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Summary 

 

 

Morganella psychrotolerans - Identification, histamine formation and 
importance for histamine fish poisoning  
 Histamine fish poisoning (HFP) is a worldwide problem, primarily caused by 

consumption of fish. Allergy-like symptoms such as flushing, rash and headache are 

typical symptoms of HFP. The symptoms occur within a range of few minutes to a 

couple of hours after ingestion of fish, containing more than 500 - 1,000 ppm 

histamine. Histamine seems the causative agent in the majority of the reported 

incidents of seafood-borne diseases in many countries. However, good statistics on 

the worldwide frequency of HFP are lacking since HFP is not a notifiable disease in 

many countries. In addition, misdiagnosis of HFP as food-allergy may occur due to 

the similarity in symptoms. The frequency of HFP in Denmark as well as in many 

other countries seems to remain unchanged even though the problem is well 

documented. The enzyme L-histidine decarboxylase, which is responsible for 

histamine formation in seafood, is produced by several species of bacteria primarily 

from the family of Enterobacteriaceae.  

 In the present thesis aspects of HFP such as symptoms, toxicology and 

implicated products are described. The bacterial formation of histamine and the 

factors affecting the formation are likewise described. 

 The overall purpose of the Ph.D. project was to obtain information that can 

assist the process of reducing the frequency of HFP related to ingestion of fresh fish 

and seafood products. During a three-year period, all reported incidents of HFP in 

Denmark were thoroughly investigated. This investigation included analysis of the 

symptoms observed by the patients and recorded using questionnaires, chemical 

characterisation of the seafood products involved, isolation of the dominating 

microflora and identification of the strongly histamine-producing bacteria (HPB).  

 The work has provided significant new information on psychrotolerant HPB 

and their importance for HFP. During 1955-2002, the bacteria responsible for 

histamine formation in relation to incidents of HFP had only been identified in five 

scientific publications. During the present study HPB responsible for histamine 
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formation were identified in five additional incidents. It was demonstrated that 

psychrotolerant HPB might be as important as mesophilic HPB with respect to HFP. 

A new species of Morganella was isolated and identified from seafood involded in 

incidents of HFP. This new species with crucial importance to seafood safety was 

named Morganella psychrotolerans, as it is capable of histamine formation at 0°C.  

 Control and inhibition of growth and the concomitant histamine formation by 

M. psychrotolerans and other strongly psychrotolerant (e.g. Photobacterium 

phosphoreum) or mesophilic (e.g. Morganella morganii) HPB might reduce the 

frequency of HFP. It was shown, through challengetests with inoculated tuna, that a 

modified atmosphere with O2 and CO2 inhibit the growth of M. psychrotolerans and P. 

phosphoreum in fresh tuna. Modified atmosphere packaging might replace the 

traditional vacuum packaging of fresh tuna to increase seafood safety. In cold-

smoked tuna more than 5% water phase salt in combination with at shelf-life of no 

more than 3-4 weeks is suggested to prevent toxic concentrations of histamine by 

psychrotolerant HPB in the product. Finally, a model for prediction of growth and 

histamine formation by M. psychrotolerans was developed. It is the first model for 

histamine formation that includes both the effect of storage conditions (temperature 

and CO2) and product characteristics (pH and NaCl). This model is a first step 

towards a quantitative assessment of consumers exposure to histamine and can be 

used for determination of safe shelf-life and optimisation of seafood products. The 

model may work as a template for similar models for other HPB. The model can be 

used as a decision tool by the seafood industry as well as regulatory authorities. 
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Sammendrag (in Danish) 
 

 

Morganella psychrotolerans – Identifikation, histamin dannelse og betydning 
for histamin forgiftning 
 Histamin forgiftning (HF) er et verdensomspændende problem, der primært 

skyldes indtagelse af fiskeprodukter. Allergilignende symptomer som rødme, udslæt 

og hovedpine er typiske for HF. Disse symptomer opstår fra få minutter og op til et 

par timer efter indtagelse af fiskeprodukter, der indeholder mere end 500-1000 ppm 

histamin. HF er årsag til langt de fleste rapporterede udbrud af fiskebåren sygdom i 

mange lande. Desværre findes der ikke opgørelser der viser hvor omfattende HF er 

på verdensplan, da HF i mange lande ikke skal indberettes. Desuden kan de 

allergilignende symptomer betyde at HF fejldiagnosticeres som fødevareallergi. 

Selvom HF er en velkendt forgiftning, har hyppigheden af HF i Danmark og mange 

andre lande ikke ændret sig væsentligt de seneste årtier. Histamin dannes ved en 

decarboxylering af aminosyren histidin af enzymet histidindecarboxylase. Dette 

enzym dannes af bakterier primært fra Enterobacteriaceae-familien. 

 I denne afhandling er symptomerne, toksikologien og de involverede 

produkter ved HF beskrevet. Desuden beskrives den bakterielle dannelse af histamin 

og de faktorer der påvirker histamindannelsen.     

 Formålet med dette ph.d. projekt har været at skabe viden der kan medvirke 

til en reducering i antallet af fiskebåren HF. Gennem en treårig periode blev alle 

rapporterede udbrud af HF i Danmark undersøgt. Ved udbrud af HF udfyldte de 

involverede personer et spørgeskema der omhandlende de oplevede symptomer. 

Eventuelle rester fra det pågældende måltid blev indsamlet og isolering af den 

dominerende mikroflora og identifikation af de kraftigt histaminproducerende 

bakterier (HPB) blev udført. Desuden blev der foretaget en kemisk karakterisering af 

produkter. 

 Projektet har skabt ny og betydningsfuld viden om kuldetolerante HPB og 

deres betydning for HF. I den videnskabelige litteratur fra perioden 1955-2002 har 

det kun været muligt at finde fem studier, omhandlende identifikation af de HB der 

har forårsaget HF. Det nærværende projekt har bidraget med yderligere fem. Det er 
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vist at kuldetolerante HPB kan være lige så betydningsfulde som mesofile HPB med 

hensyn til HF. En ny art af Morganella blev isoleret fra fersk og kold-røget tun 

involveret i udbrud af HF. Den nye art blev navngivet Morganella psychrotolerans, da 

den er i stand til at vokse og danne histamin ved 0°C. Identifikation af M. 

psychrotolerans kan vise sig at være vigtig i forhold til sikkerheden af fisk og 

fiskeprodukter. 

 Kontrol af vækst og histamindannelse for M. psychrotolerans og andre 

kuldetolerante bakterier (f.eks. Photobacterium phosphoreum) eller mesofile HB 

(f.eks. Morganella morganii) kan nedsætte hyppigheden af HF. Det er vist, at 

væksten og dermed histamindannelsen af både M. psychrotolerans og P. 

phosphoreum i fersk tun hæmmes kraftigt ved anvendelse at modificeret atmosfære 

pakning med O2 og CO2 i forhold til vakuum pakning. For at øge 

fødevaresikkerheden kan den traditionelle vakuum pakning erstattes med modificeret 

atmosfære pakning. For at hindre dannelse af histamin i toksiske koncentrationer i 

produkter som kold-røget tun er det foreslået, at holdbarheden ikke er længere end 

3-4 uger i produkter med 5% salt i vandfasen. 

 I afhandlingen beskrives desuden udviklingen af en model til forudsigelse af 

vækst og histamindannelse af M. psychrotolerans. Det er den første model, der 

inkludere effekten af både lagringsbetingelser (temperatur og CO2) samt 

produktkarakteristika (pH og salt). Modellen er det første skridt imod en kvantitativ 

vurdering af, hvilke mængder histamin forbrugerne udsættes for og kan benyttes som 

skabelon ved udvikling af tilsvarende modeller for andre HB. 

Produktionsvirksomheder og tilsynsmyndigheder kan f.eks. anvende modellen til 

fastsættelse af holdbarheder og optimering af fiskeprodukter. 
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1. Introduction 
 

 

 Authorities in Denmark as well as in many other countries recommend that 

each person eat fish and seafood products at least twice a week or 200-300g on 

weekly basis. In Denmark and other developed regions, these recommendations are 

based primarily on the nutritional and health promoting effects of seafood (DVFA 

2003; USDA 2005; EFSA 2005). However, several disadvantages such as dioxin and 

dioxin-like polychlorinated biphenyls (PCB’s), accumulation of mercury (Wilson 2004; 

Anonymous 2004) and risk of diseases related to bacteria can be coupled to the 

consumption of fresh fish and seafood products (Huss et al. 2004). When authorities 

encourage to an increased consumption of fish, it is, at the same time, important to 

reduce health risks associated with these products. Microorganisms and viruses 

cause most diseases related to fish and seafood products. Listeriosis and botulism 

are among the most fatal diseases while, diseases caused by Vibrio spp., 

Salmonella, Campylobacter and viruses are less critical but much more frequent 

(Huss et al. 2004). Several microorganisms can form histamine, which is the 

causative agent in most outbreaks of reported seafood borne diseases in regions 

where statistics on this disease are performed (Todd 1997; Gillespie et al. 2001; 

Huss et al. 2004; CSPI 2006). However, in many countries histamine fish poisoning 

(HFP) is not a notifiable disease and they do not record and compile statistics on 

HFP. Consequently, HFP might be a more significant problem than actually seen in 

available statistics. The overall objective of this Ph.D. project has been to obtain 

information that can assist the process of reducing the frequency of HFP connected 

to ingestion of fresh fish and seafood products.  

 To reduce the formation of histamine in seafood an understanding of the 

mechanisms leading to its formation is central. In brief, endogenous histamine in 

small amounts is present in human blood and has important physiological effects. In 

addition, histamine is a bacterial metabolite formed by an enzymatic reaction from 

the amino acid histidine (Figure 1.1). When histamine is ingested in high 

concentrations (above 500-1,000 ppm) allergy-like symptoms and diseases occur. 

Histamine formation in concentrations high enough to cause disease is a problem in 
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certain fish species containing high concentrations of free histidine in the muscle 

tissue (Taylor 1986; Shalaby 1996; Lehane and Olley 2000; Huss et al. 2004).  

O

NH2

N

N
H

OH

NH2

N

N
H

+ CO2

Histidine Histamine

Histidine decarboxylase

 
Figure 1.1 Decarboxylation of histidine into 
histamine by the enzyme L-histidine 
decarboxylase (EC 4.1.1.22). 

 

 It is well established that the enzyme (histidine decarboxylase, EC 4.1.1.22) 

involved in histamine formation, is produced by several species of mesophilic 

Enterobacteriaceae. Recently, also psychrotolerant bacteria have been associated 

with outbreaks of HFP (Kanki et al. 2004; Paper 1; Paper 2). Previously, numerous 

studies have been performed with mesophilic bacteria at elevated temperatures and 

it has been shown that at temperatures below 7-10°C these species do not produce 

histamine in toxic concentration since their growth is reduced significantly (Taylor 

1986; Lehane and Olley 2000).  Thus, prior to this Ph.D. project it was generally 

accepted that fish and seafood products involved in HFP had been exposed to 

elevated temperatures (see e.g. FDA, (2001c) and Kim et al., (2004)). However, with 

an improved knowledge on the importance and technology of keeping the cool chain 

intact during transport and storage it is surprising that the numbers of HFP have not 

decreased (Paper 5). Consequently, it seems appropriate and necessary to change 

the attention from being exclusively on the mesophilic bacteria, to include the 

psychrotolerant histamine-producing bacteria (HPB) as well. Identification of a new 

psychrotolerant species of Morganella (Paper 3) has not only been crucial to this 

thesis but also added a new perspective to the understanding of HFP. 

Phorobacterium phosphoreum – another psychrotolerant HPB - is widely known for 

being the specific spoilage bacterium in fresh fish packed in modified atmosphere 

(Dalgaard 1995b). Recently, it has been recognised that histamine production by this 

bacterium can cause HFP (Kanki et al. 2004; Paper 1; Paper 2). However, this thesis 

mainly concerns M. psychrotolerans, therefore P. phosphoreum and the mesophilic 

group of histamine-producing bacteria are just briefly mentioned where appropriate 

even though their importance regarding outbreaks of HFP is recognised.  
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 If the fish industry was able to predict histamine formation, they could state 

safe shelf-life for their fresh fish and seafood products and thereby minimise the risk 

of HFP and the economic losses that often accompanies outbreaks of HFP. A 

predictive model for histamine production that takes into account the effect of 

temperature, salt concentration and composition of the surrounding atmosphere 

could assist the industry in product optimisation. Predictive microbiology has been 

known for decades and this systematic accumulation and storage of knowledge can 

help manage food safety issues pro-actively (McMeekin and Ross 2002). Previously, 

so-called kinetic models that predict growth and metabolite (trimethylamine) 

formation in fresh fish has been suggested for H2S producing Shewanella (Dalgaard 

1995a; Dalgaard 2002). Gardini et al. (2001) developed a model for formation of the 

biogenic amines tyramine and 2-phenylethylamin by Enterococcus faecalis in milk. 

