

2

}
, wt =

{
0,
⌊

a
2

⌋}
and wf =

{
0, b

2

}
. Using wf = b

2
is only allowed when

b is even.
So a GDGT can be computed from a DGT in the following steps:

1. Compute f̃ (l) = f(l)e−2πilwf /L. This is a simple modulation of the input signal.

2. Compute a DGT of f̃ using a shifted window: c̃ = CTwtgf̃ .

3. Correct the phase of the obtained coe�cients: c (m,n) = e−2πimt(mb+wf)/Lc̃ (m,n).

This algorithm show that the GDGT in itself is not particular interesting, as it is so simple
to compute from a regular DGT.

The GDGT will serve as a helping construction to de�ne 8 di�erent DGTs indexed
by roman numerals: DGTI-DGTVIII depending on the choice of variables mt, wt and
wf . Table A.1 shows an overview of the 8 transforms and the value of mt, wt and wf

associated to each transform. We shall denote the coe�cient operator of DGTI-DGTVIII
by CI - CV III .

A.3 The symmetric Wilson transforms

In this section we use the DGTI-DGTIV transform to construct di�erent Wilson trans-
forms.

The motivation is the fact that the �nite, discrete Wilson transform as de�ned in [15]
require the input window to have the WPE symmetry. However, in the signal processing
litterature as well as in Matlab and Octave, the most common symmetry is the HPE.
Therefore, we wish to construct a Wilson basis working with HPE windows.

118

Table A.1: Symmetries of the CDGT.
Name mt wf wt Real WPE HPE
DGTI 0 0 0 WPE WPE -
DGTII 1

2
0 0 WPO - WPE

DGTIII 0 b
2

0 HPE WPE -
DGTIV 1

2
b
2

0 HPO - WPE
DGTV 0 0

⌊
a
2

⌋
WPE HPE -

DGTVI 1
2

0
⌊

a
2

⌋
WPO - HPE

DGTVII 0 b
2

⌊
a
2

⌋
HPE HPE -

DGTVIII 1
2

b
2

⌊
a
2

⌋
HPO - HPE

The �fth to seventh column display the symmetry of the output coe�cients of the DGT
listed in the �rst column. Fifth column show the symmetry in frequency when both
the signal f and the window g are real-valued. The sixth and seventh column show the
symmetry in time when both f and g are WPE and HPE, respectively. A �-� indicate no
particular symmetry in the output coe�cients.

The other motivation is the fact that a Wilson basis with M channels as de�ned in
Section A.3.1 splits the signal into M + 1 di�erent frequency bands, where the �rst and
last band only have half the bandwidth of the others. We would like to construct a Wilson
transform where all subbands have the same bandwidth. This leads to the construction
of the Modi�ed Discrete Cosine Transform, originally de�ned in [81, 82].

A requirement for all the Wilson transform is that L/M must be even, where g ∈ CL

and M denoted the number of channels. The requirement that L/M be even is due to
the fact that Wilson bases are constructed di�erently depending on whether the number
of the timeshift is even or odd.

A.3.1 DWILT

This is the original �nite, discrete Wilson transform as de�ned in [15].
Let c = CI

(g,a, b
2)
f . We de�ne CW

(g,M)f ∈ C2M×N
2 by

If m = 0:

w (0, n) =
L−1∑
l=0

f(l)g (l − 2na) (A.3)

= c (0, 2n) (A.4)

119

If m is odd and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) sin(π
m

M
l)g(l − 2na) (A.5)

=
i√
2

(c (m, 2n)− c (2M −m, 2n)) (A.6)

w (m+M,n) =
√

2
L−1∑
l=0

f(l) cos(π
m

M
l)g (l − (2n+ 1) a) (A.7)

=
1√
2

(c (m, 2n+ 1) + c (2M −m, 2n+ 1)) (A.8)

If m is even and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) cos(π
m

M
l)g(l − 2na) (A.9)

=
1√
2

(c (m, 2n) + c (2M −m, 2n)) (A.10)

w (m+M,n) =
√

2
L−1∑
l=0

f(l) sin(π
m

M
l)g (l − (2n+ 1) a) (A.11)

=
i√
2

(c (m, 2n+ 1) + c (2M −m, 2n+ 1)) (A.12)

If m = M and M is even:

w (M,n) =
L−1∑
l=0

f(l)(−1)lg(l − 2na) (A.13)

= c (M, 2n) (A.14)

else if m = M and M is odd:

w (M,n) =
L−1∑
k=0

f(l)(−1)lg (l − (2n+ 1) a) (A.15)

= c (M, 2n+ 1) (A.16)

Note that when M is even then the transform is composed of two �lterbanks with
windows T2nag and T2na+1g, respectively. The �rst �lterbanks has both a DC and Nyquest
channel, while the second has neither. When M is odd then the �rst �lterbank has a DC
channel while the second has a Nyquest channel.

A.3.2 DWILTII

This is a modi�cation of the DWILT using HPE windows instead.
Let c = CII

(g,a, b
2)
f . We de�ne w = CW−II

(g,M) f ∈ C2M×N
2 by

120

If m = 0:

w (m,n) =
L−1∑
l=0

f(l)g (l − 2na) (A.17)

= c (0, 2n) (A.18)

If m is odd and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) sin

(
π
m

M

(
l +

1

2

))
g(l − 2na) (A.19)

=
i√
2

(c (m, 2n) + c (2M −m, 2n)) (A.20)

w (m+M,n) =
√

2
L−1∑
l=0

f(l) cos

(
π
m

M

(
l +

1

2

))
g (l − (2n+ 1) a) (A.21)

=
1√
2

(c (m, 2n+ 1)− c (2M −m, 2n+ 1)) (A.22)

If m is even and less than M :

w (m,n) =
√

2
L−1∑
l=0

f(l) cos

(
π
m

M

(
l +

1

2

))
g(l − 2na)

=
1√
2

(c (m, 2n)− c (2M −m, 2n))

w (m+M,n) =
√

2
L−1∑
l=0

f(l) sin

(
π
m

M

(
l +

1

2

))
g (l − (2n+ 1) a)

=
i√
2

(c (m, 2n+ 1) + c (2M −m, 2n+ 1))

If m = M and M is even:

w (m+M,n) =
L−1∑
l=0

f(l) (−1)l g (l − (2n+ 1) a) (A.23)

= ic (M, 2n+ 1) (A.24)

else if m = M and M is odd:

w (m+M,n) =
L−1∑
l=0

f(l) (−1)l g (l − 2na) (A.25)

= ic (M, 2n) (A.26)

121

A.3.3 DWILTIII

This is the MDCT using Windows.
Let c = CIII

(g,a, b
2)
f . We de�ne w = CW−III

(g,M) f ∈ CM×N by

For m+ n even:

w (m,n) =
√

2
L−1∑
l=0

f(l) cos

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na) (A.27)

=
1√
2

(
e−iπ/4c (m,n) + eiπ/4c (M − 1−m,n)

)
(A.28)

For m+ n odd:

w (m,n) =
√

2
L−1∑
l=0

f(l) sin

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − na) (A.29)

=
1√
2

(
eiπ/4c (m,n) + e−iπ/4c (M − 1−m,n)

)
(A.30)

A.3.4 DWILTIV

This is the MDCT using HPE windows. It is the de�nition most commonly referred to
as the MDCT.

Let c = CIV

(g,a, b
2)
f . We de�ne w = CW−IV

(g,M) f ∈ CM×N by

For m+ n even:

w (m,n) =
√

2
L−1∑
l=0

f(l) cos

(
π

M

(
m+

1

2

)(
l +

1

2

)
+
π

4

)
g(l − na) (A.31)

=
1√
2

(
e−iπ/4c (m,n) + e−iπ3/4c (M − 1−m,n)

)
(A.32)

For m+ n odd:

w (m,n) =
√

2
L−1∑
l=0

f(l) sin

(
π

M

(
m+

1

2

)(
l +

1

2

)
+
π

4

)
g(l − na) (A.33)

=
1√
2

(
eiπ/4c (m,n) + eiπ3/4c (M − 1−m,n)

)
(A.34)

122

Appendix B

Reference manual

123

B.1 The Linear Time-Frequency Analysis Toolbox.

B.1.1 Basic Fourier/TF analysis

B.1.1.1 DFT

Normalized Discrete Fourier Transform

Usage:

• f = dft(f);

• f = dft(f,N,dim);

This function computes a normalized discrete Fourier transform. This is nothing but a
scaled version of the output from FFT. The function take exactly the same arguments as
FFT. See the help on FFT for a throurough description.

B.1.1.2 IDFT

Inverse DFT

Usage:

• f = idft(f);

• f = idft(f,N,dim);

This function computes a normalized inverse discrete Fourier transform. This is noth-
ing but a scaled version of the output from IFFT. The function takes exactly the same
arguments as IFFT. See the help on IFFT for a throurough description.

B.1.1.3 INVOLUTE

Involution

Usage:

• finv = involute(f);

• finv = involute(f,dim);

INVOLUTE(f) will return the involution of f.

INVOLUTE(f,dim) will return the involution of f along dimension dim. This can for
instance be used to calculate the 2D involution:

f=involute(f,1);

f=involute(f,2);

124

The involution finv of f is given by

finv(l+1)=conj(f(mod(-l,L)+1));

for l = 0, ..., L− 1.

The relation between conjugation, Fourier transformation and involution is expressed by

conj(dft(f)) == dft(involute(f))

for all signals f. The inverse discrete Fourier transform can be expressed by

idft(f) == conj(involute(dft(f)));

B.1.1.4 PCONV

Periodic convolution

Usage:

• h = pconv(f,g)

• h = pconv(ptype,f,g);

PCONV(f,g) computes the periodic convolution of f and g. The convolution is given by

h (l + 1) =
L−1∑
k=0

f (k + 1) g (l − k + 1)

PCONV('r',f,g) computes the alternative where g is reversed given by

h (l + 1) =
L−1∑
k=0

f (k + 1) g (k − l + 1)

PCONV('rr',f,g) computes the alternative where both f and g are reversed given by

h (l + 1) =
L−1∑
k=0

f (−k + 1) g (l − k + 1)

In the above formulas, l − k, k − l and −k are computed modulo L.

B.1.1.5 HERMBASIS

Orthonormal basis of discrete Hermite functions.

Usage:

• V = hermbasis(L);

HERMBASIS(L) will compute an orthonormal basis of discrete Hermite functions of length
L. The vectors are returned as columns in the output.

All the vectors in the output are eigenvectors of the discrete Fourier transform, and
resemble samplings of the continuous Hermite functions to some degree.

References: [80]

125

B.1.1.6 DSFT

Discrete Symplectic Fourier Transform

Usage:

• C = dsft(F);

DSFT(F) computes the discrete symplectic Fourier transform of F. F must be a matrix or a
3D array. If F is a 3D array, the transformation is applied along the �rst two dimensions.

Let F be a K x L matrix. Then the DSFT of F is given by

C (m+ 1, n+ 1) =
1√
KL

L−1∑
l=0

K−1∑
k=0

F (k + 1, l + 1) e2πi(kn/K−lm/L)

for m = 0, ..., L− 1 and n = 0, ..., K − 1.

The DSFT is its own inverse.

B.1.1.7 SHAH

Discrete Shah-distribution

Usage:

• f = shah(L,a);

SHAH(L,a) computes the discrete, normalized Shah-distribution of length L with a dis-
tance of a between the spikes. The Shah distribution is de�ned by f(n*a+1)=1/sqrt(L/a)
for integer n, otherwise f is zero.

This is also known as a pulse train or as the comb function, because the shape of the
function resembles a comb. It is the sum of unit impulses ('diracs') with the distance a.

The DFT of SHAH(L,a) is SHAH(L,L/a).

The Shah function has an extremely bad time-frequency localization. It does not generate
a Gabor frame for any L and a.

B.1.1.8 PCHIRP

Periodic chirp

Usage:

• g = pchirp(L,n);

PCHIRP(L,n) returns a normalized, periodic, discrete chirp of length L that revolves n

times around the frequency plane in frequency. n must be a whole number.

To get a chirp that revolves around the frequency plane in time, use

126

dft(pchirp(L,N));

The chirp is computed by:

g (l + 1) =
1√
L
eπinl2/L, l = 0, . . . , L− 1

References: [32]

B.1.1.9 ISEVEN

True if function is even

Usage:

• t = iseven(f);

• t = iseven(f,centering);

• t = iseven(f,centering,tol);

ISEVEN(f) returns 1 if f is whole point even. Otherwise it returns 0.

ISEVEN(f,centering) is true if f is even according to the value of centering: 0 indicates
a whole-point even function and 0.5 indicates a half-point even function.