However, the use of predictive microbiology within the group of HPB has been 

limited. It is proclaimed, that it is not possible to predict histamine formation since it is 

unlikely to follow a growth curve and because metabolism of histamine by 

histaminase may be simultaneously (Lehane and Olley 2000). Torres et al. (2002) 

have in spite of this statement developed a model for histamine formation by the 

mesophilic Morganella morganii, in Chilean mackerel. The model is valid in a 

temperature range from 10-30°C. However the use of this model is rather restrictive 

since it is developed to predict a maximum concentration of 200 ppm histamine, 

whereas fish and seafood products causing HFP often contain more than 500-1,000 

ppm (Paper 5). Acknowledging that the prediction of histamine formation in seafood 

is not an easy task the concept were tested and mathematical models for prediction 

of growth and histamine formation of M. psychrotolerans were developed (Paper 4). 

The effect of temperature, concentration of CO2, aw and pH is included in these 

models since they were the most obvious parameters influencing the formation of 

histamine.  

 In the present thesis, Chapter 2 concerns histamine fish poisoning, the 

symptoms and the products involved and summarises the current knowledge on 

histamine and other biogenic amines including the toxicology and detection. Chapter 

3 reviews the present knowledge on HPB and the identification of Morganella 

psychrotolerans. In Chapter 4, the parameters affecting the formation of histamine 

are summarised leading to chapter 5, which describes the process of modelling the 

growth and histamine formation by M. psychrotolerans. The use of the developed 
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model is specified in chapter 6. Finally, the conclusions are presented in the last 

chapter, which also outlines the perspectives of the results obtained in the present 

thesis. 
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2. Histamine fish poisoning 
 

 

 Histamine poisoning is an intoxication caused by consumption of food with a 

high concentration of histamine. As this chapter will elucidate, seafood, especially 

finfish is the primary cause of histamine posioning. Only a few publications of 

histamine poisoning caused by foods other than seafood are available (Table 2.1). 

Thus, it seems as if histamine poisoning caused by food products other than seafood 

is insignificant. Consequently, the present thesis will be focused mainly on finfish and 

finfish products. As fish is the primary cause, the disease is often called histamine 

fish poisoning (HFP), a term which also will be used in the present thesis.  

 
Table 2.1 Histamine poisoning related to products other than seafood. 

Product 
Histamine 

(ppm) Country Year Cases References 
Gouda cheese 850 Netherlands 1967 1 Stratton et al. (1991); Self et al. (1999) 
Sauerkraut 200 Germany 1971 1 Mayer and Pause (1972) 
Swiss cheese > 1,000 USA 1976 38 Stratton et al. (1991) 
Swiss cheese > 1,000 USA 1976 1 Stratton et al. (1991) 
Swiss cheese > 1,000 USA 1980 6 Taylor et al. (1982) 
Gruyere cheese 300 France 1980-1983 4 Stratton et al. (1991)   
 

 Taylor (1986) did an excellent review on the toxicological and clinical aspects 

of HFP where previously publications on the topic were summarised. The work was 

followed by several reviews on the occurrence, formation, toxicology and detection of 

histamine (e.g. ten Brink et al. (1990); Stratton and Taylor (1991); Haláz et al. (1994); 

Bardocz (1995); Shalaby (1996) and Silla Santos (1996)). In 2000, Lehane and Olley 

published an extensive review of HFP in a risk assessment framework and recently 

Mavoratis and Quantick (2002a) added another review on HFP while Glória (2006) 

elaborated on bioactive amines, their physiological importance, metabolism, 

toxicological aspects and their occurrence in food. Many unanswered questions 

concerning the aetiology are repeated in these reviews, indicating that for decades, 

the area of HFP has been without significant progress. 
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 Instead of HFP, some authors use the term scombroid fish poisoning that 

refers to fish from the families Scombridae (mackerel, tuna and bonito) and 

Scomberesocidae (saury) which contain high concentrations of histidine in the 

muscle tissue. However, non-scombroid fish (i.e. sardines and mahi-mahi) have been 

associated with this disease. Thus, the term scombroid fish poisoning seems 

inappropriate (Taylor 1986).  

 The issue of whether histamine is indeed the causative agent of HFP is still a 

matter of controversy, as several opposing arguments have been presented (see 

Chapter 2.4.1). However, it seems that histamine plays an important role, main or 

complementary, in the development of symptoms after ingestion of seafood 

containing more than 500-1,000 ppm histamine (Table 2.2).  

 
Table 2.2 Overview of outbreaks (n=138) and cases (n=1749) of histamine fish poisoning as a 
function of the concentration of histamine (ppm) in different seafoods (Paper 5).  

Outbreaks Cases Seafood Histamine 
(ppm) Number % Number %  

> 5,000 18 13 157 9 Escolar, kahawai, kingfish, marlin, saury, tuna, yellowfin 
tuna 

1,000 – 5,000 62 45 897 51 Amberjack, anchovies, bluefish, cape yellowtail, castor oil 
fish/escolar, kahawai, mackerel, mahi-mahi, marlin, 
pilchard, red tuna, sailfish, sardines, swordfish, tuna 

500 – 1,000 24 17 518 30 Anchovies, garfish, kahawai, mahi-mahi, mackerel, marlin, 
sardines, tuna 

< 500 34 25 177 10 Anchovies, bonito, escolar, mackerel, mahi-mahi, pilchard, 
red tuna, sardines, skipjack, salmon, tuna 

 

An outbreak of HFP is defined as two or more cases (one case = one diseased 

individual) linked by a common exposure, and showing typical symptoms such as; 

flushing, rash and headace (Table 2.3 and Table 2.4). The number of cases per 

outbreak of HFP is usually less than ten and often, single cases are observed (Figure 
2.1, Table 2.3 and Table 2.4). Thus, in the present thesis, individual cases are 

included in the statistics with the same weight as outbreaks. The term incident is 

used, when both individual cases and outbreaks are included in figures and tables. 
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Figure 2.1 Frequency (%) of the number of 
diseased people observed per incident 
(n=139). Incidents include both outbreaks and 
individual cases. Data obtained from Emborg 
and Dalgaard (2007).  

   

 

2.1 Symptoms of histamine fish poisoning 

 Recognition and correct diagnosis of HFP by the health care personnel is 

important to ensure that the correct treatment is given and to obtain reliable statistics 

about the occurrence of HFP. Knowledge and awareness of symptoms and their 

duration can help determine the diagnosis. HFP is considered a mild to moderate 

form of food poisoning with allergy-like symptoms. Case studies have shown that 

HFP symptoms begin within two minutes (meaning before the meal is finished) to 

within two hours after ingestion of the toxic food. For the majority of the incidents, the 

symptoms are relatively mild and resolve within a few hours (see references in Table 

2.3 and Table 2.4). These observations were supported in the present study. The 

condition is rarely life-threatening and antihistamines are usually the only drug 

necessary for treatment and many cases are not treated at all (Taylor 1986).  

 Most HFP symptoms are easy to recognise. They can be cutaneous, 

gastrointestinal or neurological (Table 2.3 and Table 2.4). In addition, difficultly 

recognisable symptoms like hypotension occur but are typically not reported in case 

studies. It is difficult to compare observations of symptoms from different studies. 
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This is partly due to a lack of conformity in the vocabulary/questionnaires used when 

symptoms are recorded. In some studies, the symptoms observed within selected 

incidents are reported (Table 2.3). In others, the percentage of patients with specific 

symptoms in an outbreak is reported (Table 2.4). Symptoms vary little between 

outbreaks, eventhough different symptoms are observed between patients involved 

in the same outbreak (Arnold and Brown 1978). A relation between the symptoms of 

HFP and the concentration of histamine in the seafood is sometimes seen (Arnold 

and Brown 1978; Bartholomew et al. 1987; Feldman et al. 2005). The durations of 

the illness may be a function of the dose of exposure or the susceptibility of the 

individual patient (Taylor et al. 1989) but data on this are limited.  

  
Table 2.3 Typical symptoms observed in relation to histamine fish poisoning and reported as 
percentage of incidents where the symptom in question was experienced. 
 % of incidents 
 DKa Finlandb UKc Japand 

Number of incidents 15 17 94 14 
Period 2004-2006 1975-1994 1976-1986  1951-1954 
Cutaneous:         
   Rash (bright red skin/urticaria) 73 18 48 36 
Gastrointestinal:         
   Nausea  33 53 29 21 
   Vomiting 27 35 32 50 
   Diarrhoea 53 29 48 36 
   Cramps (Stomach pain) 20 12 18 - 
Neurological:         
   Headache 20 35 39 71 
   Palpitation       27 18 3 14 
   Flushing  73 65 40 79 
   Oral blistering/burning/peppery taste/tingling 33 18 27 - 
   Itching 13 6 - 7 
Others:         
   Sweating 13 18 40 7 
   Swelling of the tongue 13 35 3 - 
   Dizziness  20 6 7 7 
   Tight chest  7 - 1 - 
   Respiratory distress 13 - - - 
   Facial swelling 13 - 3 - 
   Fever 13 6 - - 
   Chills - - - 36 
   Shaking and shivering - - 2 - 
   Throat swelling - 12 - - 
   Stiffness of muscles  - 6 - - 

a Emborg et al. (2006)  
b Maijala et al. (1996)  
c Bartholomew et al. (1987)  
d Arnold and Brown (1978) 
 



 

 

Table 2.4 Typical symptoms observed in relation to cases of histamine fish poisoning and reported as the percentage of 
patients experiencing the symptom in question. (Continued on next page.) 
 % of cases 
 Australia a Australia b France c South Africa d Japan e Switzerland f 

Number of cases 7 9 20 22 12 31 
Period 1990-1991 2001 1998 1990 1953 1972 
Cutaneous:             
   Rash (bright red skin/urticaria) 100 44 30 82 - 87 
Gastrointestinal:             
   Nausea  29 56 30 46 - 26 
   Vomiting 14 - 5 - 8 - 
   Diarrhoea - 56 90 77 0 32 
   Cramps (Stomach pain) - 44 30 - 0 - 
Neurological:             
   Headache 43 89 45 46 100 45 
   Palpitation       71 89 10 64 100 29 
   Flushing  71 87 - - 100 - 
   Oral blistering/burning/peppery taste/tingling 14 - - 27 - - 
   Itching - - - 32 - - 
Others:             
   Sweating 71 - - - - - 
   Swelling of the tongue - - - - - - 
   Dizziness  14 - 10 - 92 - 
   Tight chest  - - - - - 3 
   Respiratory distress -  - 23 - - 
   Facial swelling - - 20 - - - 
   Fever - 33 - - 8 6 
   Chills - - - - - - 
   Shaking and shivering - - - - - - 
   Throat swelling - 11 - - - - 
   Stiffness of muscles  - - - - - - 

a  Smart (1992) 
b  Leask et al. (2004) 
c  Boutin et al. (1998) 
d  Müller et al. (1992) 
e  Kawabata et al. (1955b) 
f   Marie et al. (1992)  



 

    

 

Table 2.4 (Continued)  
 % cases 

 USA g USA h USA i Taiwan j Taiwan k Taiwan k Taiwan l 

Number of cases 95 15-17 42 115 4 48 94 
Period 1973 1980 2003 1986 1996 1996 1997 
Cutaneous:               
   Rash (bright red skin/urticaria) 32 94 24 - 100 17 95 
Gastrointestinal:               
   Nausea  86 82 48 37 50 31 17 
   Vomiting 27 53 19 - - 6 17 
   Diarrhoea 55 63 41 13 25 48 3 
   Cramps (Stomach pain) 71 41 31 - - 29 17 
Neurological:               
   Headache 44 63 67 51 75 40 4 
   Palpitation       - - 57 30 50 21 - 
   Flushing  46 65 62 62 - - - 
   Oral blistering/burning/peppery taste/tingling 63 100 24 - - 4 - 
   Itching - - 12 - - - - 
Others:               
   Sweating - - 33 - 100 46 - 
   Swelling of the tongue - 24 14 - - 13 - 
   Dizziness  - 24 48 78 100 58 4 
   Tight chest  - - - - - 19 - 
   Respiratory distress - - 19 - - - - 
   Facial swelling - - - - - 13 - 
   Fever - - - 24 100 - - 
   Chills - - - - - 6 - 
   Shaking and shivering - - - - - - - 
   Throat swelling - - - - - - - 
   Stiffness of muscles  - - - - - - - 
g Merson et al. (1974); 232 cases of which 95 were interviewed. 
h Russell and Maretic (1986)  
i   Feldman et al. (2005) 
j  Kow-Tong and Malison (1987) 

k  Wu et al. (1997)  
l  Wu and Chen (2003)  
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 The diagnosis of HFP should be based on the rapid onset of one or more typical 

symptoms and history of no previous allergies linked to the ingested food (Taylor 1986; 

Lehane and Olley 2000). It is, however, important that an international agreement on 

which symptoms are considered as typical is established. A typical progress of HFP can 

be as follows: At first, a flushing of the face and neck, accompanied by a feeling of heat 

and general discomfort. Often this is followed by an intense throbbing headache (Glória 

2006). These symptoms were also among the most reported in relation to the present 

study (Table 2.3; Paper 5).  

 There seem to be no comprehensive studies evaluating if HFP symptoms differ 

between women and men. Data from Ijomah et al. (1991) and van Gelderen et al. 

(1992) suggest women may be more sensitive to HFP than men, but this has not been 

confirmed by outbreak statistics. Likewise, there is no foundation in the statistics to 

believe that younger and elderly people should be more sensitive than mid-age adults. 

Nevertheless, it is unusual that all individuals develop HFP symptoms even after 

comsumption of seafood with very high concentrations of histamine (Table 2.5; Table 

2.6 and Table 2.7). Clinical studies are needed to determine if any susceptible 

populations’ categories exist. 

 
Table 2.5 Development of histamine fish poisoning after ingestion of seafood with high concentration 
of histamine. The data shown are reported incidents where the concentration of histamine, the 
number of patients and persons at risk were provided. 

Number of people 
Country Year Consuming 

product 
Developing HFP 
symptoms (%)a 

Histamine 
in product 

(ppm) 
Product References 

France 1941 28 22 (79) 1,000-5,000 Tuna Legroux et al. (1946) 

Japan 1953 850 85 (10) 980 Seasoned 
mackerel de las Rivas et al. (2006b) 

Japan 1953 11 11 (100) 5,220 Dried saury Kawabata et al. (1955b) 
Japan 1954 400 90 (23) 970-1,070 Dried saury Kawabata et al. (1955a) 
Japan 1995 111 50 (45) 1,920-1,940 Tuna Kawabata et al. (1955a) 
USA 1968 9 8 (89) 4,255 Tuna Schachner and Fodor (1968) 
USA 1985 26 5 (19) 2,500 Bluefish Etkind et al. (1987) 
Japan 1998 40 21 (53) 400-7,300 Escolar Kan et al. (2000) 
USA 2003 56 42 (75) 2,000-3,800 Escolar Feldman et al. (2005) 
Denmark 2003 16 8 (50) 7,100-9,100 Tuna Paper 1 
a Attack rate calculated as: cases * 100 / persons at risk. 

  

 HFP is often mistaken for seafood allergy. It is, however, easy to distinguish 

between the two diseases. Symptoms experienced by several individuals (Table 2.5; 

Table 2.6 and Table 2.7) having no previous history of allergy combined with the rapid 
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onset after ingestion of fish or seafood products with high concentrations of histidine, 

are typical symptoms of HFP. Finally, the detection of histamine in elevated 

concentrations in the food remnants can confirm the diagnosis (Taylor et al. 1984; 

Taylor 1986; ten Brink et al. 1990; Stratton and Taylor 1991). 

 

2.2 Occurrence of histamine fish poisoning 

 HFP is a worldwide health issue (Table 2.3 and Table 2.4) and in several 

countries, e.g. USA, Canada, England and Wales, outbreaks of HFP constitute the 

majority of seafoodborne diseases (Todd 1997; DeWaal et al. 2006; CSPI 2006; 

Hughes et al. 2007). The occurrence of HFP is most lilely underreported. This 

underreporting may be due to misdiagnosis (mistaken for seafood allergy), lack of 

mandatory reporting in several countries (Paper 5) and the mild nature of the disease.  

 

2.2.1 Denmark 

 Related to the present Ph.D.-study, all reported incidents of HFP caused by 

seafood in Denmark during a three-year period, were analysed thoroughly. The product 

involved were characterised according to pH, salt and biogenic amines. Furthermore 

isolation of the dominating microflora present on remnants or so-called parallel samples 

were performed and the strongly histamine-producing bacteria (HPB) were identified 

(Table 2.6, Emborg et al. (2006)). This work was possible through collaboration 

between the Danish Institute for Fisheries Research and the Danish Veterinary and 

Food Administration (DVFA). Going through the official records of outbreaks of 

foodborne diseases from 1997 to 2003 (Table 2.7) and comparing these statistics with 

the information collected during the present study it seems the frequency of HFP in 

Denmark has been rather stable during the last ten years.  

 In Denmark, tuna, escolar and garfish primarily cause HFP (Table 2.6 and 

Table 2.7). Investigations of the official records also revealed that at least one outbreak 

of HFP reported to and registered by the Danish Veterinary and Food Administration in 

2001 was not included in the official report (DVFA 2001b). This outbreak involved 20-25 

children in a kindergarten and 4-5 adult personnel all served fried garfish for lunch. 

Analysis of the remnants showed a histamine concentration of 1,200 ppm (Kjølby 2005). 



 

   

 

 

 
Table 2.6 Characteristics of the outbreaks of HFP in Denmark during 2004-2006. Data adapted from Emborg et al (2006) 

Biogenic amines (ppm) 
Year Products Cases Persons 

at risk 

Attack 
rate 
(%)a Histb Cadb Putb Tyrb 

Bacteria responsible for histamine 
formation 

2004 Cold-smoked tuna 2 2 100 4,550 213 20 140 Photobacterium phosphoreum 

2004 Cold-smoked tuna 1 12 8 1,973 132 6 88 Morganella psychrotolerans 

2004 Tuna sandwich, canned tunac 2 2 100 < 5 < 5 < 5 14 No strongly histamine-producing isolates 
2004 Escolarc  7 - - < 5 < 5 < 5 < 5 No isolates 
2004 Cooked escolar 4 < 50 > 8 4,090 257 < 5 17 No isolates 
2004 Tuna heated in flexible film 8 - - 6,432 286 40 < 5 Morganella morganii subsp. morganii  
2004 Tuna (frozen and cooked)c 1 2 50 < 5 < 5 < 5 < 5 No isolates 
2004 Cold-smoked tuna 10 < 65 > 15 914 68 < 5 23 No isolates 
2004 Swordfish in saffron sauce 4 - - 280-2,415 153 < 5 < 5 No isolates 
2005 Escolar, marinated 7 15 47 5,810 321 < 5 < 5 No strongly histamine-producing isolates 
2005 Tuna 2 - - 96-1,738 < 5 - 112 < 5 < 5 No strongly histamine-producing isolates 
2005 Smoked escolar 5 7 71 1,705 224 < 5 < 5 No strongly histamine-producing isolates 
2005 Smoked tuna 6 < 68 >9 220 < 5 < 5 < 5 No isolates 
2006 Canned tuna 1 1 100 335 55 13 39 No isolates 
2006 Fresh tuna 2 2 100 1,050-1,750 80-110 7-8 54-56 No strongly histamine-producing isolates 
2006 Fresh tuna 1 1 100 100-1,100 6-60 < 5 20-70 Photobacterium phosphoreum 
a Calculated as: cases * 100 / persons at risk. 
b Histamine (Hist), cadaverine (Cad), putrescine (Put) and tyramine (Tyr). 
c For these incidences, no part of the product actually consumed was left for analysis and data was obtained by analysing a so-called parallel sample from the 
same batch/processor.  
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Table 2.7 Official records of outbreaks of histamine fish poisoning in Denmark (1997-
2003)a. 

Year Cases Persons at 
risk 

Attack rate 
(%)b Product Histamine 

(ppm) 
1997 25 - - Garfish High 
 40 80 50 Garfish Low 
 3 - - Tuna 2,000 

1998 2 2 100 Tuna 400-1,000 
 6 12 50 Tuna 1,500 
 3 3 100 Tuna <50 
 4 4 100 Tuna 1,000 

1999 8 50 16 Tuna 2,000 
 5 12 42 Escolar 1,200 

2000 3 3 100 Swordfish 750-900 

2001 3 4 75 Tuna 1,000 

2002 No outbreaks were directly related to histamine. However, in three outbreaks 
with nausea, vomiting, abdominal cramps and diarrhoea, different tuna 
products were among the ingested food.  

2003 2 4 50 Tuna 3,000 
 7 < 240 > 2 Blue marlin - 
 8 16 50 Tuna 3,000 
 2 2 100 Tuna High 
 2 < 100 > 2 Escolar - 
a Data obtained from (http://www.foedevarestyrelsen.dk/fdir/publications/1998300/Rapport1.asp  (in 
Danish) Accessed 11.07.2007; http://www.foedevarestyrelsen.dk/FDir/Publications/1999006/Rapport.htm 
(in Danish) Accessed 11.07.2007; DVFA 2000; DVFA 2001a; DVFA 2001b; DVFA 2004; DVFA 2005) 
b Calculated as: cases * 100 / persons at risk. 
 

2.2.2 Worldwide 

 In Paper 5, information about the occurrence of HFP worldwide was collected. It 

is important to stress that the data shown in Paper 5 does not represent a highly 

accurate picture of the incidents and cases of HFP. This is, as mentioned earlier, due to 

underreporting of HFP for several reasons. Comparison of the collected data from 

regions with different population size and for different recording periods was performed 

by the use of mean annual rate of HFP. Unfortunately HFP data for most of the heavily 

seafood consuming countries in the world are not avaiable. These countries include 

Tokelau (200 kg consumption of live weight of fish/year/person) and Niue (100 kg) in 

Oceania, Maldives (187 kg), Iceland (92 kg), Faeroe Island (87 kg), Saint Helena in 

Africa (85 kg) and Greenland (85 kg) (Laurenti 2004). Nevertheless, the collected data 

suggest the occurrence of HFP is highly variable. Denmark is among the contries with 

most incidents of HFP, even though the consumption of fish is moderat. There is, 

however, no clear relationship between the total amount of fish consumed and the 

frequency of HFP (Paper 5). There might be a relation between HFP and the type of fish 
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consumed. Fish species rich in free histidine (tuna, herring and mackerel) constitute 

~52.5% of the fresh fish eaten in Denmark compared to 21.3% in Norway (herring and 

mackerel) (Welch et al. 2002). In Norway where cod and salmon is prefeered, 

occurrence of HFP is very low (Paper 5). The consumption of tuna and 13 other fishes 

being only ~9% of the total fish consumption. In Denmark, the consumption of tuna 

alone constitutes 6.8% (Welch et al. 2002).   

 

2.3 Implicated seafood products 

 The large majority of histamine fish poisoning cases (>90%) are caused by 

seafood with a histamine concentration of more than 500 ppm (Table 2.2). It is 

interesting, however, that for 82% of the cases with a histamine concentration of less 

than 500 ppm, the histamine analyses were conducted on a fish from the same batch 

and not on the actual fish implicated in HFP. In England and Wales during 1987-1996 it 

was similarly observed that a very limited occurrence of HFP was due to seafood with 

low concentrations of histamine (Scoging 1998).  Scoging (1998) found that 8% of the 

HFP incidents resulted from seafood with less than 200 ppm histamine, 13% from 

seafood with 200-1,000 ppm and 79% from seafood with more than 1,000 ppm 

histamine. 

 When no remnants from meals that cause outbreaks of HFP are available for 

analysis of histamine, fish from the same catch or products from the same batch are 

usually studied. Bartholomew et al. (1987) showed that in 47% of the fish from the same 

batch as those implicated in outbreaks, histamine concentrations were above 50 ppm 

histamine. They concluded that it is reasonable to analyse these fish when no other 

material is available. However, the concentration of histamine in spoiled fish can vary 

markedly between different specimen from a single batch as well as within a single fish 

(Table 2.8 and Paper 5). With this variability in mind, it is most important to distinguish 

between samples from seafood that actually caused HFP and other samples.  

  With respect to seafoods implicated in HFP it is interesting to note how this 

may change over time. In England and Wales for example, smoked mackerel caused 

90% of 55 incidents during 1976-1979 whereas vacuum packed tuna steaks caused 

more than 50% of all the reported outbreaks in 1996 (Gilbert et al. 1980; Scoging 1998). 

 



 

 

 
Table 2.8 Examples of variability in histamine concentrations between specimen from a single batch as well as within a single fish.  

Portions and histamine concentrations Fish species Weight 
(kg) Storage Portion 1 Histamine (ppm) Portion 2 Histamine (ppm) References 

Examples of seafood with considerable variability in histamine concentrations 

Dried saury -a - Piece of fillet selected at 
random 2,700 Piece of fillet selected 

at random 200 Kawabata et al. (1955a) 

Yellowfin tunab - - Fillet portion close to 
ventral cavity 4,380 ± 2,650 Fillet portion close to 

dorsal fin 303 ± 180 Lerke et al. (1978) 

Skipjack 1.8-2.3 24 hours 
at 26.7°C 

Fillet portion over ventral 
cavity 70-1,020 Fillet portion behind 

ventral cavity 16 - 45 Frank et al. (1981) 

Smoked mackerelb - - Fish-to-fish variation 960-1,750 Fish-to-fish variation 470 - 2,880 Ijomah et al. (1991) 

Tuna 6 8°C Not in tail  > 1,000 Tail Below detection Bédry et al. (2000) 

Garfish 0.5 0°C Piece of fillet selected at 
random  1,088 Piece of fillet selected 

at random 32 Dalgaard et al. (2006) 

Garfish 0.5 5°C Piece of fillet selected at 
random 2,439 Piece of fillet selected 

at random 358 Dalgaard et al. (2006) 

Examples of seafood with little variability in histamine concentrations 

Spanish mackerel - 275 hours 
at 0°C Anterior 4 Posterior 5 Middlebrooks et al. (1988) 

Spanish mackerel - 90 hours 
at 15°C Anterior 315 Posterior 310 Middlebrooks et al. (1988) 

Spanish mackerel - 32 hours 
at 30°C Anterior 137 Posterior 67 Middlebrooks et al. (1988) 

Tuna 50 15 days  
at 0°C Anterior 450 Posterior 220 López-Sabater et al. (1988) 

Tuna 50 5 days 
at 8°C Anterior 2,000 Posterior 2,200 López-Sabater et al. (1988) 

Tuna 50 36 hours 
at 20°C Anterior 430 Posterior 920 López-Sabater et al. (1988) 

a Not reported 
b Sample from seafood implicated in an outbreak of histamine fish poisoning.  