ISEVEN(f,centering,tol) does the same, using the tolerance tol to measure how large
the error between the two parts of the vector can be.

B.1.1.10 MIDDLEPAD

Symmetrically zero-extends or cuts a function.

Usage:

• h = middlepad(f,L);

MIDDLEPAD(f,L) cuts or zero-extends f to length L by inserting zeros in the middle of
the vector, or by cutting in the middle of the vector.

If f is whole-point even, MIDDLEPAD(f,L) will also be whole-point even.

If f has even length, then f will not be purely zero-extended, but the last element will be
repeated once and multiplied by 1/2! That is, the support of f will increase by one!

MIDDLEPAD can be used to Fourier interpolate a vector. The following code will return an
interpolation of f to length L:

f=idft(middlepad(dft(f),L));

127

B.1.1.11 ZAK

Zak transform

Usage:

• c = zak(f,a);

ZAK(f,a) computes the Zak transform of f with parameter a. The coe�cients are ar-
ranged in an a x L/a matrix, where L is the length of f.

If f is a matrix, then the transformation is applied to each column. This is then indexed
by the third dimension of the output.

Assume that c=ZAK(f,a), where f is a column vector of length L and N=L/a. Then the
following holds for m = 0, ..., a− 1 and n = 0, ..., N − 1

c(m+ 1, n+ 1) =
1√
N

N−1∑
k=0

f(m− ka+ 1)e2πink/M

References: [48], [17]

B.1.1.12 IZAK

Inverse Zak transform

Usage:

• f = izak(c);

IZAK(c) computes the inverse Zak transform of c. The parameter of the Zak transform
is deduced from the size of c.

References: [48], [17]

B.1.2 Gabor systems.

B.1.2.1 DGT

Discrete Gabor transform.

Usage:

• c = dgt(f,g,a,M);

• c = dgt(f,g,a,M,L);

• [c,Ls] = dgt(f,g,a,M);

• [c,Ls] = dgt(f,g,a,M,L);

128

Input parameters:

• f: Input data

• g: Window function.

• a: Length of time shift.

• M: Number of modulations.

• L: Length of transform to do.

Output parameters:

• c: M*N array of coe�cients.

• Ls: Length of input signal.

DGT(f,g,a,M) computes the Gabor coe�cients of the input signal f with respect to the
window g and parameters a and M. The output is a vector/matrix in a rectangular layout.

The length of the transform will be the smallest multiple of a and M that is larger than
the signal. f will be zero-extended to the length of the transform. If f is a matrix, the
transformation is applied to each column.

The length of the transform done can be obtained by L=size(c,2)*a;

DGT(f,g,a,M,L) computes the Gabor coe�cients as above, but does a transform of length
L. f will be cut or zero-extended to length L before the transform is done.

[c,Ls]=DGT(f,g,a,M) or [c,Ls]=DGT(f,g,a,M,L) additionally returns the length of the
input signal f. This is handy for reconstruction:

[c,Ls]=dgt(f,g,a,M);

fr=idgt(c,gd,a,Ls);

will reconstruct the signal f no matter what the length of f is, provided that gd is a dual
window of g.

The Discrete Gabor Transform is de�ned as follows: Consider a window g and a one-
dimensional signal f of length L and de�ne N = L/a. The output from c=DGT(f,g,a,M)

is then given by

c (m+ 1, n+ 1) =
L−1∑
k=0

f(k)e−2πimk/Mg(k − an+ 1)

where m = 0, ...,M − 1 and n = 0, ..., N − 1.

References: [35], [41]

129

B.1.2.2 IDGT

Inverse discrete Gabor transform.

Usage:

• f = idgt(c,g,a);

• f = idgt(c,g,a,Ls);

Input parameters:

• c: Array of coe�cients.

• g: Window function.

• a: Length of time shift.

• Ls: length of signal.

Output parameters:

• f: Signal.

IDGT(c,g,a) computes the Gabor expansion of the input coe�cients c with respect to
the window g and time shift a. The number of channels is deduced from the size of the
coe�cients c.

IDGT(c,g,a,Ls) does as above but cuts or extends f to length Ls.

For perfect reconstruction, the window used must be a dual window of the one used to
generate the coe�cients.

Assume that f=IDGT(c,g,a,L) for an array c of size M x N . Then the following holds
for k=0,...,L-1:

f(l + 1) =
N−1∑
n=0

M−1∑
m=0

c(m+ 1, n+ 1)e2πiml/Mg(l − an+ 1)

B.1.2.3 DGT2

2-D Discrete Gabor transform.

Usage:

• c = dgt2(f,g,a,M);

• c = dgt2(g,g1,g2,[a1,a2],[M1,M2]);

• c = dgt2(g,g1,g2,[a1,a2],[M1,M2],[L1,L2]);

• [c,Ls] = dgt2(g,g1,g2,[a1,a2],[M1,M2]);

• [c,Ls] = dgt2(g,g1,g2,[a1,a2],[M1,M2],[L1,L2]);

130

Input parameters:

• f: Input data, matrix.

• g,g1,g2: Window functions.

• a,a1,a2: Length of time shifts.

• M,M1,M2: Number of modulations.

• L1,L2: Length of transform to do

Output parameters:

• c: array of coe�cients.

• Ls: Original size of input matrix.

DGT2(f,g,a,M) will calculate a separable two dimensional discrete Gabor transformation
of the input signal f with respect to the window g and parameters a and M.

For each dimension, the length of the transform will be the smallest possible that is larger
than the length of the signal along that dimension. f will be appropriately zero-extended.

DGT2(f,g,a,M,L) computes a Gabor transform as above, but does a transform of length
L along each dimension. f will be cut or zero-extended to length L before the transform
is done.

[c,Ls]=DGT2(f,g,a,M) or [c,Ls]=DGT2(f,g,a,M,L) additionally returns the length of
the input signal f. This is handy for reconstruction:

[c,Ls]=dgt2(f,g,a,M);

fr=idgt2(c,gd,a,Ls);

will reconstruct the signal f no matter what the size of f is, provided that gd is a dual
window of g.

DGT2(f,g1,g2,a,M) makes it possible to use a di�erent window along the two dimensions.

The parameters a, M, L and Ls can also be vectors of length 2. In this case the �rst
element will be used for the �rst dimension and the second element will be used for the
second dimension. For perfect reconstruction,

The output c will be have 4 or 5 dimensions. The dimensions index the following prop-
erties:
1 Number of translation along 1st dimension of input.
2 Number of channel along 1st dimension of input
3 Number of translation along 2nd dimension of input.
4 Number of channel along 2nd dimension of input
5 Plane number, corresponds to 3rd dimension of input.

131

B.1.2.4 IDGT2

2D Inverse discrete Gabor transform.

Usage:

• f = idgt2(c,g,a);

• f = idgt2(c,g1,g2,a);

• f = idgt2(c,g1,g2,[a1 a2]);

• f = idgt2(c,g,a,Ls);

• f = idgt2(c,g1,g2,a,Ls);

• f = idgt2(c,g1,g2,[a1 a2],Ls);

Input parameters:

• c: Array of coe�cients.

• g,g1,g2: Window function(s).

• a,a1,a2: Length(s) of time shift.

• Ls: Length(s) of reconstructed signal (optional).

Output parameters:

• f: Output data, matrix.

IDGT2(c,g,a,M) will calculate a separable two dimensional inverse discrete Gabor trans-
formation of the input coe�cients c using the window g and parameters a, along each
dimension. The number of channels is deduced from the size of the coe�cients c.

IDGT2(c,g1,g2,a) will do the same using the window g1 along the �rst dimension, and
window g2 the second dimension.

IDGT2(c,g,a,Ls) or IDGT2(c,g1,g2,a,Ls) will cut the signal to size Ls after the trans-
formation is done.

The parameters a and Ls can also be vectors of length 2. In this case the �rst element
will be used for the �rst dimension and the second element will be used for the second
dimension.

B.1.3 Window construction for Gabor frames.

B.1.3.1 CANDUAL

Canonical dual window.

Usage:

132

• gamma = candual(g,a,M);

• gamma = candual(g,a,M,L);

Input parameters:

• g: Gabor window.

• a: Length of time shift.

• M: Number of channels.

• L: Length of window. (optional)

Output parameters:

• gamma: Canonical dual window.

CANDUAL(g,a,M) computes the canonical dual window of the discrete Gabor frame with
window g and parameters a, M.

If L is speci�ed, then the window will be padded or truncated to length L before the
canonical dual window is calculated. gamma will also have length L.

If a>M then the dual window of the Gabor Riesz sequence with window g and parameters
a and M will be calculated.

B.1.3.2 CANTIGHT

Canonical tight window.

Usage:

• gamma = cantight(a,M,L);

• gamma = cantight(g,a,M);

• gamma = cantight(g,a,M,L);

Input parameters:

• g: Gabor window.

• a: Length of time shift.

• M: Number of modulations.

• L: Length of window. (optional)

Output parameters:

• gamma: Canonical tight window, column vector.

133

CANTIGHT(a,M,L) computes a nice tight window of length L for a lattice with parameters
a, M.

CANTIGHT(g,a,M) computes the canonical tight window of the Gabor frame with window
g and parameters a, M.

CANTIGHT(g,a,M,L) pads or truncates g to length L before calculating the tight window.
gamma will also be of length L.

If a>M then an orthonormal window of the Gabor Riesz sequence with window g and
parameters a and M will be calculated.

B.1.3.3 PROJDUAL

Dual window by projection.

Usage:

• gd = projdual(gm,g,a,M)

• gd = projdual(gm,g,a,M,L)

Input parameters:

• gm: Window to project.

• g: Window function.

• a: Length of time shift.

• M: Number of modulations.

• L: Total length of vectors (optional).

Output parameters:

• gd: Dual window.

PROJDUAL(gm,g,a,M) calculates the dual window of the Gabor frame given by g, a and
M closest to gm measured in the l2 norm.

PROJDUAL(gm,g,a,M,L) �rst symmetrically extends the windows g and gm to length L.

B.1.3.4 MIXDUAL

Computes the mixdual of g1

Usage:

• gamma = mixdual(g1,g2,a,M)

Input parameters:

134

• g1: Window 1

• g2: Window 2

• a: Length of time shift.

• M: Number of modulations.

Output parameters:

• gammaf: Mixdual of window 1.

MIXDUAL(g1,g2,a,M) computes a dual window of g1 from a mix of the canonical dual
windows of g1 and g2.

References: [106]

B.1.4 Wilson bases and MDCT.

B.1.4.1 DWILT

Discrete Wilson transform.

Usage:

• c = dwilt(f,g,M);

• c = dwilt(f,g,M,L);

• [c,Ls] = dwilt(f,g,M);

• [c,Ls] = dwilt(f,g,M,L);

Input parameters:

• f: Input data

• g: Window function.

• M: Number of bands.

• L: Length of transform to do.

Output parameters:

• c: 2*M x N array of coe�cients.

• Ls: Length of input signal.

135

DWILT(f,g,M) computes a discrete Wilson transform with M bands and window g.

The length of the transform will be the smallest possible that is larger than the signal. f
will be zero-extended to the length of the transform. If f is a matrix, the transformation
is applied to each column.

g must be whole-point even.

DWILT(f,g,M,L) computes the Wilson transform as above, but does a transform of length
L. f will be cut or zero-extended to length L before the transform is done.

[c,Ls]=DWILT(f,g,M) or [c,Ls]=DWILT(f,g,M,L) additionally return the length of the
input signal f. This is handy for reconstruction:

[c,Ls]=dwilt(f,g,M);

fr=idwilt(c,gd,M,Ls);

will reconstruct the signal f no matter what the length of f is, provided that gd is a dual
Wilson window of g.

A Wilson transform is also known as a maximally decimated, even-stacked cosine modu-
lated �lter bank.

Assume that the following code has been executed for a column vector f:

c=dwilt(f,g,M); % Compute a Wilson transform of f.

N=size(c,2)*2; % Number of translation coefficients.

The following holds for m = 0, ...,M − 1 and n = 0, ..., N/2− 1:

If m = 0:

c (1, n+ 1) =
L−1∑
l=0

f(l + 1)g (l − 2nM + 1)

If m is odd and less than M

c (m+ 1, n+ 1) =
√

2
L−1∑
l=0

f(l + 1) sin(π
m

M
l)g(l − 2nM + 1)

c (m+M + 1, n+ 1) =
√

2
L−1∑
l=0

f(l + 1) cos(π
m

M
l)g (l − (2n+ 1)M + 1)

If m is even and less than M

c (m+ 1, n+ 1) =
√

2
L−1∑
l=0

f(l + 1) cos(π
m

M
l)g(l − 2nM + 1)

c (m+M + 1, n+ 1) =
√

2
L−1∑
l=0

f(l + 1) sin(π
m

M
l)g (l − (2n+ 1)M + 1)

136

if m = M and M is even:

c (M + 1, n+ 1) =
L−1∑
l=0

f(l + 1)(−1)lg(l − 2nM + 1)

else if m = M and M is odd

c (M + 1, n+ 1) =
L−1∑
k=0

f(l + 1)(−1)lg (l − (2n+ 1)M + 1)

References: [15], [67]

B.1.4.2 IDWILT

Inverse discrete Wilson transform.