   2. Histamine fish poisoning 

  17  

 Tuna, escolar, kahawai and marlin are reported frequently to cause HFP. These 

fish naturally contain high concentrations of free histidine in their muscle tissue (Hibiki 

and Simidu 1959; Suyama and Yoshizaw 1973; Fletcher et al. 1995; Kan et al. 2000; 

Emborg et al. 2006; Paper 1). This free histidine can be decarboxylated by bacteria as 

discussed later (Chapter 3 and 4) and toxic concentrations can be formed. During 2004-

2006 tuna was implicated in 69% of the Danish incidents, escolar in 25% and a single 

outbreak was caused by swordfish (Table 2.6).  

 Salmon contain a relatively low natural concentration (130-1090 ppm) of free 

histidine (Shirai et al. 1983; Espe et al. 1993; Emborg et al. 2002), however salmon has 

been implicated in incidents of HFP (Table 2.2). At least three incidents of HFP 

involving seven persons in all are reported to be caused by salmon (Bartholomew et al. 

1987; Gessner et al. 1996). The concentration of histamine measured in these incidents 

were low (2-170ppm) and the persons involved must have been more susceptible to 

HFP than the average individual.  

 Besides typical concentrations of histamine above 500 ppm products involved in 

HFP contain a total concentration of other biogenic amines above 50 ppm (Table 2.6 

and Table 2.9). Thus, a meal containing 100g seafood corresponds to an intake of 

above 50 mg histamine (with 100-500 being most common) and more than 5 mg of 

other biogenic amines (10-50 being most common). 

 

2.4  Histamine and other biogenic amines 

 Biogenic amines are defined as: “Basic, non-volatile, nitrogenous compounds of 

low molecular weight which possess biological activity and are formed mainly by 

decarboxylation of amino acids or by amination and transamination of aldehydes and 

ketones” (Rice et al. 1976; Smith 1981; Askar and Treptow 1986; ten Brink et al. 1990; 

Silla Santos 1996; Rawles and Flick 1996).  

 Amines are formed and degraded during the normal metabolism of animals, 

plants and microorganisms and are therefore present in our food (Bardocz 1995). 

Dietary amines can be classified in several ways, i.e. based on chemical structure, 

biosynthetic pathway or physiological function (Bardocz 1995; Glória 2006). Based on 

their biosynthetic pathway, amines can be natural or biogenic. Natural, or endogenous, 

amines are formed during de novo biosynthesis from their precursors and stored in 

mast cells and basophiles while biogenic, or exogenous, amines are formed by bacterial 
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decarboxylation of free amino acids (Halász et al. 1994; Bardocz 1995; Shalaby 1996; 

Glória 2006). Some amines are both natural and biogenic (Figure 2.2). There is a 

general agreement among researchers that when it comes to seafood, the endogenous 

production of amines is insignificant when compared to the exogenous production 

(Arnold and Brown 1978; Taylor et al. 1984; Taylor 1986; ten Brink et al. 1990; Rawles 

and Flick 1996; Lehane and Olley 2000). 

 

Putrescine

Cadaverine

Agmatine

Histamine

Phenylethylamine

Serotonin

Tyramine

Tryptamine

Spermine

Spermidine

Biogenic amines Natural polyamines

 
 

Figure 2.2 Amines commonly found in food. Some 
can be formed both as natural polyamines (during de 
novo biosynthesis) or by bacterial decarboxylation as 
biogenic amines. 

  

 The most important amines with regards to food safety and human health are 

histamine, putrecine, cadaverine, tyramine, tryptamine, β-phenylethylamine, spermine 

and spermidine (Shalaby 1996). They are naturally present in a wide range of food 

products including fresh fish and seafood products, meat products, dairy products, wine 

beer, vegetables fruits, nuts and chocolate (Smith 1981; Askar and Treptow 1986; ten 

Brink et al. 1990; Halász et al. 1994; Bardocz 1995; Glória 2006). The present thesis 

focuses mainly on the occurrence of biogenic amines, specifically histamine in fresh fish 

and seafood products.  

 

2.4.1 Toxicological response to histamine 

 For healthy people, ingestion of natural concentrations of biogenic amines 

present in food does not constitute any health risk (Rice et al. 1976; Glória 2006). 

However, growth to high concentrations of amine-producing bacteria (see Chapter 3) in 

food, either deliberately (as in fermented food such as fish sauce, sausages, cheese 

and sauerkraut) or due to accidental bacterial contamination, can have undesirable 

consequences as amines in high concentrations become toxic to humans (Smith 1981).  
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With respect to toxicity, histamine is by far the most important biogenic amine present in 

food. However, other biogenic amines can cause disease and discomfort (see reviews 

by Rice et al. (1976), Smith (1981), Taylor (1990) and Glória (2006)).  

 Histamine causes dilation of the peripheral blood vessels and capillaries, 

resulting in hypotension, flushing and headache. It also increases capillary permeability, 

which is related to oedema and urticaria. Furthermore, histamine-induced contraction of 

intestinal smooth muscle can explain the abdominal cramps, diarrhoea and vomiting 

sometimes observed in relation to HFP. The palpitations noted in relation to HFP may 

be due to increased heart rate and contractility caused by histamine (Taylor 1986; 

Lehane and Olley 2000; Parsons and Ganellin 2006). In brief, symptoms of HFP as 

previously reported correspond to known effects of histamine. The oral toxicity of 

histamine, however, is not entirely understood as discussed later in this section. 

 Histamine exerts its effects by interacting with receptors on cellular membranes. 

Four types of histamine receptors (H1, H2, H3 and H4) exist in different types of tissues 

(Parsons and Ganellin 2006). H1- and H2-receptors are important for HFP (Lehane and 

Olley 2000). Both intravenous and oral antihistaminic drugs have been developed to 

block these receptors and thereby the effects of the free histamine present in the blood. 

They include chlorpheniramine, diphenhydramine, hydroxyzine, promethazine (H1-

receptor antagonists) and cimetidine (H2-receptor antagonist) (Kaliner et al. 1982; 

Blakesley 1983; Morrow et al. 1991; Ijomah et al. 1991; Smart 1992; Muller et al. 1992; 

Gessner et al. 1996; Parsons and Ganellin 2006).  

 In relation to outbreaks of HFP, it is unusual that all persons consuming the 

same finfish product develop symptoms of HFP. In fact, as shown in Table 2.6 and 

Table 2.7 a significant variation (10-80%) in the attack rate is observed. This means that 

even when seafood with very high concentration of histamine (e.g. 5,000 ppm) is eaten, 

not all consumers become ill (Table 2.5). Consequently, consumers’ sensitivity to the 

agents responsible for HFP is highly variable. An unevenly distribution of histamine in 

the fish might also play a role (Table 2.8).    



 

 

Table 2.9 Concentrations (ppm) of histamine and other biogenic amines in seafood involved in incidents of histamine fish poisoning. 
Year Seafood Cases Hista Puta Cada Trypa Spma Spda Tyra Phea References 
1973 Canned tuna - 1,160 15 128 NTb 12 24 NT NT Kim and Bjeldanes (1979) 
1984 Mahi-mahi 3 1,070-1,950 30-50 170-210 NT 20-50 30-40 50-150 NT Yamanaka et al. (1987) 
1985 Bluefish 5 2,500 300 740 NT NT NT NT NT Etkind et al. (1987) 
1991 Mackerel - 1,178±673 < 5 110±79 NT < 5 < 5 46±39 NT Clifford et al. (1991) 
1994 Sailfish 12 1,680-1,800 NT 110-145 1,850-2,080 200-500 125-175 NT NT Hwang et al. (1995) 
1996 Salmon 1 0.3-2.4 6-8 0.6-4.2 NT NT NT NT NT Gessner et al (1996) 
1996 Marlin  3 841 <1 85 16 <1 <1 <1 <1 Hwang et al. (1997); Wu et al (1997) 
1996 Tuna 48 1,185-2,719 NT 174-309 60-228 NT NT NT NT Wu et al (1997) 
1998 Tuna 2 212 1 29 NT NT NT NT NT Becker et al. (2001) 
1998 Tuna 11 2,745-3,245 70 159 NT NT NT NT NT Becker et al. (2001)  
1999 Marlin 256 539-562 NDc-6 39-42 ND-3 ND-2 3-4 NT ND Su et al. (2000) 
1999 Tuna 2 26-372 0.3-0.7 ND-21 NT NT NT NT NT Becker et al. (2001) 
2001 Canned mackerel 3 1,539 8 40 ND 90 ND 13 45 Tsai et al. (2005b) 
2003 Tuna 8 7,100-9,100 14-16 27-54 NT 22-39 4-5 53-70 2-7 Paper 1 
2004 Cold-smoked tuna 2 4,548±123 20±0.3 212±5 < 5 14±0 < 5 150±0 54 Paper 2 
2004 Cold-smoked tuna 1 1,972±4 6±0.2 132±5 < 5 < 5 < 5 88±3 < 5 Paper 2 
2004 Cold-smoked tuna 10 914±8 < 5 68±1 < 5 < 5 < 5 23±0.3 < 5 Paper 2 
2004 Canned tunad 2 < 5d < 5d < 5d < 5d < 5d < 5d 14d 19d Emborg et al. (2006) 
2004 Escolard 7 < 5d < 5d < 5d < 5d < 5d < 5d < 5d < 5d Emborg et al. (2006)
2004 Escolar 4 4,090 < 5 257 < 5 17 < 5 17 < 5 Emborg et al. (2006)
2004 Tuna  8 6,430 40 286 < 5 < 5 < 5 < 5 < 5 Emborg et al. (2006)
2004 Tunad 1 < 5d < 5d < 5d < 5d < 5d < 5d < 5d < 5d Emborg et al. (2006)
2004 Swordfish 4 208-2,415 < 5 153 < 5 < 5 < 5 < 5 11 Emborg et al. (2006)
2005 Escolar 7 5,810 < 5 321 < 5 < 5 < 5 < 5 < 5 Emborg et al. (2006)
2005 Tuna 2 1,738 < 5 112 < 5 < 5 < 5 < 5 < 5 Emborg et al. (2006)
2005 Smoked escolar 5 2,605-1,705 < 5 224-371 < 5 < 5 < 5 < 5 < 5 Emborg et al. (2006)
2005 Tuna 6 220 < 5 < 5 < 5 < 5 < 5 < 5 < 5 Emborg et al. (2006)
2006 Canned tuna 1 335-390 < 5-13 55-70 < 5 < 5-11 < 5 36-40 < 5-13 Emborg et al. (2006)
2006 Fresh tuna 2 1,050-1,750 7-8 79-110 < 5 14-15 < 5 54-56 < 5-8 Emborg et al. (2006)
2006 Fresh tuna 1 100-1,100 < 5 6-63 < 5 13-16 < 5 20-72 10-13 Emborg et al. (2006)

a Biogenic amines: Hist: Histamine, Put: Putrescine, Cad: Cadaverine, Tryp: Tryptamine, Spm: Spermine, Spd: Spermidine, Tyr: Tyramine, Phe: β-phenethylamine.  
b Not tested. 
c Not detected. 
d  For these incidences, no part of the product actually consumed was left for study and data was obtained by analysing a so called parallel sample from the same 
batch/processor. 
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 It is not known if high or low resistance to histamine is constant for a given 

person or if this resistance may change over time as a function of the person’s living 

habits. Clearly, when challenge studies to determine toxicity of histamine and other 

biogenic amines are carried out with a limited number of volunteers, it is important that 

these people are not all extreme in their sensitivity towards HFP. Apart from Clifford et 

al. (1991) and Ijomah et al. (1991), the challenge studies reported in the literature have 

not considered the sensitivity of the volunteers involved. This experimental limitation 

most likely contributes to the imprecise information available today concerning the 

toxicity of histamine and its importance for HFP (Paper 5).      

 Available data from challenge studies with volunteers suggest pure histamine 

and histamine added to seafood cannot always explain the toxicity of histamine-

containing products. In one experiment 0.23 mg of histamine per kg body weight was 

reported to cause illness whereas as much as 3.3 mg histamine per kg body weight was 

consumed without symptoms by another person (Clifford et al. 1989). In a review, 

Taylor (1986) estimated that 1 mg histamine per kg body weight would cause human 

illness. The  apparently low toxicity of histamine, as determined in some challenge 

studies, could simply be due to a combination of (i) sensitivity of the relatively few 

volunteers used and (ii) relatively low amounts of histamine (< 100-500 mg) evaluated 

(Motil and Scrimshaw 1979; Clifford et al. 1989; Clifford et al. 1991; Ijomah et al. 1991; 

Van Gelderen et al. 1992). However, different hypotheses have been proposed to 

explain the apparently low toxicity of histamine in challenge studies.  

 Instead of histamine as the causative agent of HFP, it has been suggested that 

other compounds could be responsible. Suggestion of toxins working as mast cell 

degranulators causing a release of histamine from the histamine-heparin complex in 

human mucosal mast cells in the gastrointestinal tract has been proposed (Arnold et al. 