Usage:

• f = idwilt(c,g);

• f = idwilt(c,g,Ls);

Input parameters:

• c: M*N array of coe�cients.

• g: Window function.

• Ls: Final length of function (optional)

Output parameters:

• f: Input data

IDWILT(c,g) computes an inverse discrete Wilson transform with window g. The number
of channels is deduced from the size of the coe�cient array c.

g must be whole-point even.

IDWILT(f,g,Ls) does the same, but cuts of zero-extend the �nal result to length Ls.

References: [15], [67]

B.1.4.3 DWILT2

2-D Discrete Wilson transform.

Usage:

• c = dwilt2(f,g,M);

137

• c = dwilt2(f,g1,g2,[M1,M2]);

• c = dwilt2(f,g1,g2,[M1,M2],[L1,L2]);

• [c,L] = dwilt2(f,g1,g2,[M1,M2],[L1,L2]);

Input parameters:

• f: Input data, matrix.

• g,g1,g2: Window functions.

• M,M1,M2: Number of bands.

• L1,L2: Length of transform to do.

Output parameters:

• c: array of coe�cients.

• Ls: Original size of input matrix.

DWILT2(f,g,M) calculates a two dimensional discrete Wilson transform of the input signal
f using the window g and parameter M along each dimension.

For each dimension, the length of the transform will be the smallest possible that is larger
than the length of the signal along that dimension. f will be appropriatly zero-extended.

All windows must be whole-point even.

DWILT2(f,g,M,L) computes a Wilson transform as above, but does a transform of length
L along each dimension. f will be cut or zero-extended to length L before the transform
is done.

[c,Ls]=DWILT(f,g,M) or [c,Ls]=DWILT(f,g,M,L) additionally returns the length of the
input signal f. This is handy for reconstruction:

c=DWILT2(f,g1,g2,M) makes it possible to use a di�erent window along the two dimen-
sions.

The parameters L, M and Ls can also be vectors of length 2. In this case the �rst element
will be used for the �rst dimension and the second element will be used for the second
dimension.

The output c will be have 4 or 5 dimensions. The dimensions index the following prop-
erties:
1 Number of translation along 1st dimension of input.
2 Number of channel along 1st dimension of input
3 Number of translation along 2nd dimension of input.
4 Number of channel along 2nd dimension of input
5 Plane number, corresponds to 3rd dimension of input.

138

B.1.4.4 IDWILT2

2D Inverse Discrete Wilson transform.

Usage:

• f = idwilt2(c,g);

• f = idwilt2(c,g1,g2);

• f = idwilt2(c,g1,g2,Ls);

Input parameters:

• c: Array of coe�cients.

• g,g1,g2: Window functions.

• Ls: Size of reconstructed signal.

Output parameters:

• f: Output data, matrix.

IDWILT2(c,g) will calculate a separable two dimensional inverse discrete Wilson transfor-
mation of the input coe�cients c using the window g. The number of channels is deduced
from the size of the coe�cients c.

IDWILT2(c,g1,g2) will do the same using the window g1 along the �rst dimension, and
window g2 the second dimension.

IDWILT2(c,g1,g2,Ls) will cut the signal to size Ls after the transformation is done.

B.1.4.5 MDCT

Modi�ed Discrete Cosine Transform

Usage:

• c = mdct(f,g,M);

• c = mdct(f,g,M,L);

• [c,Ls] = mdct(f,g,M);

• [c,Ls] = mdct(f,g,M,L);

Input parameters:

• f: Input data

• g: Window function.

• M: Number of bands.

139

• L: Length of transform to do.

Output parameters:

• c: 2*M x N array of coe�cients.

• Ls: Length of input signal.

MDCT(f,g,M) computes a Modi�ed Discrete Cosine Transform with M bands and window
g.

The length of the transform will be the smallest possible that is larger than the signal. f
will be zero-extended to the length of the transform. If f is a matrix, the transformation
is applied to each column. g must be whole-point even.

MDCT(f,g,M,L) computes the MDCT transform as above, but does a transform of length L.
f will be cut or zero-extended to length L before the transform is done.

[c,Ls]=MDCT(f,g,M) or [c,Ls]=MDCT(f,g,M,L) additionally return the length of the
input signal f. This is handy for reconstruction:

[c,Ls]=mdct(f,g,M);

fr=imdct(c,gd,M,Ls);

will reconstuct the signal f no matter what the length of f is, provided that gd is a dual
Wilson window of g.

The MDCT is sometimes known as an odd-stacked cosine modulated �lter bank. The MDCT
de�ned by this routine is slightly di�erent from the most common de�nition of the MDCT,
in order to be able to use the same window functions as the Wilson transform.

Assume that the following code has been executed for a column vector f of length L:

c=mdct(f,g,M); % Compute the MDCT of f.

N=size(c,2); % Number of translation coefficients.

The following holds for m = 0, ...,M − 1 and n = 0, ..., N − 1:

If m+ n is even:

c (m+ 1, n+ 1) =
√

2
L−1∑
l=0

f(l + 1) cos

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − nM + 1)

If m+ n is odd:

c (m+ 1, n+ 1) =
√

2
L−1∑
l=0

f(l + 1) sin

(
π

M

(
m+

1

2

)
l +

π

4

)
g(l − nM + 1)

References: [81], [82], [72], [16]

140

B.1.4.6 IMDCT

Inverse MDCT

Usage:

• f = imdct(c,g);

• f = imdct(c,g,Ls);

Input parameters:

• c: M*N array of coe�cients.

• g: Window function.

• Ls: Final length of function (optional)

Output parameters:

• f: Input data

IMDCT(c,g) computes an inverse MDCT with window g. The number of channels is deduced
from the size of the coe�cient array c.

g must be whole-point even.

IMDCT(f,g,Ls) does the same, but cuts or zero-extend the �nal result to length Ls.

References: [81], [82], [72], [16]

B.1.4.7 MDCT2

2-D Discrete Wilson transform.

Usage:

• c = mdct2(f,g,M);

• c = mdct2(f,g1,g2,[M1,M2]);

• c = mdct2(f,g1,g2,[M1,M2],[L1,L2]);

• [c,L] = mdct2(f,g1,g2,[M1,M2],[L1,L2]);

Input parameters:

• f: Input data, matrix.

• g,g1,g2: Window functions.

• M,M1,M2: Number of bands.

• L1,L2: Length of transform to do.

141

Output parameters:

• c: array of coe�cients.

• Ls: Original size of input matrix.

MDCT2(f,g,M) calculates a two dimensional Modi�ed Discrete Cosine transform of the
input signal f using the window g and parameter M along each dimension.

For each dimension, the length of the transform will be the smallest possible that is larger
than the length of the signal along that dimension. f will be appropriatly zero-extended.

All windows must be whole-point even.

MDCT2(f,g,M,L) computes a 2-D MDCT as above, but does a transform of length L along
each dimension. f will be cut or zero-extended to length L before the transform is done.

[c,Ls]=MDCT(f,g,M) or [c,Ls]=MDCT(f,g,M,L) additionally returns the length of the
input signal f. This is handy for reconstruction:

c=MDCT2(f,g1,g2,M) makes it possible to use a di�erent window along the two dimen-
sions.

The parameters L, M and Ls can also be vectors of length 2. In this case the �rst element
will be used for the �rst dimension and the second element will be used for the second
dimension.

The output c will be have 4 or 5 dimensions. The dimensions index the following prop-
erties:
1 Number of translation along 1st dimension of input.
2 Number of channel along 1st dimension of input
3 Number of translation along 2nd dimension of input.
4 Number of channel along 2nd dimension of input
5 Plane number, corresponds to 3rd dimension of input.

B.1.4.8 IMDCT2

2D Inverse Discrete Wilson transform.

Usage:

• f = imdct2(c,g);

• f = imdct2(c,g1,g2);

• f = imdct2(c,g1,g2,Ls);

Input parameters:

• c: Array of coe�cients.

• g,g1,g2: Window functions.

• Ls: Size of reconstructed signal.

142

Output parameters:

• f: Output data, matrix.

IMDCT2(c,g) will calculate a separable two dimensional inverse MDCT transformation of
the input coe�cients c using the window g. The number of channels is deduced from the
size of the coe�cients c.

IMDCT2(c,g1,g2) will do the same using the window g1 along the �rst dimension, and
window g2 the second dimension.

IMDCT2(c,g1,g2,Ls) will cut the signal to size Ls after the transformation is done.

B.1.4.9 WILORTH

Wilson orthonormal window.

Usage:

• gamma = wilorth(M,L);

• gamma = wilorth(g,M);

• gamma = wilorth(g,M,L);

Input parameters:

• g: Auxiliary window window function (optional).

• M: Number of modulations.

• L: Length of window (optional).

Output parameters:

• gamma: Window generating an orthonormal Wilson basis.

gamma=WILORTH(M,L) computes a nice window of length L generating a Wilson or MDCT
orthonormal basis with M frequency bands for signal of length L.

gamma=WILORTH(g,M) creates an orthonormal window from the window g, g must be
whole-point even.

gamma=WILORTH(g,M,L) pads or truncates g to length L before calculating the orthonormal
window. gamma will also be of length L.

143

B.1.4.10 WILDUAL

Canonical dual window.

Usage:

• gamma = wildual(g,M);

• gamma = wildual(g,M,L);

Input parameters:

• g: Gabor window.

• M: Number of modulations.

• L: Length of window. (optional)

Output parameters:

• gamma: Canonical dual window.

WILDUAL(g,M) returns the dual window of the Wilson or MDCT basis with window g,
parameter M and length equal to the length of the window g.

WILDUAL(g,M,L) does the same, but now L is used as the length of the Wilson basis. g

will be cut or zero-extended to length L.

The input window g must be whole-point even.

B.1.5 Window functions.

B.1.5.1 PGAUSS

Sampled, periodized Gaussian.

Usage:

• g = pgauss(L);

• g = pgauss(L,tfr);

• g = pgauss(L,tfr,cent);

Input parameters:

• L: Length of vector.

• tfr: ratio between time and frequency support.

• cent: Centering.

Output parameters:

144

• g: The periodized Gaussian(s).

PGAUSS(L,tfr) computes samples of a periodized Gaussian. The function returns a
regular sampling of the periodization of the function e−πx2

.

The returned function has norm == 1.

The parameter tfr determines the ratio between the e�ective support of g and the ef-
fective support of the DFT of g. If tfr>1 then g has a wider support than the DFT of
g.

PGAUSS(L) does the same setting tfr=1.

The function is whole-point even. This implies that �t(pgauss(L,tfr)) is real for any L

and tfr.

PGAUSS(L,tft,cent) will generate a di�erently centered Gaussian. Setting cent=0 gen-
erates a whole point centered function (as above) and setting cent=.5 generates a half
point centered function, as most other Matlab �lter routines.

If this function is used to generate a window for a Gabor frame, then the optimal window
is generated by PGAUSS(L,a*M/L);

References: [71]

B.1.5.2 PSECH

Sampled, periodized hyperbolic secant.

Usage:

• g = psech(L);

• g = psech(L,tfr);

Input parameters:

• L: Length of vector.

• tfr: ratio between time and frequency support.

Output parameters:

• g: The periodized Gaussian(s).

PSECH(L,tfr) computes samples of a periodized hyperbolic secant. The function returns
a regular sampling of the periodization of the function sech(pi*x)

The returned function has norm == 1.

The parameter tfr determines the ratio between the e�ective support of g and the ef-
fective support of the DFT of g. If tfr>1 then g has a wider support than the FFT of
g.

145

PSECH(L) does the same setting tfr=1.

If tfr is a vector, PSECH will return a matrix, where each column is a PSECH function with
the corresponding value of tfr.

The function is whole-point even. This implies that �t(psech(L,tfr)) is real for any L and
tfr.

If this function is used to generate a window for a Gabor frame with a rectangular lattice,
then the optimal window is generated by g=psech(L,a/b);

References: [59]

B.1.5.3 PHERM

Periodized Hermite function.

Usage:

• g = pherm(L,order);

• g = pherm(L,order,tfr);

Input parameters:

• L: Length of vector.

• order: Order of Hermite function.

• tfr: ratio between time and frequency support.

Output parameters:

• g: The periodized Gaussian(s).