1980; Clifford et al. 1991; Ijomah et al. 1991). This hypothesis is consistent with the fact 

that antihistamine therapy eliminates symptoms of HFP. Lehane and Olley (2000) 

suggested cis-urocanic acid could be a mast cell degranulator responsible for HFP. Cis-

urocanic acid is formed from L-histidine by the enzyme L-histidine ammonia lyase (HAL; 

EC 4.3.1.3; histidase), which is produced in several microorganisms (Shibatani et al. 

1974; Hug and Hunter 1974; Mackie and Fernández-Salguero 1977; Baranowski 1985).  
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When mast cells are activated, histamine as well as tryptase and prostaglandin D2 are 

released. It is therefore important that Morrow et al. (1991) and Sanchez-Guerrero et al. 

(1997) did not detect significant concentrations of these compounds or their degradation 

products in blood samples from patients with HFP. These data do not support the 

hypothesis that cis-urocanic acid or other mast cell degranulating agents should be of 

importance for HFP. 

 Is has also been suggested that compounds in seafood inhibit the normal 

metabolism/detoxification of histamine as further discussed in section 2.4.1.2.  

 

2.4.1.1 Human metabolism of histamine  

 In humans, an oral dose of histamine is mainly (68-80%) excreted as histamine 

metabolites in the urine, whereas smaller portions can be recovered in faeces and 

exhaled as CO2 from the lungs after degradation that may include the activity of 

intestinal bacteria (Sjaastad and Sjaastad 1974). Before histamine reaches the blood 

circulation, it is usually metabolised. In the small intestine (and maybe in the stomach), 

the enzyme histamine-N-methyltransferase (HMT, EC 2.1.1.8) transforms histamine and 

S-adenosylmethionine into N-methylhistamine, which can be further deaminated into 

methylimidazole acetaldehyde by a monoamine oxidase (MAO, EC 1.4.3.4) (Figure 

2.3). Also, in the small intestine, the enzyme diamine oxidase (DAO, histaminase, EC 

1.4.3.6) converts histamine into imidazole acetaldehyde (Figure 2.3). Histamine that 

crosses the intestinal wall is carried in the portal blood to the liver, where it is again 

metabolised by HMT and MAO (Hesterberg et al. 1984; Taylor 1986). Histamine 

intolerant individuals may have a deficiency of the enzyme DAO in the small intestine 

mucosa, resulting in decreased breakdown and increased absorption of histamine in the 

gastrointestinal tract (Rice et al. 1976).  
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Figure 2.3 Normal metabolism or detoxification of histamine in humans. Modified from Glória 
(2006). 

 

2.4.1.2 Inhibition of histamine metabolism 

 Numerous experiments with laboratory animals (rats, cats, dogs, guinea pigs, 

pigs and rabbits) have demonstrated that various compounds can reduce the normal 

histamine metabolism (Figure 2.3). Such compounds, or combinations of compounds, 

that reduce the activity of the enzymes DAO, HMT and MAO will increase the amount of 

histamine and methylhistamine in the blood circulation and thereby the oral toxicity of 

histamine (Taylor and Lieber 1979; Lyons et al. 1983; Hui and Taylor 1985; Satter and 

Lorenz 1990). Among the compounds with inhibiting abilities are agmatine, cadaverine, 

ß-phenylethylamine, putrescine, trimethylamine and tyramine, which are known to occur 

in spoiled seafood (Table 2.9). These findings suggest that the oral toxicity of histamine 
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in seafood may be potentiated by compounds that are present in spoiled but not in fresh 

seafood. This hypothesis could explain the apparently low toxicity of histamine in some 

challenge studies where the effect of histamine but no other compounds was evaluated 

(Motil and Scrimshaw 1979; Clifford et al. 1989; Ijomah et al. 1991). 

Cadaverine/histamine or putrescine/histamine ratios of 5:1 or greater in the duct of rats 

were required to inhibit histamine detoxification in vivo as assassed by measuring 

histamine metabolits in the urine (Hui and Taylor 1985). It has however not been 

possible to find such ratios in seafood that caused HFP (Table 2.9). Extrapolation of the 

quantitative effects from such data obtained with laboratory animals to humans is also 

difficult because the distribution of both the key enzymes of the normal histamine 

metabolism in tissues and the histamine receptors in tissues differ between humans and 

different species of laboratory animals (Buffoni 1966; Taylor 1986; Satter and Lorenz 

1990; Lehane and Olley 2000). 

 Relatively few, controlled human volunteer studies have evaluated the effect of 

different compounds from food on the oral toxicity of histamine (Clifford et al. 1991; Van 

Gelderen et al. 1992). However, patients on drugs like isoniazid and tranylcypromine 

which are known to inhibit the enzyme DAO (Satter and Lorenz 1990) and possibly also 

MAO (Hauser and Baier 1982; Self et al. 1999), have increased sensitivity to seafoods 

with histamine or tyramine (Nuessle et al. 1965; Uragoda and Kottegoda 1977; Miki et 

al. 2005).  

 The volunteer studies of Clifford et al. (1991) and Van Gelderen et al. (1992) 

have clearly documented variation in the susceptibility towards histamine between 

human individuals. These studies are valuable, but more human volunteer studies are 

needed to evaluate the oral toxicity of histamine in combination with other compounds. 

It is particularly important to evaluate the effect of different realistic amounts of 

histamine (50-500 mg) in combination with different realistic amounts of other biogenic 

amines (5-50 mg) or other compounds from spoiled seafood (Table 2.6 and Table 2.9). 

In addition, it should be evaluated in challenge studies or in relation to HFP outbreaks, 

how seafood with low concentrations of histamine influences symptoms and 

concentrations of histamine, histamine metabolites, tryptase and prostaglandin D2 in 

plasma and/or urine of patients/volunteers. This information would help determine if 

histamine potentiating compounds or endogenous histamine released from mast cells 

can explain HFP when caused by seafood with low concentrations of histamine. 

Although, histamine may not exclusively be responsible for HFP its presence in 
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elevated concentrations in seafood constitutes an excellent indicator that such products 

should not be consumed. (Lehane and Olley 2000). 

 

2.4.2 Toxicity of biogenic amines other than histamine 

 Putrescine, spermine and spermidine play important roles in tumor growth 

(Glória 2006). Secondary amines such as putrescine and cadaverine can react with 

nitrite to form carcinogenic nitrosamines, nitrosopyrrolidine and nitrosopiperideine (Huis 

in´t Veld et al. 1990). However, next after histamine, monoamines like tyramine, 

phenylethylamine and tryptamine are the most problematic amines causing acute 

intoxication. They can cause a rise in blood pressure by releasing noradrenaline, 

constricting the vascular system and increasing the heart rate. This is known as the 

“cheese reaction”, and these amines are called pressor amines. The potency of 

phenylethylamine is 10 times lower than tyramine but higher than tryptamine. 

Intoxication of these amines has an incubation time of from 10 minutes to 6 hours and 

symptoms include palpitations, severe headache, hypertension, flushing, profuse 

perspiration, stiff neck, nausea, vomiting and prostration. MAO-inhibitors, including 

several drugs, reduce the natural detoxification of the pressor amines and thus increase 

their oral toxicity (Rice et al. 1976; Smith 1981; Shalaby 1996; Glória 2006). The oral 

toxicity of tyramine is low and concentrations found in seafood (Table 2.9) will have no 

adverse effects on most consumers. However, for sensitive individuals, e.g. with 

reduced MAO activity due to medication or hereditary deficiency, very little tyramine can 

cause migraine headaches. For such individuals consumption of no more than 5 mg 

tyramine per meal has been recommended (McCabe 1986; Walker et al. 1996; Caston 

et al. 2002). Tyramine in high concentrations can be found in certain cheeses, wines, 

sausages, chicken liver and yeast extract. Chocolate is known to cause migraine for 

individuals susceptible to phenylethylamine (Maga 1978). In fish, the typical 

concentration of tyramine is less than 5 ppm, however in some incidents concentrations 

as high as 150 ppm has been observed. This corresponds to a typical intake of 0.5 mg 

histamine and in severe cases 15 mg. 
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2.5 Detection of biogenic amines 

 Standardised and harmonised analytical detection methods are needed to study 

and control the occurrence of biogenic amines in food. The earliest method for 

determination of histamine in seafood was a bioassay based on the fact that histamine 

causes contraction of guinea pig ileum (Geiger 1944). Later, various more accurate 

instrumental methods for detection of histamine and biogenic amines have been 

developed. In addition, sensory detection of histamine has been suggested. However, 

no single quantitative analytical procedure is able to quantify several biogenic amines 

simultaneously in different types of foods. This is mainly due to the presence of 

interfering compounds in the sample matrix and variability in the efficiency of extraction 

procedures for different types of samples (Moret and Conte 1996; Onal 2007).  

 
Table 2.10 Sensory spoilage characteristics and concentrations of histamine in various seafoods. 
Seafood Sensory assessment Temp. (°C) Histamine 

(ppm) 
References 

Anchovy  Not spoileda Ambient 83 - 165 Kose and Erdem (2004) 

Barracuda  Slight decomposition, 
but acceptable 32 15 Shakila et al. (2003) 

Bluefish  Not spoileda 5 116 ± 0 Gingerich et al. (1999) 
Bluefish  Not spoileda 10 43 ± 34 Gingerich et al. (1999) 
Bluefish  Not spoileda 15 286 ± 261 Gingerich et al. (1999) 
Garfish  Not spoileda 0 0 - 13 Dalgaard et al. (2006) 
Garfish  Not spoileda 5 28 - 509 Dalgaard et al. (2006) 
Mackerel  Slightly putrefied 5 280 Okuzumi et al. (1984c) 
Mackerel  Slightly putrefied 10 32 Okuzumi et al. (1984c) 
Mackerel  Slightly putrefied 15 261 - 453 Okuzumi et al. (1984c) 

Mackerel  Slight decomposition, 
but acceptable 32 90 Shakila et al. (2003) 

Mahi-mahi  Initial decomposing 13 0 - 1 Du et al. (2001) 
Mahi-mahi  Not spoiled 15 -25 800 – 2,500 Fletcher et al. (1995) 

Trevally  Slight decomposition, 
but acceptable 32 52 Shakila et al. (2003) 

Tuna  Not spoileda 0 20 ± 12 Veciana-Nogúes et al. (1997) 
Tuna  Not spoileda 0 220 – 1,200 López-Sabater et al. (1996b)  
Tuna  Not spoileda 8 2,500 López-Sabater et al. (1996b)  
Tuna  Not spoileda 8 110 ± 30 Veciana-Nogúes et al. (1997) 
Tuna Not spoileda 20 924 ± 21 Veciana-Nogúes et al. (1997) 
Sailfish Not spoiled  1,680 – 1,800 Hwang et al. (1995) 

Sardine  Slight decomposition, 
but acceptable 32 45 Shakila et al. (2003) 

Sardine Moderately fresh 0 80 - 90 El-Marrakchi et al. (1990) 
a Samples near the limit of sensory acceptance judged by a sensory panel   
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2.5.1 Sensory detection 

 Histamine in toxic concentrations can be formed in seafood before products 

appear sensory spoiled (Table 2.10). The authority in Denmark, however, uses a trained 

sensory panel on routine basis as a preliminary detection of histamine in canned tuna. 

When positive in the sensory analysis products are then further analysed by high 

performance liquid chromatography (HPLC) for confirmation and quantification (EC 

2005; DVFA 2007). Numerous HFP incidents have been due to seafood with more than 

1,000 ppm histamine (Table 2.2). This clearly demonstrates the inability of many 

consumers to detect even high concentrations in histamine seafoods. It seems sensory 

detection of histamine can be successful when trained and experienced paneliest 

evaluate a specific product wherease in other cased sensory detection of histamine is 

not reliable.   

 

2.5.2  Instrumental detection 

 All analytical methods for determination of biogenic amines in proteinaceous 

foods involve two main steps; (i) extraction of the biogenic amines from the matrix and 

(ii) determination of the biogenic amines. For histamine analysis in food, HPLC is the 

most often-used analysis method. (Onal 2007). In addition, several enzymatic methods 

have been developed for histamine analysis. These rely e.g. on the enzyme histamine-

N-methyltransferase and radioactive S-adenosylmethionine and they can be much more 

sensitive than required with concern to toxic concentrations of histamine in seafood 

(Taylor 1986; Stratton and Taylor 1991; Lehane and Olley 2000). Enzymatic kits with 

good reproducibility, which are designed for seafood, are available (Rogers and 

Staruszkiewicz 2000). However, the cost of these kits for routine testing of numerous 

samples for quality assurance or preventive-testing can be high (Lehane and Olley 

2000).  

 EU-regulations (EC 2073/2005) indicate a reference HPLC method for analysis 

of histamine in seafood (EC 2005). This method detects histamine, putrescine, 

cadaverine, spermine and spermidine and the procedure is indicated to be suitable for 

all fish species. The amines are extracted with perchloric acid, reacted with dansyl 

chloride and then separated by HPLC (Malle et al. 1996).  

 The Association of Official Analytical Chemists procedure (AOAC 2005) is the 

official method of analysis of histamine in foods in the U.S. Histamine is extracted from 
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seafood with methanol, which is passed through an ion exchange column and eluted 

with HCl. The elute is collected and mixed with a solution of ο-phthalaldehyde (OPA) 

and the fluorescence intensity is measured 

 The concentration of biogenic amines in fresh seafood is very low. At the same 

time microbial spoilage of seafood frequently results in biogenic amines formation. 

Thus, concentrations of biogenic amines may serve as a useful indicator of spoilage 

(Halász et al. 1994). In fact, the concentration of histamine and other biogenic amines 

have been tested as single or multiple compound quality indices (Mietz and Karmas 

1977; Dawood et al. 1988; Yamanaka 1989; Yamanaka et al. 1989; Sims et al. 1992; 

Rawles and Flick 1996; Veciana-Nogués et al. 1997; Jørgensen et al. 2000a). Costs of 

biogenic amine analyses and accuracy of the suggested indices, however, limit their 

usefulness for routine  screenings (Lehane and Olley 2000). Simple, rapid, inexpensive 

and accurate methods for quantification of histamine and other biogenic amines are 

needed in this area.  
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3. Histamine-producing bacteria 
 

 

 Information about histamine-producing bacteria (HPB) in seafood is important. 

This information can be used e.g. to reduce their growth and histamine formation as 

well as for specific detection of the the relvant bacteria.  

 

3.1 Histidine decarboxylase 

 Histamine in seafood is primarily formed by bacteria that produce an active L-

histidine decarboxylase (HDC). In living bacteria, HDC functions in cooperation with a 

membrane exchanger that allows histidine to be transported into the cell and histamine 

to be transported out of the cell (Molenaar et al. 1993). The function of histamine in 

bacterial metabolism is, however, unknown. It has been suggested that production and 

excretion of histamine may generate metabolic energy or be involved in the acid stress 

response (Van Poelje and Snell 1990; Molenaar et al. 1993; Lucas et al. 2005). 

Decarboxylation of histidine releases CO2 and consumes a proton; hence, 

decarboxylation can supply nutritionally essential CO2 and neutralise acids and thus, 

participate in the regulation of the intracellular pH (Van Poelje and Snell 1990; Molenaar 

et al. 1993). The formation of histamine may possibly alter the physiology of the host to 

the bacteria’s advantage. For example, since histamine is a vasodilator, its formation 

could result in transfer of essential nutrients from the host to the bacteria (Van Poelje 

and Snell 1990).  

  Histidine is the only amino acid so far known for which decarboxylases of two 

different types have evolved (Tanase et al. 1985; Van Poelje and Snell 1990). One type 

is the pyridoxal 5’-phosphate-dependent HDC. This HDC has been isolated and 

characterised from the following Gram-negative bacteria: Morganella morganii (Tanase 

et al. 1985), Raoultella planticola (Guirard and Snell 1987; Kanki et al. 2007), 

Enterobacter aerogenes (Guirard and Snell 1987), Photobacterium phosphoreum (Morii 

and Kasama 1995; Morii and Kasama 2004; Kanki et al. 2007) and Photobacterium 

damsela (Kanki et al. 2007).  
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 The other type of HDC is the pyruvoyl-dependent HDC produced by Gram-

positive bacteria. This enzyme is for example isolated from the following bacteria: 

Lactobacillus 30a (Hackert et al. 1981), Lactobacillus hilgardii 0006 (Lucas et al. 2005), 

Leuconostoc oeni IOEB (Coton et al. 1998), Tetragenococcus muriaticus (Konagaya et 

al. 2002) and Clostridium perfringens (Huynh and Snell 1985). Both types of HDC are 

inducible but show no sequence homology or relatedness in amino acid structure 

(Hackert et al. 1981; Tanase et al. 1985; Vaaler et al. 1986; Van Poelje and Snell 1990; 

Kamath et al. 1991). No organism able to produce HDC of both types is known yet (Van 

Poelje and Snell 1990). The Enzyme Commission makes no distinction between the 

pyruvoyl-dependent and the pyridoxal 5’-phosphate-dependent L-Histidine 

decarboxylase (HDC, EC 4.1.1.22) (Vaaler et al. 1986).  

 The presence of HDC in one strain does not necessarily mean that other strains 

of the same species also produce HDC or that the activities of the HDCs are equal 

(Taylor et al. 1978; Yoshinaga and Frank 1982; Kim et al. 2001c; Wauters et al. 2004). 

One proposed explanation of the variability in histamine production is that HDC can be 

controlled by a plasmid that may be transferred from strain to strain, from species to 

species or from genus to genus (Tolmasky et al. 1995; Lehane and Olley 2000). A 

plasmid-borne HDC located at least on two different plasmids has been identified in 

Vibrio anguillarum (Tolmasky et al. 1995; Barancin et al. 1998). Indirectly, the 

production of histamine influences the virulence of this fish pathogen. HDC is necessary 

for the production of a siderophore anguibactin, which is required for iron uptake by V. 

anguillarum. Without the uptake of iron, V. anguillarum becomes avirulent (Tolmasky et 

al. 1995). However, HDC seems to play a completely different role in V. anguillarum as 

compared to other organisms. It needs to be noted that V. anguillarum never has been 

identified as the responsible HPB in relation to outbreaks of HFP (Table 3.1).  

 Another explanation for variability in histamine formation between strains of 

bacteria might be the presence of two different HDCs: An inductive HDC and a 

constitutive HDC. Both inductive and constitutive decarboxylases have been identified 

for ornithine and arginine (Tabor and Tabor 1985). The constitutive HDC, however, is 

known for P. phosphoreum only and the corresponding gene is not identified (Morii and 

Kasama 1995). 
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3.2 Gram-positive histamine-producing bacteria 

 Strains of some Gram-positive bacteria can produce histamine and they have 

been isolated from salted, dried or fermented foods (Landete et al. 2006). 

Staphylococcus spp., T. muriaticus, Cl. perfringens and some strains of Lactobacillus 

spp. are among the best known Gram-positive histamine producers (Taylor et al. 1978; 

Yoshinaga and Frank 1982; Hernández-Herrero et al. 1999; Kobayashi et al. 2000; 

Lucas et al. 2005). Gram-positive HPB have never been isolated from fish or seafood 

products that caused HFP (Table 3.1). Therefore Gram-positive histamine producing 

bacteria will not be discussed separately in the present thesis but some aspects of 

histamine formation will be compared between Gram-positive and Gram-negative 

bacteria.  

 

3.3 Gram-negative histamine-producing bacteria 

 A wide range of Gram-negative bacteria isolated from seafood is able to 

produce histamine. However, only a minor part of them is able to produce histamine in 

high concentrations (> 1,000 ppm) even at optimal conditions (Table 3.2). These 

bacteria have been designated prolific histamine producers (Behling and Taylor 1982).  

 Until 2004, a very limited number of studies had identified the bacteria 

responsible for histamine formation in seafood that had caused HFP (Table 3.1). These 

few studies showed that HFP was caused by the activity of mesophilic histamine-

producing bacteria. However, knowledge about psychrotolerant HPB has to some 

degree been available since the 1960’s when Kimata (1961) observed histamine 

production in toxic concentrations at 6-7°C.   

 Later, histamine production in naturally contaminated seafood stored between 

0-4°C was observed in many studies (Okuzumi et al. 1982; Van Spreekens 1987; Morii 

et al. 1988; Ababouch et al. 1991a; Ababouch et al. 1996; López-Sabater et al. 1996b; 

Silva et al. 1998; Kanki et al. 2004; Paper 1; Paper 2). 



 

   

 

 

 

 
Table 3.1 Incidents of histamine fish poisoning for which the microorganisms responsible for histamine formation in the products have 
been identified and reported. (Modified from Paper 5). 

Year Country Products Cases 
Histamine 

(ppm) 

Bacteria responsible for histamine 

formation 
References 

1955 Japan Fresh tuna 50 1,200 Morganella morganii Kawabata et al. (1955b) 

1965 Japan Fresh tuna NRa NR Morganella morganii Sakabe (1973) 

1967 Czechoslovakia Fresh tuna NR 120-3,100 Hafnia spp. Havelka (1967) 

1977 USA Fresh tuna 15 1,600-9,190 Raoultella planticola Lerke (1978) 

2002 Japan Dried sardines 1 3,000 Photobacterium phosphoreum Kanki et al.(2004) 

2003 Denmark Tuna in chilli sauce 8 7,100-9,100 Morganella psychrotolerans,  
Photobacterium phosphoreum Paper 1 

2004 Denmark Cold-smoked tuna 2 4,500 Photobacterium phosphoreum Paper 2 

2004 Denmark Cold-smoked tuna 1 2,000 Morganella psychrotolerans Paper 2 

2004 Denmark Tuna heated in flexible film 8 6,400 Morganella morganii  Emborg et al. (2006) 

2006 Denmark Fresh tuna 1 1,100 Photobacterium phosphoreum Emborg et al. (2006) 
a  Not reported (NR). 
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Today, it is clear that both mesophilic bacteria including M. morganii, Hafnia and 

Raoultella planticola and psychrotolerant bacteria including M. psychrotolerans and P. 

phosphoreum are important for histamine formation in seafood HFP (Table 3.1; Paper 

1; Paper 2; Paper 3; Paper 4 and Paper 5). During the last five years, more 

psychrotolerant than mesophilic bacteria have been isolated from seafood that caused 

HFP. This can be a result of improved chilled storage conditions or increased attention 

to psychrotolerant organisms (Paper 5).  

 Members of the Enterobacteriaceae are often identified as histamine producers 

(Table 3.2). However, in a study by Wauters et al. (2004) only 5 species of 37 tested 

were positive (M. morganii, R. planticola, R. ornithinolytica, Citrobacter youngae and E. 

aerogenes). This might be explained by (i) natural variation among the species, (ii) less 

sensitive test used by Wauters et al. (1987) compared to other studies or (iii) 

misidentification of the bacteria in the earlier studies. 

  

3.3.1 Morganella psychrotolerans 

 Until 2006, M. morganii was the only species known within the genus 

Morganella (See describtion in Chapter 3.3.2). However, during the 1950’s, a 

Morganella-like bacterium initially named Achromobacter histamineum was studied in 

Japan (Kimata 1961). In contrast to M. morganii, A. histamineum had a growth-optimum 

between 20-25°C and did not grow at 37°C. Similar to M. morganii, A. histamineum 

were capable of histamine formation in high concentrations. Nevertheless, A. 

histamineum was renamed M. morganii due to many common biochemical properties 

(Kimata 1961). 

 In 2006, a new species of Morganella was identified and named Morganella 

psychrotolerans (Paper 3). This new species is like A. histamineum unable to grow at 

37°C and importently M. psychrotolerans can grow and produce toxic concentration of 

histamine at 0°C (Fig. 3.1). It has not been reported if A. histamineum has these 

properties. The isolation and identification M. psychrotolerans is most important as the 

existence of a psychrotolerant and strongly histamine-producing bacteria can explain 

many incidents of HFP. The identification of psychrotolerant HPB capable of histamine 

formation at 0°C will propably reduce the commonness use of temperature abuse as the 

explanation for histamine formation.  
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Table 3.2 Examples of prolific Gram-negative mesophilic histamine-producing bacteria and their 
origin. 
Organism Source References 
Acinetobacter baumannii Sailfish (Istiophorus platypterus) Tsai et al. (2004) 
Citrobacter freundii Tuna (Thunnus thynnus) López-Sabater et al. (1996b) 
Citrobacter braakii Albacore Kim et al. (2001b) 
Enterobacter aerogenes Albacore, Indian anchovy (Stolephorus 

indicus), Sailfish (Istiophorus platypterus), 
tuna 

Kim et al. (2001b); Takahashi et al. 
(2003); Tsai et al. (2004) and Rodtong et 
al. (2005) 

Enterobacter agglomerans Tuna (Thunnus thynnus) López-Sabater et al. (1996b) 
Enterobacter cloacae Albacore tuna (Thunnus alalunga), tuna 

Thunnus thynnus) 
López-Sabater et al. (1996b) and (Kim et 
al. 2001c) 

Hafnia  Tuna Ferencik (1970) 
Hafnia alvei Tuna (Thunnus thynnus), skipjack tuna Arnold et al. (1980) and López-Sabater et 

al. (1996b)   
Klebsiella oxytoca Albacore, tuna (Thunnus thynnus), 

sailfish (Istiophorus platypterus) 
López-Sabater et al. (1994b); López-
Sabater et al. (1996a; 1996b); Kim et al.  
(2001b) and Tsai et al.  (2004),  

Klebsiella pneumoniae Tuna (Thunnus thynnus), jack mackerel 
(Trachurus symmetricus)  

Taylor and Speckhard (1984) and López-
Sabater et al. (1996b) 

Morganella morganii Albacore tuna (Thunnus alalunga), 
anchovies (Engralis encrasicholus), 
bluefish (Pomatumus saltatrix), big eye 
tuna (Thunnus obesus), bluefin tuna 
(Thunnus thynnus), horse mackerel, 
Indian anchovy (Stolephorus indicus), 
jack mackerel (Trachurus symmetricus), 
mackerel (Scomber scombrus), mahi-
mahi (Coryphaena hippurus), Pacific 
mackerel (Scomber japonicus), sardine 
(Sardina pilchardus), skipjack tuna 
(Katsuwonus pelamis), yellowtail, yellow 
fin tuna (Thunnus albacares)  