PHERM(L,order,tfr) computes samples of a periodized Hermite function of order order.
order is counted from 0, so the zeroth order Hermite function is the Gaussian.

The returned functions are eigenvectors of the DFT. The �rst four Hermite functions are
orthonormal, but in general they are not.

The parameter tfr determines the ratio between the e�ective support of g and the ef-
fective support of the DFT of g. If tfr>1 then g has a wider support than the DFT of
g.

PHERM(L,order) does the same setting tfr=1.

If order is a vector, DHERM will return a matrix, where each column is a Hermite function
with the corresponding order.

If tfr is a vector, DHERM will return a matrix, where each column is a Hermite function
with the corresponding tfr.

If both order and tfr are vectors, they must have the same length, and the values will
be paired.

146

If this function is used to generate a window for a Gabor frame with a rectangular lat-
tice with lattice constants a and b, then the optimally centered window is generated by
PSECH(L,order,a/b); Note that this window does not generate a frame unless order is
a factor of 4. Use the functions for construction of multi-window Gabor frames.

Use this function only for lower orders. For orders above 66 the result can not be trusted
due to numerical errors.

B.1.5.4 PBSPLINE

Periodized B-spline.

Usage:

• g = pbspline(L,order,a);

• g = pbspline(stype,order,a);

• [g,nlen] = pbspline(L,order,a);

• [g,nlen] = pbspline(stype,L,order,a);

• [g,nlen] = pbspline(stype,L,order,a,cent);

Input parameters:

• stype: Type of spline.

• L: Length of window.

• order: Order of B-spline.

• a: Time-shift parameter for partition of unity.

• cent: Centering (0 or 0.5)

Output parameters:

• g: Fractional B-spline.

• nlen: Number of non-zero elements in out.

PBSPLINE(L,order,a) computes a (slightly modi�ed) B-spline of order order of total
length L.

If shifted by the distance a, the returned function will form a partition of unity. The
result is normalized such that the functions sum to 1/sqrt(a).

PBSPLINE(stype,L,order,a) will compute a spline of type stype. stype can be one of:

'+d' Asymmetric discrete fractional spline.
'ed' Even discrete fractional spline.
'xd' Symmetric '�at' discrete fractional spline.
'*d' Symmetric 'pointy' discrete fractional spline
'+c' Asymmetric fractional spline by sampling.
'ec' Even fractional spline by sampling.
'xc' Symmetric '�at' fractional spline by sampling.
'*c' Symmetric 'pointy' fractional spline by sampling.

147

The di�erent types are accurately described in the referenced paper. Generally, the 'd'
types of splines are very fast to compute, while the 'c' types are samplings of the continuous
splines. The 'e' types coincides with the regular B-splines for integer orders. The 'x' types
do not coincide, but generate Gabor frames with favorable frame bounds. The default
type is 'ed' to guarantee fast computation are a familiar shape of the splines.

PBSPLINE(stype,L,order,a,cent) will generate di�erently centered splines. Setting
cent=0 generates a whole point centered function and setting cent=.5 generates a half
point centered function, as most other Matlab �lter routines. Default is cent=0.

[out,nlen]=PBSPLINE(stype,L,order,a) will additionally compute the number of non-
zero elements in out.

If nlen > L, the function returned will be a periodization of a B-spline.

If nlen < L, you can choose to remove the additional zeros by calling MIDDLEPAD(g,nlen)

References: [94]

B.1.5.5 FIRWIN

FIR window

Usage:

• g = firwin(name,M);

• g = firwin(name,M,centering);

FIRWIN(name,M) will compute a two overlapping window of length M of type name.

FIRWIN(name,M,centering) will create a window centered as speci�ed by centering.
The default (centering=0) is to return a whole-point centered window, while a value of
.5 will produce a half-point even function (traditional signal processing style).

The windows are normalized, such that if used for Gabor systems with parameters a=M/2
and M, they will generate Gabor frames with framebounds close to 1.

All windows are symmetric and can be used for Wilson bases, except when noted other-
wise.

The windows available are:
hanning Hanning window. Forms a PU.
sqrthan Square root of a Hanning window. Normalized so it generates

a normalized tight Gabor system with parameters a=M/2 and
M

hamming Hamming window. Forms a PU. This window cannot be used
for a Wilson basis.

sqrtham Square root of a Hamming window. As sqrthan.
blackman Blackman window
vorbis Iterated sine window. This is a tight window.

References: [78]

148

B.1.5.6 FIRKAISER

Kaiser-Bessel window

Usage:

• g = firkaiser(M,beta);

• g = firkaiser(M,beta,centering);

FIRKAISER(M,beta) computes the Kaiser-Bessel window of length M with parameter
beta.

FIRKAISER(M,beta,'zero') will set the smallest element of the window to zero. This
makes it possible to use the window for a Wilson basis.

FIRKAISER(M,beta,centering) will create a window centered as speci�ed by centering.
The default (centering=0) is to return a whole-point centered window, while a value of
.5 will produce a half-point even function (traditional signal processing style).

References: [78]

B.1.5.7 FIREXTEND

Extend FIR window to IIR

Usage:

• g = firextend(g,L);

FIREXTEND(g,L) will extend the FIR window g to a length L window by inserting zeros.
Note that this is a slightly di�erent behaviour than MIDDLEPAD.

B.1.6 Time Varying Filtering.

B.1.6.1 GABMUL

Gabor multiplier.

Usage:

• h = gabmul(f,c,a);

• h = gabmul(f,c,g,a);

• h = gabmul(f,c,ga,gs,a);

Input parameters:

• f: Input signal

149

• c: symbol of Gabor multiplier

• g: analysis/synthesis window

• ga: analysis window

• gs: synthesis window

• a: Length of time shift.

Output parameters:

• h: Output signal

GABMUL(f,c,g,a) will �lter f by a Gabor multiplier determined by the symbol c over the
rectangular time-frequency lattice determined by a and M, where M is deduced from the
size of c. The window g will be used for both analysis and synthesis.

GABMUL(f,c,a) will do the same using an optimally concentrated, tight Gaussian as
window function.

GABMUL(f,c,gs,ga,a) will do the same using the window ga for analysis and gs for
synthesis.

B.1.7 Conditions numbers.

B.1.7.1 GFBOUNDS

Calculate frame bounds of Gabor frame.

Usage:

• fcond = gfbounds(g,a,M);

• [A,B] = gfbounds(g,a,M);

• [A,B] = gfbounds(g,a,M,L);

Input parameters:

• g: The window function.

• a: Length of time shift.

• M: Number of modulations.

• L: Length of transform to consider.

Output parameters:

• fcond: Frame condition number (B/A)

• A,B: Frame bounds.

•

150

GFBOUNDS(g,a,M) calculates the ratio B/A of the frame bounds of the Gabor frame with
window g, and parameters a, M.

[A,B]=GFBOUNDS(g,a,M) calculates the frame bounds A and B of the Gabor frame with
window g, and parameters a, M.

If the optional parameter L is speci�ed, the window is cut or zero-extended to length L.

B.1.7.2 WILBOUNDS

Calculate frame bounds of Wilson basis.

Usage:

• [AF,BF] = wilbounds(g,M)

• [AF,BF] = wilbounds(g,M,L)

Input parameters:

• g: Window function.

• M: Number of channels.

• L: Length of transform to do (optional)

Output parameters:

• A,B: Frame bounds.

•

WILBOUNDS(g,M) calculates the frame bounds of the Wilson frame operator of the Wilson
basis with window g and M channels.

If the optional parameter L is speci�ed, the window is cut or zero-extended to length L.

B.1.7.3 GFDUALNORM

Measure of how close a window is to be a dual window.

Usage:

• dn = gfdualnorm(g,gamma,a,M);

• dn = gfdualnorm(g,gamma,a,M,L);

• [scal,res] = gfdualnorm(g,gamma,a,M);

• [scal,res] = gfdualnorm(g,gamma,a,M,L);

Input parameters:

151

• gamma: input window..

• g: window function.

• a: Length of time shift.

• M: Number of modulations.

• L: Length of transform to consider

Output parameters:

• dn: dual norm.

• scal: Scaling factor

• res: Residual

GFDUALNORM(g,gamma,a,M) calculates how close gamma is to be a dual window of the
Gabor frame with window g and parameters a and M.

GFDUALNORM(g,gamma,a,M,L) does the same, but considers a transform length of L.

[scal,res]=GFDUALNORM(g,gamma,a,M) or [scal,res]=GFDUALNORM(g,gamma,a,M,L)

will compute two entities: scal determines if the windows are scaled correctly, it must
be 1 for the windows to be dual. res is close to zero if the windows (scaled correctly) are
dual windows.

GFDUALNORM can be used to get the maximum relative reconstruction error when using the
two speci�ed windows. Consider the following code for some signal f, windows g, gamma,
parameters a and M and transform-length L (See help on DGT for how to obtain L):

fr=idgt(dgt(f,g,a,M),gamma,a);

er=norm(f-fr)/norm(f);

eest=gfdualnorm(g,gamma,a,M,L);

Then er < eest for all possible input signals f.

To get a similar estimate for a tight window gt, simply use

eest=gfdualnorm(gt,gt,a,M,L);

B.1.8 Plots.

B.1.8.1 SGRAM

Spectrogram.

Usage:

• sgram(f,op1,op2, ...);

152

SGRAM(f) plots a spectrogram of f using a DGT.

Additional arguments can be supplied like this: SGRAM(f,'nf','log'). The arguments
are character strings, and the available options (so far) are:

'nf' Display negative frequencies, with the zero centered in the mid-
dle. For real signals, this will just mirror the upper half plane.
This is standard for complex signals.

'tc' Time centering. Move the beginning of the signal to the middle
of the plot. This is useful for visualizing the window functions
of the toolbox.

'db' Apply 20*log10 to the coe�cients. This makes it possible to
see very weak phenomena, but it might show to much noise. A
logarithmic scale is more adapted to perception of sound. This
is the default of Matlab's SPECGRAM.

'vgg' Use the signal itself as window. In LaTeX, this is the symbol
V_gg This is a quadratic time-frequency distribution related
to the Wigner-Ville distribution.

'contour' Do a contour plot instead of an image.
'surf' Do a surf plot instead of an image.

In Octave, the default colormap is greyscale. Change it to colormap(jet) for something
prettier.

B.1.8.2 PHASEPLOT

Phase plot

Usage:

• phaseplot(f,op1,op2, ...);

PHASEPLOT(f) plots the phase of f using a DGT.

Additional arguments can be supplied like this: PHASEPLOT(f,'nf','log'). The argu-
ments are character strings, and the available options (so far) are:

153

'nf' Display negative frequencies, with the zero centered in the mid-
dle. For real signals, this will just mirror the upper half plane.
This is standard for complex signals.

'tc' Time centering. Move the beginning of the signal to the middle
of the plot. This is usefull for visualizing the window functions
of the toolbox.

'vgg' Use the signal itself as window. In LaTeX, this is the symbol
V_gg

'thr' Use the amplitude values to threshold the phase values. For
small amplitude values the phase values are. This is because
an error, that is small in amplitude can still lead to arbitrary
phase values in the vicinity of zero. Setting this �ag will set
the phase is to a constant value (0) for all pairs (m,n), where
the amplitude is below a certain relative value, set to 0.001 of
the maximum amplitude.

'phl' Di�erent to dgt.m the Gabor transform can be de�ned by shift-
ing the order of translation and modulation. This is sometimes
used in algorithms to be able to directly apply the FFT with-
out circular shifts, as for every time point the FFT can start
from zero. Obviously this choice has a big in�uence on the
development of the phase of the coe�cients over time.

In Octave, the default colormap is greyscale. Change it to colormap(jet) for something
prettier.

Obviously in the spectrogram the information about the complex angle of the Gabor
coe�cients, i.e. the phase, gets lost. To plot the phase some issues have to be considered:

- phase unwrapping: The angle function is non-continuous on a half-axis in the complex
plane. So there are continuous complex function, whose angle is not continuous, e.g. a
periodic rotation around zero. A work-around is to add integer multiples of 2 pi to the
result, the so called 'unwrapping'. For plots a continuous e�ect can just be reached by
choosing a �tting color scheme.

References: [19]

B.1.8.3 MAGRESP

Magnitude response plot of TF-transform

Usage:

• magresp(g);

• magresp(g,L);

• magresp(g,L,'nf');

MAGRESP(g) will display the magnitude response of the window g. This is the DFT of g
shown on a log scale normalized such that the peak is 0 db.

154

MAGRESP(g,L) does the same, but extends the window to length L. Always use this mode
for FIR windows, and select an L somewhat longer than the window to make an accurate
plot.

If the input window is real, only the positive frequencies will be shown. MAGRESP(g,L,'nf')
will show the negative frequencies anyway.