Aiiso et al. (1958); Arnold et al. (1980); 
Leitão et al. (1983); Taylor and 
Speckhard (1983); Taylor and Speckhard 
(1984); Frank et al. (1985), Ababouch et 
al. (1991b); Oka et al.  (1993); Rodriquez-
Jerez et al. (1993); López-Sabater et al. 
(1994a; 1994b); Rodriquez-Jerez et al. 
(1994); Lopez-Galvez et al. (1995); 
López-Sabater et al. (1996a; 1996b); 
Gingerich et al.(1999); Kim et al. (2000); 
Gingerich et al. (2001); Kim et al. (2001a; 
2001b; 2001c); Lorca et al.  (2001), Kim 
et al. (2002); Takahashi et al. (2003); 
Rodtong et al. (2005); and Paper 3 

Photobacterium damsela Horse mackerel Takahashi et al. (2003) 
Photobacterium legionathi Indian mackerel (Rastrelliger kanagurta), 

Indian oil sardine (Sardinella longiceps) 
Ramesh et al. (1989) 

Proteus mirabilis Mahi-mahi (Coryphaena hippurus) 
sardine (Sardina pilchardus) 

Frank et al. (1985), Ababouch et al. 
(1991b) 

Proteus penneri Sailfish (Istiophorus platypterus) Tsai et al. (2004) 
Proteus vulgaris Albacore tuna, Indian anchovy 

(Stolephorus indicus), Pacific mackerel 
(Scomber japonicus), sailfish (Istiophorus 
platypterus), skipjack tuna (Katsuwonus 
pelamis), horse mackerel, young 
yellowtail 

Arnold et al. (1980); Kim et al (2001a); 
Kim et al. (2001c); Takahashi et al. 
(2003); Tsai et al. (2004); and Rodtong et 
al. (2005) 

Proteus vulgariusa Sailfish (Istiophorus platypterus) Tsai et al. (2004) 
Rahnella agnatilisa Sailfish (Istiophorus platypterus) Tsai et al. (2004) 
Raoultella ornithinolytica Tuna, bonito and sardines Kanki et al. (2002) 
Raoultella planticola Tuna, bonito and sardines Kanki et al. (2002) 
Raoultella planticola Horse mackerel, tuna, bigeye tuna, autum 

albacore 
Takahashi et al. (2003) 

Serratia fonticola Albacore, bluefin tuna (Thunnus thynnus) López-Sabater et al. (1996b) and Kim et 
al. (2001b) 

Serratia marcescens Tuna (Thunnus thynnus) López-Sabater et al. (1996b) 
Vibrio fischeri Indian mackerel (Rastrelliger kanagurta), 

Indian oil sardine (Sardinella longiceps) 
Ramesh et al. (1989) 

Vibrio harveyi Indian mackerel (Rastrelliger kanagurta), 
Indian oil sardine (Sardinella longiceps) 

Ramesh et al. (1989) 

a Tsai et al., 2004 reported these bacteria, however, they are assumed to be misspelling versions of: P. 
vulgaris and R. aquatillis. 
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Figure 3.1 Growth (■) and histamine production (●) by Morganella psychrotolerans in amino acid-
enriched LB Miller broth stored at A) 20°C and B) 0°C. Adapted from Paper 4. 
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Figure 3.2 Neighbour joining tree (Kimura two-parameter) showing 
the relationship between merged sequences (3557 bp) of seven 
housekeeping gene fragments from 22 Morganella strains. 
Bootstrap values from 1000 replicates appear next to the 
corresponding branch. Bar, nucleotide substitutions per site 
(Paper 3). 
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 Besides being isolated from two outbreaks of HFP, M. psychrotolerans has 

been found on garfish and tuna (Dalgaard et al. 2006; Paper 1; Paper 2). The habitat 

and occurrence of this psychrotolerant and histamine-producing species is, however, 

still unknown and deserves more attention.   

 At both 0°C and 20°C M. psychrotolerans produced histamine in significant 

concentrations when the concentration of cells reached about 106 CFU/g (Figure 3.1). 

As for M. morganii, M. psychrotolerans produces no biogenic amines other than 

histamine in high concentrations when grown in amino-enriched broth with an amino 

acid profile resembling the profile in tuna  (Ryser et al. 1984; Kim et al. 2000; Paper 1). 

All the isolated strains of M. psychrotolerans form histamine in high concentrations. A 

polyphasic characterisation with both multi locus sequencing and traditional 

phenotypical/biochemical tests were used to differentiate between M. morganii and M. 

psychrotolerans (Paper 3). Twenty-two strains collected within a broad time range 

(1920-2004), from different geographical locations and habitats were included in the 

study. Fragments of seven housekeeping genes were selected for sequencing. 

 88.7% sequence similarity was found between the group means of the merged 

housekeeping genes from M. psychrotolerans and M. morganii (Figure 3.2). This 

clustering was supported by DNA-DNA hybridisation and a limited number of 

phenotypical/biochemical tests. In contrast to M. morganii, M. psychrotolerans is 

capable of growth at 2°C (and even 0°C as shown previously in Figure 3.1). M. morganii 

is more tolerant towards high concentrations of NaCl, as it grows with 8.5% at 25°C. M. 

psychrotolerans do not grow with more than 6% NaCl when tested at 10°C (Paper 4). 

Finally, D-galactose is fermented by M. morganii but not by M. psychrotolerans (Table 

3.3; Paper 3). It seems possible that M. psychrotolerans, like M. morganii, can be 

divided into subspecies. This is supported by sequence data and phenotypic data 

(Figure 3.2; Table 3.3) but more isolates should be studied to validate the observed 

subgroups within M. psychrotolerans.   
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Table 3.3 Phenotypic characteristics of Morganella psychrotolerans, M. morganii subsp. 
morganii and M. morganii subsp. sibonii (Modified from Paper 3).  
 Percentage of positive results 

 
M. psychrotolerans M. psychrotolerans 

M. morganii 
subsp. 

morganii 

M. morganii 
subsp. 
sibonii 

M. morganii 

Number of isolates 9 4 4 3 2 
Origin Tuna Lumpfish roe and 

garfish fillets 
Seafood and 

clinical 
isolates 

Seafood and 
clinical 
isolates 

Smoked fish 

Lysin decarboxylasea 0 0 0 33 0 
Ornithin decarboxylasea 100 50 100 100 100 
Ureaa 100 100 75 100 100 
L-tryptophan-TDAa 88 75 100 100 100 
Citrate utilisationa 0 25 0 0 0 
Acid from D-trehaloseb  0 50 0 100 100 
Acid from D-galactoseb  0 0 100 100 100 
0°C 100 50 0 0 0 
2°C 100 100 0 0 0 
4°C 100 100 100 100 100 
35°C 100 100 100 100 100 
37°C 0 0 100 100 100 
0% NaClc 100 100 100 100 100 
7.5% NaClc 22 50 100 100 100 
8.5 % NaClc 0 0 100 100 100 
10% NaClc 0 0 25 30 50 
pH 4.1c 0 0 0 0 0 
pH 4.6c 88 75 100 100 100 
pH 9.2c 100 100 100 100 100 
pH 9.6c 0 0 0 0 0 
a Test performed using API 20E, 25°C, 24h 
b Test performed using API 50CH-E, 25°C, 48h 
c Test performed at 25°C  
 
 

3.3.2 Morganella morganii 

 M. morganii is probably the most important and best-known microorganism with 

respect to histamine formation in seafood (Table 3.2). In agreement with this, M. 

morganii has been identified as the bacteria responsible for histamine formation in three 

reported outbreaks of HFP (Table 3.1). Two subspecies of M. morganii are identified; M. 

morganii subsp. morganii and M. morganii subsp. sibonii. Histamine in toxic 

concentrations is produced by both the subspecies when tested at 10°C (Paper 3). In 

contrast to other species, most isolated strains of M. morganii decarboxylate histidine 

(Frank et al. 1985; López-Sabater et al. 1994a; López-Sabater et al. 1996a; Wauters et 

al. 2004).  



 

 38

In fact, very few non-histamine-producing strains have been isolated (Taylor et al. 

1978). M. morganii grows at between 4 - 45°C (Janda and Abbott 2005); however, 

histamine is not formed in toxic concentrations below ~7°C (Behling and Taylor 1982; 

Lorca et al. 2001; Kim et al. 2002; Veciana-Nogués et al. 2004). As a consequence, M. 

morganii will not be problematic with respect to histamine formation in seafood stored at 

2°C.  

 

3.3.3 Photobacterium phosphoreum  

 P. phosphoreum is a psychrotolerant bacterium capable of histamine formation 

in toxic doses. As can been seen in Table 3.1, P. phosphoreum has been involved in 

four reported outbreaks of HFP. P. phosphoreum is a well-known spoilage bacteria in 

fish and seafood products (Dalgaard 2006), but it has received little attention as a 

histamine producer and in many studies it is entirely ignored. However, during the 

1980’s, significant histamine production by P. phosphoreum (N-group bacteria) was 

documented at low temperatures (Okuzumi et al. 1981; Okuzumi et al. 1982; Okuzumi 

et al. 1984c; Morii et al. 1986; Morii et al. 1988). In 2004, P. phosphoreum was for the 

first time isolated and identified in relation to an outbreak of HFP (Table 3.1). P. 

phosphoreum does not grow without salt and at temperatures above 25-30°C. It is also 

very sensitive to heat. These circumstances might have been the reason why P. 

phosphoreum was not isolated and identified from seafood causing HFP before 2004 

(Kanki et al. 2004). It seems possible that the P. phosphoreum should be divided into 

subgroups according to the difference in histamine production capabilities (Dalgaard et 

al. 2006). 

 

3.4 Detection of histamine-producing bacteria 

 Both M. morganii and M. psychrotolerans grows with atypical colonies in violet-

red bile agar when compared to e.g. E. aerogenes and K. oxytoca (Figure 3.3). The 

colonies of Morganella spp. are small and without precipitation. This might impede their 

recognition during routine analysis.  
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Figure 3.3 Colonies of A) Enterobacter 
aerogenes, B) Klebsiella oxytoca, C) Morganella 
morganii and D) M. psychrotolerans on tryptic 
soyagar-violet red bile glucose agar incubated at 
25°C at 24 hours. (Unpublished data). 

  

3.4.1 Culture based techniques 

 Methods based on differential growth-media have been developed to detect 

decarboxylating bacteria in food. Most of these media use the change in pH that occurs 

when amino acids are decarboxylated into the more alkaline biogenic amines. Marcobal 

et al. (2006) describes in a review how the first pH-based medium was developed in 

1954. This medium is still used for the identification of Enterobacteriaceae (Barrow and 

Feltham 1999). In 1981, the first solid medium for detection of HPB was published 

(Niven et al. 1981). Niven’s medium has been subjected to some criticism due to the 

presence of false positive results and a low pH-value (pH 5.3) that may inhibit growth of 

some bacteria. The false positives are typically a result of the production of by-products 

such as ammonia. Niven’s medium has in several experiments been used to identify 

HPB from fish and seafood products (Subburaj et al. 1984; Silva et al. 1998; Ben 

Gigirey et al. 1999; Kim et al. 2001b).  Without success several attempts to improve 

Niven’s medium have been carried out (Yoshinaga and Frank 1982; Smith et al. 1982; 

Mavromatis and Quantick 2002b; Tsai et al. 2004).   
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 Methods based on the development of CO2 have been tested (Marcobal et al. 

2006). Some are very time- and labour consuming while other can result in false 

positives since the production of CO2 can be a result of other reactions than the 

decarboxylase reaction. Klausen and Huss (1987a) developed a relatively rapid method 

(25 hours at 25°C) based on the change in conductance that occurs when histidine is 

decarboxylated into histamine; however, the use of specialised and expensive 

equipment limits its usefulness.  

 Many of these detection methods will not detect M. psychrotolerans since they 

involve incubation temperatures at 35-37°C (Niven et al. 1981; Taylor and Woychik 

1982; Sumner and Taylor 1989; Mavromatis and Quantick 2002b). Methods that allow 

both mesophilic and psychrotolerant HPB to be detected are therefore needed. 

 An often-used technique for identification of HPB is to allow the isolates to grow 

in a histidine-containing broth followed by detection of histamine in the broth (Taylor et 

al. 1978). In many studies, these tests have been performed at 25-37°C (Yoshinaga 

and Frank 1982; López-Sabater et al. 1994a; Masson et al. 1996; López-Sabater et al. 

1996a; Ben Gigirey et al. 2000; Kim et al. 2000; Petäjä et al. 2000). The information 

obtained at these high temperatures is of little relevance to refrigerated foods (e.g. 

seafood, meat and dairy products). For chilled seafood, tests at 10°C or below are more 

appropriate  (Ababouch et al. 1991b; Paper 1; Paper 2).  