B.1.9 Cosine and Sine transforms.

B.1.9.1 DCTI

Discrete Cosine Transform type I

Usage:

• c = dcti(f);

• c = dcti(f,N);

• c = dcti(f,[],dim);

• c = dcti(f,N,dim);

DCTI(f) computes the discrete cosine transform of type I of the input signal f. If f

is a matrix, then the transformation is applied to each column. For N-D arrays, the
transformation is applied to the �rst dimension.

DCTI(f,N) zero-pads or truncates f to length N before doing the transformation.

DCTI(f,[],dim) applies the transformation along dimension dim. DCTI(f,N,dim) does
the same, but pads or truncates to length N.

The transform is real (output is real if input is real) and it is orthonormal.

This transform is its own inverse.

Let f be a signal of length L, let c=DCTI(f) and de�ne the vector w of length L by

w (n) =

{
1√
2

if n = 0 or n = L− 1

1 otherwise

Then

c (n+ 1) =

√
2

L− 1

L−1∑
m=0

w (n)w (m) f (m+ 1) cos

(
πnm

L− 1

)
The implementation of this functions uses a simple algorithm that require an FFT of length
2N-2, which might potentially be the product of a large prime number. This may cause
the function to sometimes execute slowly. If guaranteed high speed is a concern, please
consider using one of the other DCT transforms.

References: [87], [109]

155

B.1.9.2 DCTII

Discrete Consine Transform type II

Usage:

• c = dctii(f);

• c = dctii(f,N);

• c = dctii(f,[],dim);

• c = dctii(f,N,dim);

DCTII(f) computes the discrete consine transform of type II of the input signal f. If
f is a matrix, then the transformation is applied to each column. For N-D arrays, the
transformation is applied to the �rst dimension.

DCTII(f,N) zero-pads or truncates f to length N before doing the transformation.

DCTII(f,[],dim) applies the transformation along dimension dim. DCTII(f,N,dim) does
the same, but pads or truncates to length N.

The transform is real (output is real if input is real) and it is orthonormal.

This is the inverse of DCTIII.

Let f be a signal of length L, let c=DCTII(f) and de�ne the vector w of length L by

w (n) =

{
1√
2

if n = 0

1 otherwise

Then

c (n+ 1) =

√
2

L

L−1∑
m=0

w (n) f (m+ 1) cos

(
π

L
n

(
m+

1

2

))
References: [87], [109]

B.1.9.3 DCTIII

Discrete Consine Transform type III

Usage:

• c = dctiii(f);

• c = dctiii(f,N);

• c = dctiii(f,[],dim);

• c = dctiii(f,N,dim);

156

DCTIII(f) computes the discrete consine transform of type III of the input signal f. If
f is a matrix, then the transformation is applied to each column. For N-D arrays, the
transformation is applied to the �rst dimension.

DCTIII(f,N) zero-pads or truncates f to length N before doing the transformation.

DCTIII(f,[],dim) applies the transformation along dimension dim. DCTIII(f,N,dim)

does the same, but pads or truncates to length N.

The transform is real (output is real if input is real) and it is orthonormal.

This is the inverse of DCTII

Let f be a signal of length L, let c=DCTIII(f) and de�ne the vector w of length L by

w (n) =

{
1√
2

if n = 0

1 otherwise

Then

c (n+ 1) =

√
2

L

L−1∑
m=0

w (n) f (m+ 1) cos

(
π

L

(
n+

1

2

)
m

)
References: [87], [109]

B.1.9.4 DCTIV

Discrete Consine Transform type IV

Usage:

• c = dctiv(f);

DCTIV(f) computes the discrete consine transform of type IV of the input signal f. If f
is a matrix, then the transformation is applied to each column.

DCTIV(f,N) zero-pads or truncates f to length N before doing the transformation.

DCTIV(f,[],dim) applies the transformation along dimension dim. DCTIV(f,N,dim) does
the same, but pads or truncates to length N.

B.1.9.5 DSTI

Discrete Sine Transform type I

Usage:

• c = dsti(f);

• c = dsti(f,N);

• c = dsti(f,[],dim);

• c = dsti(f,N,dim);

157

DSTI(f) computes the discrete sine transform of type I of the input signal f. If f is a
matrix, then the transformation is applied to each column. For N-D arrays, the transfor-
mation is applied to the �rst dimension.

DSTI(f,N) zero-pads or truncates f to length N before doing the transformation.

DSTI(f,[],dim) applies the transformation along dimension dim. DSTI(f,N,dim) does
the same, but pads or truncates to length N.

The transform is real (output is real if input is real) and it is orthonormal.

This transform is its own inverse.

Let f be a signal of length L and let c=DSTI(f). Then

c (n+ 1) =

√
2

L+ 1

L−1∑
m=0

f (m+ 1) sin

(
π (n+ 1) (m+ 1)

L+ 1

)

The implementation of this functions uses a simple algorithm that require an FFT of length
2N+2, which might potentially be the product of a large prime number. This may cause
the function to sometimes execute slowly. If guaranteed high speed is a concern, please
consider using one of the other DST transforms.

B.1.9.6 DSTII

Discrete Sine Transform type II

Usage:

• c = dstii(f);

• c = dstii(f,N);

• c = dstii(f,[],dim);

• c = dstii(f,N,dim);

DSTII(f) computes the discrete sine transform of type II of the input signal f. If f

is a matrix, then the transformation is applied to each column. For N-D arrays, the
transformation is applied to the �rst dimension.

DSTII(f,N) zero-pads or truncates f to length N before doing the transformation.

DSTII(f,[],dim) applies the transformation along dimension dim. DSTII(f,N,dim) does
the same, but pads or truncates to length N.

The transform is real (output is real if input is real) and it is orthonormal.

The inverse transform of DSTII is DSTIII.

Let f be a signal of length L, let c=DSTII(f) and de�ne the vector w of length L by

w (n) =

{
1√
2

if n = L− 1

1 otherwise

158

Then

c (n+ 1) =

√
2

L

L−1∑
m=0

w (n) f (m+ 1) sin

(
π

L
n

(
m+

1

2

))
References: [87], [109]

B.1.9.7 DSTIII

Discrete sine transform type III

Usage:

• c = dstiii(f);

• c = dstiii(f,N);

• c = dstiii(f,[],dim);

• c = dstiii(f,N,dim);

DSTIII(f) computes the discrete sine transform of type III of the input signal f. If
f is a matrix, then the transformation is applied to each column. For N-D arrays, the
transformation is applied to the �rst dimension.

DSTIII(f,N) zero-pads or truncates f to length N before doing the transformation.

DSTIII(f,[],dim) applies the transformation along dimension dim. DSTIII(f,N,dim)

does the same, but pads or truncates to length N.

The transform is real (output is real if input is real) and it is orthonormal.

This is the inverse of DSTII

Let f be a signal of length L, let c=DSTIII(f) and de�ne the vector w of length L by

w (n) =

{
1√
2

if n = L− 1

1 otherwise

Then

c (n+ 1) =

√
2

L

L−1∑
m=0

w (n) f (m+ 1) sin

(
π

L

(
n+

1

2

)
m

)

B.1.9.8 DSTIV

Discrete Sine Transform type IV

Usage:

• c = dstiv(f);

• c = dstiv(f,N);

• c = dstiv(f,[],dim);

159

• c = dstiv(f,N,dim);

DSTIV(f) computes the discrete sine transform of type IV of the input signal f. If f

is a matrix, then the transformation is applied to each column. For N-D arrays, the
transformation is applied to the �rst dimension.

DSTIV(f,N) zero-pads or truncates f to length N before doing the transformation.

DSTIV(f,[],dim) applies the transformation along dimension dim. DSTIV(f,N,dim) does
the same, but pads or truncates to length N.

The transform is real (output is real if input is real) and it is orthonormal. It is its own
inverse.

Let f be a signal of length L and let c=DSTIV(f). Then

c (n+ 1) =

√
2

L

L−1∑
m=0

f (m+ 1) sin

(
π

L

(
n+

1

2

)(
m+

1

2

))

B.2 LTFAT - Object oriented interface

B.2.1 Setup and deletion of object

B.2.1.1 TFR_CREATE

Create time-frequency representation object

Usage:

• tfr = tfr_create(tt,a,M,awin,swin);

Input parameters:

• tt: Name of transform.

• a: Time shift.

• M: Number of channels.

• awin: Analysis window.

• swin: Synthesis window.

• options: Cell array of options (optional)

Output: tfr : Handle to this TF representation.

This function creates a time-frequency representation represented by the variable tfr.

tt can be one of: 'dgt', 'rdgt', 'rdgt2', 'dwilt', 'edgt6'

awin and swin can be one of 'none','pgauss','candual','cantight' 'pherm'

options can be one of 'phaselock'

160

B.2.1.2 TFR_SET_WIN

Set analysis/synthesis window

Usage:

• tfr_set_win(self,window)

Window can be a column vector or a string denoting the type of window chosen. In the
latter case, a appropriate window of that type will be choosen.

B.2.1.3 TFR_CLEAR

Clear time-frequency represenation object

Usage:

• tfr_clear(handle);

This clears the TFR object represented by handle. This will free some memory.

B.2.1.4 TFR_CLEARALL

Clear all time-frequency represenation objects

Usage:

• tfr_clearall();

This clears the TFR object represented by handle. This will free some memory.

B.2.2 Analysis and synthesis

B.2.2.1 TFR_A

Analysis transform

Usage:

• c = tfr_a(tfr,f)

• c = tfr_a(tfr,f,L)

• [c,Ls] = tfr_a(tfr,f);

• [c,Ls] = tfr_a(tfr,f,L);

• [c,Ls] = tfr_a(tfr,f,[],dim);

• [c,Ls] = tfr_a(tfr,f,L,dim);

161

Input parameters:

• tfr: Time/frequency representation handle.

• f: Input data

• L: Length of transform to do.

• dim: Dimension of which to do the transform.

Output parameters:

• c: Array of coe�cients.

• Ls: Length of input signal.

TFR_A(tfr,f) computes the analysis transform of the signal f as speci�ed by tfr.

The length of the transform will be the smallest possible that is larger than the signal. f
will be zero-extended to the length of the transform. If f is a matrix, the transformation
is applied to each column.

The length of the transform done can be obtained by L=size(c,2)*a;

TFR_A(tfr,f,L) computes the analysis transform as above, but does a transform of length
L. f will be cut or zero-extended to length L before the transform is done.

[c,Ls]=TFR_A(tfr,f) or [c,Ls]=TFR_A(tfr,f,L) additionally returns the length of the
input signal f. This is handy for reconstruction:

[c,Ls]=tfr_a(tfr,f)

fr=tfr_s(c,Ls);

will reconstruct the signal f no matter what the length of f is, provided that the analysis
and synthesis window of tfr are dual windows.

TFR_A(tfr,f,[],dim) applies the transformation along dimension dim. TFR_A(tfr,f,L,dim)
does the same, but pads or truncates to length L.

B.2.2.2 TFR_AR

Analysis transform, rectangular layout

Usage:

• c = tfr_ar(tfr,f)

• c = tfr_ar(tfr,f,L)

• [c,Ls] = tfr_ar(tfr,f);

• [c,Ls] = tfr_ar(tfr,f,L);

Input parameters:

162

• tfr: Time/frequency representation handle.

• f: Input data

• L: Length of transform to do.

Output parameters:

• c: Array of coe�cients.

• Ls: Length of input signal.

TFR_AR(tfr,f) computes the analysis transform of the signal f as spe�cied by tfr. The
coe�cients are returned in a rectangular layout.

The length of the transform will be the smallest possible that is larger than the signal. f
will be zero-extended to the length of the transform. If f is a matrix, the transformation
is applied to each column.

The length of the transform done can be obtained by L=size(c,2)*a;

TFR_AR(tfr,f,L) computes the analysis transform as above, but does a transform of
length L. f will be cut or zero-extended to length L before the transform is done.

[c,Ls]=TFR_AR(tfr,f) or [c,Ls]=TFR_AR(tfr,f,L) additionally returns the length of
the input signal f. This is handy for reconstruction:

[c,Ls]=tfr_ar(tfr,f)

fr=tfr_sr(c,Ls);

will reconstuct the signal f no matter what the length of f is, provided that the analysis
and synthesis window of tfr are dual windows.

Not all transforms support this method. The supported transforms are: 'dgt', 'dgtii',
'dgtiii', 'dgtiv' 'rdgt', 'rdgtiii' 'edgtii'

B.2.2.3 TFR_S

Synthesis transform

Usage:

• f = tfr_s(tfr,c)

• f = tfr_s(tfr,c,Ls)

• f = tfr_s(tfr,c,[],dim)

• f = tfr_s(tfr,c,Ls,dim)

Input parameters:

• tfr: Time/frequency representation handle.

163

• c: Array of coe�cients.

• Ls: length of signal.

• dim: Dimension of which to do the transform.

Output parameters:

• f: Signal.

TFR_S(tfr,c) computes the synthesis transform of the coe�cients c as spe�cied by tfr.

TFR_S(tfr,c,Ls) does as above but cuts or extends f to length Ls.

TFR_S(tfr,c,[],dim) applies the transform along dimension dim. TFR_S(tfr,c,Ls,dim)
does the same, but cuts or extends f to length Ls.

B.2.2.4 TFR_SR

Synthesis transform, rectangular layout

Usage:

• f = tfr_sr(tfr,c)

• f = tfr_sr(tfr,c,Ls)

Input parameters:

• tfr: Time/frequency representation handle.

• c: Array of coe�cients.

• Ls: length of signal.

Output parameters:

• f: Signal.

TFR_SR(tfr,c) computes the synthesis transform of the coe�cients c as spe�cied by tfr.
The coe�cients must be arranged in a rectangular layout as returned by TFR_AR.

TFR_SR(tfr,c,Ls) does as above but cuts or extends f to length Ls.

B.2.3 Information

B.2.3.1 TFR_GET_WIN

Get analysis/synthesis window.

Usage:

• g = tfr_get_win(tfr,win,L);

TFR_GET_WIN(tfr,'analysis',L) will return the analysis window corresponding to a
transform of length L. Instead of 'analysis' you may use 'a' or 1.

To get the synthesis window, use 'synthesis', 's' or 2.

164

B.2.4 Condition numbers etc.

B.2.4.1 TFR_BOUNDS

Calculate frame bounds

Usage:

• fcond = tfr_bounds(tfr);

• [A,B] = tfr_bounds(tfr,win);

• [A,B] = tfr_bounds(tfr,win,L);

Input parameters:

• tfr: Time/frequency representation handle.

• L: Length of transform to consider.

Output parameters:

• fcond: Frame condition number (B/A)

• A,B: Frame bounds.

TFR_BOUNDS(tfr) calculates the ratio B/A of the frame bounds of the frame speci�ed by
tfr. The analysis window is used.

TFR_BOUNDS(tfr,win) allows you to specify whether the analysis or synthesis window
should be used. Setting win to 'analysis', 'a' or 1 will result in the analysis window being
used, and setting win to 'synthesis','s' or 2 will result in the synthesis window being used.

TFR_BOUNDS(tfr,win,L) or [A,B]=TFR_BOUNDS(tfr,win,L) does the same assuming a
transform length of L. If L is not speci�ed, the smallest possible transform length will be
used.

B.2.5 Multipliers

B.2.5.1 TFR_MUL

Multiplier

Usage:

• h = tfr_mul(tfr,f,c)

• h = tfr_mul(tfr,f,c,L)

TFR_MUL(tfr,f,c) will �lter f by a multiplier using the symbol c. The symbol c can be
either a vector or a matrix.

TFR_MUL(tfr,f,c,L) do the same using a transform of length L.

165

B.3 LTFAT - Signal processing tools

B.3.1 Working with coe�cients.

B.3.1.1 LARGESTR

Keep largest ratio of coe�cients.

Usage:

• xo = LARGESTR(x,p);

• [xo,N] = LARGESTR(x,p);

LARGESTR(x,p) returns an array of the same size as x keeping the fraction p of the
coe�cients. The largest coe�cients are kept.

[xo,N]=LARGESTR(xi,p) will additionally return the number of coe�cients kept.

Note that if this function is used on coe�cients coming from a redundant transform or
from a transform where the input signal was padded, the coe�cient array will be larger
than the original input signal. Therefore, the number of coe�cients kept might be higher
than expected.

References: [70]

B.3.1.2 LARGESTN

Keep N largest coe�cients.

Usage:

• xo = largestn(x,N);

LARGESTN(x,N) returns an array of the same size as x keeping the N largest coe�cients.

If the coe�cients represents a signal expanded in an orthonormal basis, then this will be
the best N-term approximation.

References: [70]

B.3.1.3 THRESH

Threshold (hard/soft)

Usage:

• x = thresh(ttype,x,lambda);

• [x,N] = thresh(ttype,x,lambda);

166

THRESH('hard',x,lambda) or THRESH(1,x,lambda) will perform hard thresholding on
x, i.e. all element with absolute value less than lambda will be set to zero.

THRESH('soft',x,lambda) or THRESH(2,x,lambda) will perform soft thresholding on x,
i.e. lambda will be subtracted from the absolute value of every element of x.

[x,N]=THRESH(ttype,x,lambda) additionally returns a number N specifying how many
numbers where kept.

The function WTHRESH in the Matlab Wavelet toolbox implements the same functionality.

B.3.1.4 UQUANT

Simulate uniform quantization.

Usage:

• x = uquant(x,nbits);

• x = uquant(x,nbits,xmax);

• x = uquant(qtype,x,nbits,xmax);

• x = uquant(qtype,x,nbits,xmax);

UQUANT(x,nbits) simulates the e�ect of uniform quantization of x using nbits bit. The
output is simply x rounded to 2nbits di�erent values.

UQUANT(x,nbits,xmax) does as above, but allows you to specify the maximal value that
should be quanti�able. If not speci�ed, the maximal value of the signal will be used.

UQUANT(qtype,x,nbits) or UQUANT(qtype,x,nbits,xmax) uses quantization depending
on qtype. qtype may be one of:

's','signed' Default quantization type. This assumes that the signal has a
both positive and negative part. Usefull for sound signals.

'u','unsigned' Assumes the signal is positive. Negative values are silently
rounded to zero. Usefull for images.

If this function is applied to a complex signal, it will simply be applied to the real and
imaginary part separately.

B.3.1.5 PHASELOCK

Phaselock Gabor coe�cients

Usage:

• c = phaselock(c,a);

PHASELOCK(c,a) phaselocks the Gabor coe�cients c. The coe�cient must have been
obtained from a DGT with parameter a.

Phaselocking the coe�cients modi�es them so as if they were obtained from a time-
invariant Gabor system. A �lter bank produces phase locked coe�cients.

References: [84]

167

B.3.1.6 IPHASELOCK

Inverse phase lock of Gabor coe�cients

Usage:

• c = iphaselock(c,a);

IPHASELOCK(c,a) removes phase locking from the Gabor coe�cients c. The coe�cient
must have been obtained from a DGT with parameter a.

Phaselocking the coe�cients mody�es them so as if they were obtained from a time-
invarient Gabor system. A �lter bank produces phase locked coe�ecients.

References: [84]

B.3.2 Extra signal processing tools.

B.3.2.1 MULAWENCODE

Mu-Law compand signal

Usage:

• [outsig, sigweight] = mulawencode(insig,mu);

[outsig, sigweight]=MULAWENCODE(insig,mu)mu-law compands the input signal insig
using mu-law companding with parameters mu.

References: [61]

B.3.2.2 MULAWDECODE

Inverse of Mu-Law companding

Usage:

• sig = mulawdecode(codedsig,mu,sigweight);

MULAWDECODE(codedsig,mu,sigweight) inverts a previously applied mu-law companding
to the signal codedsig. The parameters mu and sigweight must match those from the
call to MULAWENCODE

References: [61]

B.3.2.3 QAM

QAM modulation of input signal.

Usage:

• : xo = qam(xi,order);

xi must be a vector of 0's and 1's. order must be a power of 2.

168

B.3.2.4 IQAM

Inverse QAM modulation of signal.

order must be a power of 2. xo is a vector of 0's and 1's.

B.3.2.5 CIRCBITFLIP

Compute sequence of numbers by �ipping one bit.

Usage:

• bitorder = circbitflip(order)

CIRCBITFLIP(order) computes a sequence of numbers from 0 until order-1 such that
each number di�ers from the previous one by a single �ipped bits.

B.4 LTFAT - Examples

B.4.1 Simple examples

B.4.1.1 EXAMP_SPEECH

Spectrogram of speech signal.

This example show how to work with almost real world data.

Figure B.1: This show a spectrogram of Linus Thorvalds saying "My name is Linus
Thorvalds, and I pronounce Linux as Linux"

The 90cleaner plot.

B.4.2 Applications

B.4.2.1 EXAMP_COMPRESSION

Image compression example

This examples shows how to do image compression using a two-dimensional Wilson trans-
form.

The image is transformed using an orthonormal DWILT2 transform followed by N-term
approximation and quantization. Then the image is reconstructed and compared with
the original.

This example demonstrates both lossless and lossy compression. An image compression
is lossless if the truncation error is below the quantization error, as the truncation error
is not visible in that case.

Figure B.2: This �gure to the left shows lossless compression of the cameraman. The
�gure to the right shows a lossy compression.

169

Linus speaking.

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

Figure B.1: EXAMP_SPEECH: Linus

50 100 150 200 250

50

100

150

200

250
50 100 150 200 250

50

100

150

200

250

Figure B.2: EXAMP_COMPRESSION: The cameraman.

170

B.4.2.2 EXAMP_FORMANTS

Find the formants in speech

This script shows a simple method for �nding formants in a speech signal. Formants are
peaks in a spectrum or spectogram, which can be linked to resonant frequencies of the
related physical system. They are most commonly used in phonetics, searching for the
formants of the human vocal tract. This is for example used for speaker recognition.

References: [20], [29], [95]

B.4.2.3 EXAMP_OFDM

Example of Gabor systems used for OFDM

This example shows how to use a Gabor Riesz basis for OFDM. The example is simple,
and assumes that all the whole spectrum is available for transmission.

Some further simpli�cations used to make this example simple:

- The window and its dual have full length support. This is not practical, because all
data would have to be processed at once. Instead, a �lter bank approach should be used,
with both the window and its dual having a short length.

- The window is periodic. The data at the very end interferes with the data at the very
beginning. A simple way to solve this is to transmit zeros at the beginning and at the
end, to �ush the system properly.

- The channel should be modelled by a pseudo-di�erential operator that causes time and
frequency shifts / dispersion in the signal. This example just uses white noise.

Figure B.3: This �gure shows the distribution in the complex plane of the received coef-
�cients.

B.4.2.4 EXAMP_PHASEPLOT

Give examples of nice phaseplots

This script creates a synthetic signal and then uses 'phaseplot' on it, using several of the
possible options

For real-life signal only small parts should be analyzed. In the chosen example the fun-
damental frequency of the speaker can be nicely seen.

Figure B.4: Compare this to the pictures in reference 2 and 3. In the �rst two �gures
a synthetic signal is analyzed. It consists of a sinusoid, a small Delta peak, a periodic
triangular function and a Gaussian. In the phaselocked version in the �rst part the
periodicity of the sinusoid can be nicely seen also in the phase coe�cients. Also the
points of discontinuities can be seen as asymptotic lines approached by parabolic shapes.
In the third part both properties, periodicity and discontinuities can be nicely seen. A
comparison to the spectogram shows that the rectangular part in the middle of the signal
can be seen by the phase plot, but not by the spectogram.

171

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure B.3: EXAMP_OFDM: Received coe�cients.

172

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1
Synthetic signal

Time

F
re

qu
en

cy

Phaseplot of synthetic signal − standard version

0 50 100 150 200 250 300 350
0

50

100

150

Time

F
re

qu
en

cy

Phaseplot of synthetic signal − phaselocked version

0 50 100 150 200 250 300 350
0

50

100

150

Figure B.4: EXAMP_PHASEPLOT: Synthetic signal

173

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1
Synthetic signal

Time

F
re

qu
en

cy

Phaseplot of synthetic signal − threshold version

0 50 100 150 200 250 300 350
0

50

100

150

Time

F
re

qu
en

cy

Phaseplot of synthetic signal − phaselocked and threshold version

0 50 100 150 200 250 300 350
0

50

100

150

Figure B.5: EXAMP_PHASEPLOT: Synthetic signal, thresholded.

174

500 1000 1500 2000 2500 3000 3500

−0.5

0

0.5

Speech signal: linus

Time

F
re

qu
en

cy

Phaseplot of linus − phaselocked version

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

Time

F
re

qu
en

cy

Phaseplot of linus − phaselocked and threshold version

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

Figure B.6: EXAMP_PHASEPLOT: Speech signal.

In the not phase-locked version still the fundamental frequency of the sinusoid can be
guessed as the position of an horizontal asymptotic line.

Figure B.5: This �gure shows the same as Figure 1, except that values with low magnitude
has been removed.

Figure B.6: The �gure shows a part of the 'linus' signal. The fundamental frequency of
the speaker can be nicely seen.

B.4.3 Aspect of particular functions

B.4.3.1 EXAMP_PGAUSS

How to use PGAUSS

This script illustrates various properties of the Gaussian function.

Figure B.7: This �gure shows an optimally centered Gaussian for a given Gabor system,
its canonical dual and tight windows and the DFTs of these windows.

175

0 20 40 60 80
0

0.2

0.4

0.6

0.8
g=pgauss(72,6/8)

0 20 40 60 80
0

0.1

0.2

0.3

0.4
g, frequency domain

0 20 40 60 80
−0.1

0

0.1

0.2

0.3
Dual window of g

0 20 40 60 80
−0.1

0

0.1

0.2

0.3
dual window, frequency domain

0 20 40 60 80
−0.2

0

0.2

0.4

0.6
Tight window generated from g

0 20 40 60 80
−0.1

0

0.1

0.2

0.3
tight window, frequency domain

Figure B.7: EXAMP_PGAUSS: Window+Dual+Tight

176

0 20 40 60 80
−0.1

0

0.1

0.2
Zero order spline.

0 20 40 60 80
−0.5

0

0.5

1
Dual window.

0 20 40 60 80
−0.1

0

0.1

0.2
First order spline.

0 20 40 60 80
−0.5

0

0.5

1
Dual window.

0 20 40 60 80
−0.05

0

0.05

0.1

0.15
Second order spline.

0 20 40 60 80
−0.5

0

0.5

1
Dual window.

Figure B.8: EXAMP_PBSPLINE: Three �rst splines

B.4.3.2 EXAMP_PBSPLINE

How to use PBSPLINE

This script illustrates various properties of the Gaussian function.

Figure B.8: This �gure shows the three �rst splines (order 0,1 and 2) and their dual
windows.

Note that they are calculated for an even number of the parameter 'a', meaning that they
are not exactly splines, but a slightly smoother construction, that still form a partition of
unity.

B.4.3.3 EXAMP_MIXDUAL

How to use MIXDUAL

This script illustrates how one can produce dual windows using MIXDUAL

The example constructs a dual window that is more concentrated in the time domain by
mixing the original Gabor window by one that is extremely well concentrated. The result
is somewhat in the middle of these two.

177

0 50 100 150
−0.1

0

0.1

0.2

0.3
Canonical dual window.

0 50 100 150
10

−10

10
−5

10
0

Decay of canonical dual window.

0 50 100 150
−20

0

20

40

60
Can. dual of mix. window.

0 50 100 150
10

−50

10
0

10
50

Decay of can.dual of mix. window.

0 50 100 150
−0.01

0

0.01

0.02

0.03
Mixdual

0 50 100 150
10

−10

10
−5

10
0

Decay of mixdual

Figure B.9: EXAMP_MIXDUAL: Mixdual of two Gaussians.

The lower framebound of the mixing Gabor system is horrible, but this does not carry
over to the mixdual.

Figure B.9: The �rst row of the �gure shows the canonical dual window of the input win-
dow, which is a Gaussian function perfectly localized in the time and frequency domains.

The second row shows the canonical dual window of the window we will be mixing with:
This is a Gaussian that is 10 times more concentrated in the time domain than in the
frequency domain. The resulting canonical dual window has rapid decay in the time
domain.

The last row shows the mixdual of these two. This is a non-canonical dual window of the
�rst Gaussian, with decay resembling that of the second.

B.4.3.4 EXAMP_GABMUL

Time-frequency localization by a Gabor multiplier

This script creates several di�erent time-frequency symbols and demonstrate their e�ect
on a random, real input signal.

This �gure shows the random signal.

178

20
40

60

20

40

60

0

0.005

0.01

0.015

0.02

0
20

40
60

0
20

40
60

0

0.5

1

1.5

x 10
−3

Figure B.10: EXAMP_ZAK: Gaussian and spline

B.4.3.5 EXAMP_ZAK

Some Zak-transforms

This scripts creates plots of three di�erent Zak-transforms of a Gaussian, a spline and a
Hermite function

Figure B.10: This �gure shows the absolute value of the Zak-transform of a Gaussian to
the left, and a second order spline to the right. Notice that both Zak-transforms are 0 in
only a single point right in the middle of the plot. The spline is constructed by sampling
and periodization of the continuous second order spline.

Figure B.11: The left �gure shows the absolute value of the Zak-transform of a 4th order
Hermite function and the left shows a chirp. Notice how the Zak transform of the Hermite
functions is zero on a circle centered on the corner.

B.4.4 Misc:

B.4.4.1 CTESTFUN

Complex 1-D test function.

Usage:

• ftest = ctestfun(L);

CTESTFUN(L) returns a test signal consisting of a superposition of a chirp and an indicator
function.

179

0
20

40
60

0
20

40
60

80
0

0.01

0.02

0.03

0
20

40
60

0
20

40
60

0

0.05

0.1

Figure B.11: EXAMP_ZAK: Funny Zaks

180

B.5 LTFAT - Signals

B.5.1 Sound signals.

B.5.1.1 BAT

Load the 'bat' test signal.

Usage:

• s = bat();

BAT() loads the 'bat' signal. It is a 400 samples long recording of a bat chirp.

The signal can be obtained from http://dsp.rice.edu/software/bat.shtml http://dsp.rice.edu/software/optkernel.shtml

Please acknowledge use of this data in publications as follows: �The author wishes to thank
Curtis Condon, Ken White, and Al Feng of the Beckman Institute of the University of
Illinois for the bat data and for permission to use it in this paper.�

B.5.1.2 BATMASK

Load a Gabor multiplier symbol for the 'bat' test signal.

Usage:

• c = batmask();

BATMASK() loads a Gabor multiplier with a 0/1 symbol that mask out the main contents
of the 'bat' signal. The symbol �ts a Gabor multiplier with lattice given by a=10 and
M=40.

The mask was created manually using a image processing program. The mask is sym-
metric, such that the result will be real valued if the multiplier is applied to a real valued
signal using a real valued window.

B.5.1.3 DOPPLER

Load the 'doppler' test signal.

Usage:

• s = doppler();

DOPPLER() loads the 'doppler' signal. It is a recording of a train passing close by. The
signal is 157058 samples long

The signal was obtained from http://www.fourmilab.ch/cship/doppler.html

181

B.5.1.4 GREASY

Load the 'greasy' test signal.

Usage:

• s = greasy();

GREASY() loads the 'greasy' signal. It is a recording of a woman pronouncing the word
"greasy".

The signal is 8192 samples long and recorded at 16 khz.

The signal was obtained from Wavelab: http://www-stat.stanford.edu/ wavelab/

References: [71]

B.5.1.5 LINUS

Load the 'linus' test signal.

Usage:

• s = linus();

LINUS() loads the 'linus' signal. It is a recording of Linus Thorvalds pronouncing the
words "Hello. My name is Linus Thorvalds, and I pronounce Linux as Linux".

The signal is 41984 samples long.

B.5.2 Images.

B.5.2.1 CAMERAMAN

Load the 'cameraman' test image

Usage:

• s = cameraman();

CAMERAMAN() loads a 256x256 greyscale image of a cameraman.

The returned matrix s consists of unsigned integers between 0 and 255. In some situations,
converting to double precision by

s=double(cameraman);

is necessary.

182

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. D.
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users' Guide, Third Edition. SIAM, Philadelphia, 1999.

[2] L. Auslander and Y. Meyer. A generalized Poisson summation formula. Appl.
Comput. Harmon. Anal., 3(4):372�376, 1996.

[3] P. Balazs. Regular and Irregular Gabor Multipliers with Application to Psychoacous-
tic Masking. PhD thesis, Fakultät für Mathematik der Universität Wien, Vienna,
june 2005.

[4] P. Balazs, H. G. Feichtinger, M. Hampejs, and G. Kracher. Double preconditioning
for Gabor frames. IEEE Trans. Signal Process., 54(12):4597�4610, December 2006.

[5] P. Balazs, H. G. Feichtinger, M. Hampejs, and G. Kracher. Double preconditioning
for Gabor frames. IEEE Trans. Signal Process., submitted for publication, 2005.

[6] P. Balazs, B. Laback, G. Eckel, and W. A. Deutsch. Perceptional sparsity modelled
by simultaneous masking. preprint, 2007.

[7] M. J. Bastiaans and M. C. Geilen. On the discrete Gabor transform and the discrete
Zak transform. Signal Process., 49(3):151�166, 1996.

[8] J. Benedetto, C. Heil, and D. F. Walnut. Gabor systems and the Balian-Low
theorem. In Feichtinger and Strohmer [35], pages 85�122.

[9] K. Bittner. Error estimates and reproduction of polynomials for biorthogonal local
trigonometric bases. Appl. Comput. Harmon. Anal., 6:75�102, 1999.

[10] K. Bittner. Wilson bases on the interval. In Feichtinger and Strohmer [36], chapter 9,
pages 197�222.

[11] Å. Björck and C. Bowie. An iterative algorithm for computing the best estimate of
an orthogonal matrix. SIAM Jour. Num. Anal., 8(2):358�364, june 1971.

[12] T. Blu and M. Unser. The fractional spline wavelet transform: de�nition end im-
plementation. Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Pro-
ceedings. 2000 IEEE International Conference on, 1:512 �515 vol.1, 2000.

183

[13] T. Blu and M. Unser. A complete family of scaling functions: the (α, τ)-fractional
splines. Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).
2003 IEEE International Conference on, 1:VI�421�4 vol.6, 2003.

[14] H. Bölcskei. Orthogonal frequency division multiplexing based on o�set QAM. In
Feichtinger and Strohmer [36], pages 321�352.

[15] H. Bölcskei, H. G. Feichtinger, K. Gröchenig, and F. Hlawatsch. Discrete-time
Wilson expansions. In Proc. IEEE-SP 1996 Int. Sympos. Time-Frequency Time-
Scale Analysis, june 1996.

[16] H. Bölcskei and F. Hlawatsch. Oversampled Wilson-type cosine modulated �lter
banks with linear phase. In Asilomar Conf. on Signals, Systems, and Computers,
pages 998�1002, nov 1996.

[17] H. Bölcskei and F. Hlawatsch. Discrete Zak transforms, polyphase transforms, and
applications. IEEE Trans. Signal Process., 45(4):851�866, april 1997.

[18] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger. Equivalence of DFT �lter banks
and Gabor expansions. In SPIE 95, Wavelet Applications in Signal and Image
Processing III, volume 2569, part I, San Diego, july 1995.

[19] R. Carmona, W. Hwang, and B. Torrésani. Practical Time-Frequency Analysis:
continuous wavelet and Gabor transforms, with an implementation in S, volume 9
of Wavelet Analysis and its Applications. Academic Press, San Diego, 1998.

[20] R. Carmona, W. Hwang, and B. Torrésani. Multiridge detection and time-frequency
reconstruction. IEEE Trans. Signal Process., 47:480�492, 1999.

[21] O. Christensen. Frames and pseudo-inverses. J. Math. Anal. Appl., 195:401�414,
1995.

[22] O. Christensen. Finite-dimensional approximation of the inverse frame operator. J.
Fourier Anal. Appl., 6(1):79�91, 2000.

[23] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, 2003.

[24] O. Christensen and T. Strohmer. Methods for the approximation of the inverse
(Gabor frame operator. In Feichtinger and Strohmer [36], chapter 8, pages 171�196.

[25] I. Daubechies, S. Ja�ard, and J. Journé. A simple Wilson orthonormal basis with
exponential decay. SIAM J. Math. Anal., 22:554�573, 1991.

[26] I. Daubechies, H. Landau, and Z. Landau. Gabor time-frequency lattices and the
Wexler-Raz identity. J. Fourier Anal. Appl., 1(4):437�498, 95.

[27] J. Dongarra, J. Du Croz, S. Hammarling, and I. Du�. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Software, 16(1):1�17, 1990.

[28] J. S. (ed.). Digital Audio Signal Processing - An Anthology. William Kaufmann,
Inc., 1985.

184

[29] G. Fant. Acoustic Theory of Speech Production. Mouton. The Hague., 1960.

[30] H. G. Feichtinger. On a new Segal algebra. Monatsh. Math., 92(4):269�289, 1981.

[31] H. G. Feichtinger and K. Gröchenig. Gabor frames and time-frequency analysis of
distributions. J. Func. Anal., 146:464�495, 1997.

[32] H. G. Feichtinger, M. Hazewinkel, N. Kaiblinger, E. Matusiak, and M. Neuhauser.
Metaplectic operators on cn. To appear, 2006.

[33] H. G. Feichtinger and W. Kozek. Operator quantization on LCA groups. In Fe-
ichtinger and Strohmer [35], chapter 7, pages 233�266.

[34] H. G. Feichtinger and K. Nowak. A �rst survey of Gabor multipliers. In Feichtinger
and Strohmer [36], chapter 5, pages 99�128.

[35] H. G. Feichtinger and T. Strohmer, editors. Gabor Analysis and Algorithms.
Birkhäuser, Boston, 1998.

[36] H. G. Feichtinger and T. Strohmer, editors. Advances in Gabor Analysis. Birkhäuser,
2003.

[37] H. G. Feichtinger and G. Zimmermann. A Banach space of test functions and Gabor
analysis. In Feichtinger and Strohmer [35], chapter 3, pages 123�170.

[38] P. Flandrin. Time-frequency/time-scale analysis, volume 10 ofWavelet Analysis and
its Applications. Academic Press Inc., San Diego, CA, 1999. With a preface by Yves
Meyer, Translated from the French by Joachim Stöckler.

[39] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Pro-
ceedings of the IEEE, 93(2):216�231, 2005. Special issue on "Program Generation,
Optimization, and Platform Adaptation".

[40] G. H. Golub and C. F. van Loan. Matrix computations, third edition. John Hopkins
University Press, 1996.

[41] K. Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser, 2001.

[42] K. Gröchenig, A. J. E. M. Janssen, N. Kaiblinger, and G. Pfander. Note on b-
splines, wavelet scaling functions, and gabor frames. Information Theory, IEEE
Transactions on, 49(12):3318�3320, 2003.

[43] K. Gröchenig and M. Leinert. Wiener's lemma for twisted convolution and Gabor
frames. J. Amer. Math. Soc., 17(1), 2004.

[44] N. J. Higham. Computing the polar decomposition�with applications. SIAM J.
Sci. Statist. Comput., 7(4):1160�1174, Oct. 1986.

[45] N. J. Higham. A new sqrtm for MATLAB. Numerical Analysis Report No. 336,
Manchester Centre for Computational Mathematics, Manchester, England, Jan.
1999.

185

[46] N. J. Higham and R. S. Schreiber. Fast polar decomposition of an arbitrary matrix.
SIAM J. Sci. Statist. Comput., 11(4):648�655, July 1990.

[47] A. Hurwitz. Einige Eigenschaften der Dirichlet'schen Funktionen F (s) =
∑

(D
n
) 1

ns ,
die bei der Bestimmung der Klassenanzahlen Binärer quadratischer Formen
auftreten. Z. für Math. und Physik, 27:86�101, 1882.

[48] A. J. E. M. Janssen. Duality and biorthogonality for discrete-time Weyl-Heisenberg
frames. Unclassi�ed report, Philips Electronics, 002/94.

[49] A. J. E. M. Janssen. The Zak transform: a signal transform for sampled time-
continuous signals. Philips Journal of Research, 43(1):23�69, 1988.

[50] A. J. E. M. Janssen. Signal analytic proofs of two basic results on lattice expansions.
Appl. Comput. Harmon. Anal., 1(4):350�354, 1994.

[51] A. J. E. M. Janssen. Duality and biorthogonality for Weyl-Heisenberg frames. J.
Fourier Anal. Appl., 1(4):403�436, 1995.

[52] A. J. E. M. Janssen. On rationally oversampled Weyl-Heisenberg frames. Signal
Process., pages 239�245, 1995.

[53] A. J. E. M. Janssen. From continuous to discrete Weyl-Heisenberg frames through
sampling. J. Fourier Anal. Appl., 3(5):583�596, 1997.

[54] A. J. E. M. Janssen. The duality condition for Weyl-Heisenberg frames. In Fe-
ichtinger and Strohmer [35], chapter 1, pages 33�84.

[55] A. J. E. M. Janssen. Analysis of some fast algorithms to compute canonical windows
for Gabor frames. Unpublished, 2002.

[56] A. J. E. M. Janssen. Some iterative algorithms to compute canonical windows for
Gabor frames. In Proceedings of IMS Workshop on Time-Frequency Analysis and
Applications, Singapore, September 2003.

[57] A. J. E. M. Janssen and P. L. Søndergaard. Iterative algorithms to approximate
canonical Gabor windows: Computational aspects. J. Fourier Anal. Appl., pub-
lished online, 2007.

[58] A. J. E. M. Janssen and T. Strohmer. Characterization and computation of canon-
ical tight windows for Gabor frames. J. Fourier Anal. Appl., 8(1):1�28, 2002.

[59] A. J. E. M. Janssen and T. Strohmer. Hyperbolic secants yield Gabor frames. Appl.
Comput. Harmon. Anal., 12(2):259�267, 2002.

[60] B. Jawerth and W. Sweldens. Biorthogonal smooth local trigonometric bases. J.
Fourier Anal. Appl., 2(2):109�133, 1995.

[61] S. Jayant and P. Noll. Digital Coding of Waveforms: Principles and Applications
to Speech and Video. Prentice Hall, 1990.

186

[62] N. Kaiblinger. Approximation of the Fourier transform and the dual Gabor window.
J. Fourier Anal. Appl., 11(1):25�42, 2005.

[63] C. Kenney and A. Laub. On scaling Newton's method for polar decomposition and
the matrix sign function. Proceedings of the 1990 American Control Conference
(IEEE Cat. No.90CH2896-9), pages 2560�4 vol.3, 1990.

[64] Z. Kovarik. Some iterative methods for improving orthonormality. SIAM J. Num.
Anal., 7(3):386�9, 1970.

[65] G. Kutyniok and T. Strohmer. Wilson bases for general time-frequency lattices.
SIAM J. Math. Anal., 37(3):685�711 (electronic), 2005.

[66] S. Lakic. An iterative method for the computation of a matrix inverse square root.
ZAMM Z. Angew. Math. Mech., 75(11):867�874, 1995.

[67] Y.-P. Lin and P. Vaidyanathan. Linear phase cosine modulated maximally dec-
imated �lter banks with perfect reconstruction. IEEE Trans. Signal Process.,
43(11):2525�2539, 1995.

[68] V. Losert. A characterization of the minimal strongly character invariant Segal
algebra. Ann. Inst. Fourier, 30:129�139, 1980.

[69] P. Majdak and P. Balazs. Multiple exponential sweep method for fast measurement
of head related transfer functions. submitted, 2006.

[70] S. Mallat. A wavelet tour of signal processing. Academic Press, San Diego, CA,
1998.

[71] S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE
Trans. Signal Process., 41(12):3397�3415, 1993.

[72] H. S. Malvar. Signal Processing with Lapped Transforms. Artech House Publishers,
1992.

[73] J. Markel and J. A. Gray. Linear Prediction of Speech. Springer-Verlag, Berlin
Heidelberg, 1976.

[74] G. Matz and F. Hlawatsch. Linear Time-Frequency Filters: On-line Algorithms and
Applications, chapter 6 in 'Application in Time-Frequency Signal Processing', pages
205�271. eds. A. Papandreou-Suppappola, Boca Raton (FL): CRC Press, 2002.

[75] D. Mugler, S. Clary, and Y. Wu. Discrete Hermite expansion of digital signals:
applications to ECG signals. Digital Signal Processing Workshop, 2002 and the
2nd Signal Processing Education Workshop. Proceedings of 2002 IEEE 10th, pages
262�267, 2002.

[76] K. A. Okoudjou. Embeddings of some classical Banach spaces into modulation
spaces. Proc. Am. Math. Soc., 132(6), 2004.

[77] A. V. Oppenheim and R. Schafer. Discrete-Time Signal Processing. Oldenbourg, 3
edition, 1999.

187

[78] A. V. Oppenheim and R. W. Schafer. Discrete-time signal processing. Prentice Hall,
Englewood Cli�s, NJ, 1989.

[79] R. S. Orr. Derivation of the �nite discrete Gabor transform by periodization and
sampling. Signal Process., 34(1):85�97, 1993.

[80] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay. The Fractional Fourier Transform.
John Wiley and Sons, 2001.

[81] J. P. Princen and A. B. Bradley. Analysis/synthesis �lter bank design based on time
domain aliasing cancellation. IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-34(5):1153�1161, 1986.

[82] J. P. Princen, A. W. Johnson, and A. B. Bradley. Subband/transform coding us-
ing �lter bank designs based on time domain aliasing cancellation. Proceedings -
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Process-
ing, pages 2161�2164, 1987.

[83] P. Prinz. Calculating the dual Gabor window for general sampling sets. IEEE
Trans. Signal Process., 44(8):2078�2082, 1996.

[84] M. Puckette. Phase-locked vocoder. Applications of Signal Processing to Audio and
Acoustics, 1995., IEEE ASSP Workshop on, pages 222 �225, 1995.

[85] S. Qiu. Discrete Gabor transforms: The Gabor-gram matrix approach. J. Fourier
Anal. Appl., 4(1):1�17, 1998.

[86] S. Qiu and H. G. Feichtinger. Discrete gabor structures and optimal representations.
IEEE Trans. Signal Process., 43(10):2258 �2268, 1995.

[87] K. Rao and P. Yip. Discrete Cosine Transform, Algorithms, Advantages, Applica-
tions. Academic Press, 1990.

[88] A. Ron and Z. Shen. Weyl-Heisenberg frames and Riesz bases in l2(Rd). Duke Math.
J., 89(2):237�282, 1997.

[89] R. Schafer and J. M. (eds). Speech Analysis. IEEE Press, 1979.

[90] G. Schulz. Iterative Berechnung der reziproken Matrix. ZAMM Z. Angew. Math.
Mech., 13:57�59, 1933.

[91] N. Sherif. On the computation of a matrix inverse square root. Computing (Vi-
enna/New York), 46(4):295�305, 1991.

[92] P. L. Søndergaard. Gabor frames by sampling and periodization. Adv. Comput.
Math., published online, 2007.

[93] P. L. Søndergaard. An e�cient algorithm for the discrete Gabor transform using
full length windows. IEEE Signal Process. Letters, submitted for publication, 2007.

[94] P. L. Søndergaard. Symmetric, discrete fractional splines and Gabor systems. Int.
J. Wavelets Multiresolut. Inf. Process., submitted for publication, 2007.

188

[95] K. N. Stevens. Acoustic Phonetics. MIT Press. Cambridge, 1999.

[96] T. Strohmer. Numerical algorithms for discrete Gabor expansions. In Feichtinger
and Strohmer [35], chapter 8, pages 267�294.

[97] T. Strohmer. Approximation of dual Gabor frames, window decay and wireless
communications. Appl. Comput. Harmon. Anal., 11:243�262, 2001.

[98] R. Tolimieri and R. S. Orr. Poisson summation, the ambiguity function, and the
theory of Weyl-Heisenberg systems. J. Fourier Anal. Appl., 1(3):233�247, 1995.

[99] M. Unser, A. Aldroubi, and M. Eden. On the asymptotic convergence of b-spline
wavelets to gabor functions. Information Theory, IEEE Transactions on, 38(22):864
�872, 1992.

[100] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing. i. theory. IEEE
Trans. Signal Process., 41(2):821 �833, 1993.

[101] M. Unser and T. Blu. Fractional splines and wavelets. SIAM Review, 42(1):43�67,
2000.

[102] A. J. van Leest and M. J. Bastiaans. Gabor's discrete signal expansion and
the discrete gabor transform on a non-separable lattice. 2000 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat.
No.00CH37100), pages 101�4 vol.1, 2000.

[103] A. J. van Leest and M. J. Bastiaans. Implementations of non-separable Gabor
schemes. In proceddings of Eusipco 2004, the 12th European Signal Processing Con-
ference, pages 1�4, 2004.

[104] M. Vetterli and J. Kova£evi¢. Wavelets and Subband Coding. Signal Processing
Series. Prentice Hall, Englewood Cli�s, NJ, 1995.

[105] D. F. Walnut. An introduction to wavelet analysis. Birkhäuser, 2002.

[106] T. Werther, Y. Eldar, and N. Subbana. Dual Gabor Frames: Theory and Compu-
tational Aspects. IEEE Trans. Signal Processing, 53(11), 2005.

[107] J. Wexler and S. Raz. Discrete Gabor expansions. Signal Process., 21(3):207�221,
1990.

[108] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimization of
software and the ATLAS project. Technical Report UT-CS-00-448, University of
Tennessee, Knoxville, TN, Sept. 2000.

[109] M. V. Wickerhauser. Adapted wavelet analysis from theory to software. Wellesley-
Cambridge Press, Wellesley, MA, 1994.

[110] B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice-Hall, Inc.,
Englewood Cli�s, New Jersey, 1985.

189

[111] Y. Y. Zeevi and M. Zibulski. Oversampling in the Gabor scheme. IEEE Trans.
Signal Process., 41(8):2679�2687, 1993.

[112] M. Zibulski and Y. Y. Zeevi. Analysis of multiwindow Gabor-type schemes by frame
methods. Appl. Comput. Harmon. Anal., 4(2):188�221, 1997.

190