   

3.4.2 Molecular methods  

 Various PCR methods to detect the gene encoding histidine decarboxylase 

(hdc) have been developed (Landete et al. 2007). Primer sets for the detection of hdc in 

both Gram-negative and Gram-positive bacteria are available. Also a PCR assay to 

detect the four most important decarboxylase genes (histidine, tyramine, putrescine and 

cadaverine) from a wide range of Gram-positive and Gram-negative bacteria associated 

to food has been suggested (de las Rivas et al. 2006a). The ability of this multiplex PCR 

method to detect M. psychrotolerans has not been studied. The ability of PCR methods 

to differentiate between weakly and strongly histamine producing bacteria deserves 

further study. This is important if the PCR methods are to be used in seafood inspection 

as detection of weak HPB might lead to unnecessary concerns. 

 PCR methods targeting species-specific sequences rather than hdc could avert 

the detection of weak histamine-producing species. There is, however, the unsolved 
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problem with the variability in histamine-producing abilities observed in e.g. P. 

phosphoreum (Dalgaard et al. 2006). To solve this problem and to be able to distinguish 

between weak and strongly histamine-producing P. phosphoreum, further studies are 

needed. Kim et al. (2003a) developed a PCR assay with 16S rDNA primers. The unique 

primers for M. morganii made it possible to detect levels of 106-108 CFU/ml in a 

albacore -homogenate. An enrichment step at 37°C for 6 hours made it possible to 

detect 9 CFU/ml. However, the enrichment step changes the method from quantitative 

to qualitative. The method is not suitable for M. psychrotolerans due to the high 

temperature enrichment step. Furthermore, a method that detects the HPB at much 

lower levels without the enrichment step is needed. 

 

3.5 Occurrence of histamine-producing bacteria 

 HPB are part of the natural microflora in sea-water and a part of the natural flora 

in the intestines, gills and on the skin of fresh fish (Corlett et al. 1978; Okuzumi et al. 

1981; Smith et al. 1982; Okuzumi and Awano 1983; Okuzumi et al. 1984b; Okuzumi et 

al. 1984c; Kim et al. 2001b). HPB invade fish flesh from these reservoirs. This is 

reflected by higher histamine concentrations in fish flesh adjacent gills and intestines 

and higher histamine concentrations in undressed as compared to dressed fish (Frank 

et al. 1981; Taylor and Speckhard 1983; López-Sabater et al. 1996b; Kim et al. 1999; 

Kim et al. 2001b). HPB are also found in the water, baskets and floors/equipment at fish 

processing plants and fish markets (Corlett et al. 1978; Subburaj et al. 1984).  
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Figure 3.4 Specific spoilage organism (SSO) 
concept applied to histamine-producing bacteria. 
Typical changes in aerobic plate counts (dashed 
line) and histamine-producing bacteria (solid black 
line) and the concentration of histamine (solid blue 
line) during storage of fresh fish and seafood. 
Modified from Dalgaard (2006).  

 

  

 Only about 1% of the surface microflora of fresh fish represents HPB (Kimata 

1961; Ababouch et al. 1991a; Kim et al. 2001b). This agrees to the findings in Paper 1, 

where bacteria without the ability to produce histamine dominated the microflora of skin, 

gills, intestines and cut steaks of freshly caught tuna.  

The arobic plate count of newly cut tuna steaks can be relatively high (Paper 1). 

However cold storage and vacuum packaging may inhibit the growth of most of these 

bacteria allowing growth of the more psychrotolerant and anaerobic HPB e.g. M. 

psychrotolerans and P. phosphoreum.  As they grow faster than the remaining part of 

the microflora they become the dominating bacteria. This phenomenon is known as the 

specific spoilage organism (SSO) concept (Figure 3.4). When the bacterial population of 

prolific HBP reaches about 106 CFU/g histamine can be formed in toxic concentrations 

(Omura et al. 1978; Yoshinaga and Frank 1982).  

 Okuzumi et al. (1984b) observed seasonal variation in the identified HBP from 

common mackerel. M. morganii and the N-group bacteria (later identified as P. 

phosphoreum by Fujii et al. (1997)) were both present in the summer samples, whereas 

the N-group bacteria were the only HPB present in the winter samples. In the same 

study, storage temperature was also shown to be a selective factor of HPB.  
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4. Factors affecting histamine formation  
 

 

 The formation of histamine in seafood is obviously influenced by availability of 

substrate (free histidine) in fish flesh and thereby the fish species. Also 106-107 HPB/g 

is needed before histamine can be produced in toxic concentrations (Ryser et al. 1984; 

Tabor and Tabor 1985; Kim et al. 2000; Lorca et al. 2001; Kim et al. 2001a; Guizani et 

al. 2005; Paper 1; Paper 5). Concentrations of HPB are low in the flesh of newly caught 

fish and significant growth is required before these bacteria to reach levels where 

histamine in toxic concentrations can be produced (Figure 3.4). Growth and the 

concomitant formation of histamine by HFB in seafood depend on several 

environmental factors including temperature, NaCl-concentration, pH, antimicrobial 

agents and composition of the storage atmosphere (Taylor 1986; Lehane and Olley 

2000; Paper 5). To facilitate the control of HFP it is important to know the effect of these 

parameters on the most important HPB. Factors that influence the rate of histamine 

formation in seafood are discussed below. 

 

4.1 Microbial contamination 

 HPB are part of the natural microflora on fresh fish (section 3.5) and cross 

contamination during handling on board fishing vessels, particularly gutting and 

cleaning, and during processing is most likely. Gingerich et al. (2001) found that HPB 

did not comprise a large part of the microflora associated with fish-processing facilities. 

However, for HPB little information is available on routes of contamination during 

seafood processing. For M. psychrotolerans information is needed on routes of seafood 

contamination as well as on its occurrence in both seafood and the environment.   
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4.2   Time and temperature 

 Temperature has a major impact on the formation of histamine in fresh natural 

contaminated seafood. As part of this thesis information from 124 storage trials has 

been compiled (Paper 5). These studies indicate that 500 ppm histamine can be formed 

in naturally contaminated seafood within a few hours at above +16°C, after about two 

days at +11°C to +15°C, after about three days at +6°C to +11°C and after as little as 

four but up to more then 25 days at -1°C to +5°C (Paper 5). The marked effect of 

temperatrure on histamine formation is due to microbial growth and activity and this has 

been confirmed for fish and broth inoculated with HPB (Figure 3.1;  (Arnold et al. 1980; 

Eitenmiller et al. 1981; Behling and Taylor 1982; Ryser et al. 1984; Tabor and Tabor 

1985; Klausen and Huss 1987b; Ababouch et al. 1991b; López-Sabater et al. 1996b; 

Kim et al. 2000; Paper 5). Clearly, chilling at 0°C (e.g. in ice) or below (e.g. in 

refrigerated seawater or slush ice) is efficient ways of delaying histamine formation in 

fresh fish. However, studies of naturally contaminated fresh fish has shown that 

histamine can be formed at 0°C and that toxic concentration of histamine above 500-

1,000 ppm may be formed. This, however, rarely occurs in less than 2-3 weeks (Papar 

5; López-Sabater et al. 1996b; Dalgaard et al. 2006). It is also important that  toxic 

concentrations of histamine formation in naturally contaminated fresh fish 2-5°C has 

been observed after about one week of storage although in most studies longer time of 

storage are required (Paper 1; Papar 5; Ababouch et al. 1991a; Dalgaard et al. 2006). 

The histamine formation in naturally contaminated fresh fish at 0-5°C can be explained 

by growth and activity of psychrotolerant bacteria including M. psychrotolerans and P. 

phosphoreum. This will be discussed in chapter 5 and 6, as it seems the most important 

factor to reduce the occurrence of HFP (Table 3.1).    

 Frozen storage during one to several weeks at -20-30°C significantly reduced 

the concentration of P. phosphoreum in fresh fish and markedly delayed histamine 

formation in the thawed products during chilled storage (Emborg et al. 2002; Dalgaard 

et al. 2006).  However, concentrations of E. aerogenes inoculated in milk and sail fish 

was not affected by storage at -20°C for 8 weeks and rapid production of histamine was 

observed in the thawed fish when stored at 25°C (Tsai et al. 2005a). The effects of 

freezing and frozen storage on M. psychrotolerans are not known and deserves further 

study. 
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4.3 Sodium chloride 

 Sodium chloride in concentrations above 1-2% reduces the growth rate and 

delay histamine formation by most Gram-negative HPB (Okuzumi et al. 1984a; 

Yamanaka et al. 1985; Ramesh and Venugopal 1986; Yamamoto et al. 1991; Ababouch 

et al. 1991b; Wendakoon and Sakaguchi 1993; Morii et al. 1994; Aytac et al. 2000). The 

growth rate of M. psychrotolerans is clearly affected by the concentration of NaCl in the 

growth medium (Figure 4.1; Paper 2; Paper 4). In addition the concentration of NaCl 

also affects the maximum population density (Nmax). Despite a 10-fold reduction in Nmax 

with increasing saltconcentration a corresponding reduction in the histamine 

concentration was not observed (Paper 4).  Similar observations have been obtained 

with M. morganii by Yamamoto et al. (1991) and Aytac et al. (2000). 
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Figure 4.1 Growth (black curves) and histamine 
formation (blue curves) by Morganella psychrotolerans 
in LB Miller broth at 5°C, pH 5.9 with 2 (■), 3 (●) and 4% 
(▲) NaCl (Paper 4). Error bars represent standard 
deviations of duplicate determinations.  

 

 Three incidents of HFP caused by cold-smoked tuna containing 1.3% and 2.2% 

and 4.6% salt in the water phase (WPS) have been reported (Emborg et al. 2006). 

However, products of this type are most often being produced with far higher 

concentrations of WPS (4.1-12.7%, Paper 2). To prevent toxic histamine formation by 

M, psychrotolerans is has been suggested that cold-smoked tuna should contain 5% 

WPS or more and that the declared shelf-life of no more than 3 to 4 weeks at 5°C 

(Paper 2). 5% WPS would also be beneficial for suppressing microbial pathogens 

(Clostridium botulinum and Listeria monocytogenes (Paper 2). In New Zealand, hot-
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smoked kahawai (Arripis trutta) has caused numerous outbreaks of HFP (Bremer et al. 

2003) and this product has been reported to contain 1.2% NaCl (corresponding to 1.6% 

WPS). Thus, low salt concentration in smoked fish seems to be an important risk factor 

for HFP.     

 

4.4 pH 

 pH of fresh fish and seafood products vary with the species of fish (from 5.4 to 

6.5), the season of  the year and the type of product (Huss 1995). In yellowfin tuna 

(Thunnus albacares) and in cold smoked tuna pH of 5.8 and 5.8-6.1 respectively are 

observed (Paper 1; Paper 2). 
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Figure 4.2 A) growth (black curves) and histamine production (blue curves) by M. psychrotolerans 
in LB Miller broth at 5°C with 3% NaCl and at pH 5.6 (■), 5.9 (●) and 6.3 (▲) and B) growth rates 
(days-1) of Morganella psychrotolerans at different pH-values determined in LB Miller broth at 10°C 
with 1% NaCl. Error bars represent standard deviation from duplicate determinations (Paper 4). 
 

 The growth rate of M. psychrotolerans was shown to be strongly affected by 

changes in pH between 5 and 5.6 (Figure 4.2A). However between 5.6 and 6.5 little 

effect was observed (Paper 4). The decrease of the growth rate prolonged as previously 

seen the time until histamine was formed in toxic concentrations (Figure 4.2B). pH also 

seems to lower Nmax without affecting the histamine concentration (Figure 4.2B), as 

observed for the concentration of NaCl (Figure 4.1). These findings are in agreement to 

what was earlier observed for M. morganii (Kimata 1961; Eitenmiller et al. 1981).  
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4.5 Atmosphere 

 Seafood packed in modified atmosphere can be distributed through retail 

cabinets in supermarkets. Another advantage of modified atmosphere packaging (MAP) 

is that growth and metabolite production of the spoilage bacteria is delayed, and shelf-

life therefore extended. The shelf-life extension observed with seafood, however, is not 

as pronounced as observed e.g. with fresh meat (Huss 1995). Studies has shown that a 

MAP with gas mixtures containing carbon dioxide (CO2) and nitrogen (N2) have minor 

effect on the HPB present in fresh seafood when compared to storage in air, while an 

O2 containing atmospheres decrease the growth rate of HBP and thereby increases the 

safe shelf-life (Paper 1; Paper 4). Likewise it was shown that the activity of inducible 

HDC isolated from P. phosphoreum decreased with increasing oxygen tension (Morii et 

al. 1994; Morii and Kasama 1995).  

 For M. psychrotolerans increasing concentrations of CO2 decreased the 

maximum polulation density (Nmax ) (as observed for NaCl and pH) but did not affect the 

maximum concentration of histamine produced (Paper 4). Furthermore it was shown 

that an O2-containing atmosphere lowered the growth rates significantly compared to 

vacuum packaging (VP) (Paper 1). This is previously observed for M. morganii (Aytac et 

al. 2000). VP is widely used for fresh tuna however, and precisely VP tuna has caused 

several incidents of HFP in England and Wales. To reduce the problems with HFP due 

to VP tuna it was suggested, that modified atmosphere packaging containing 40% CO2 

and 60% O2 were used instead of VP (Paper 1). 

 Filtered wood smoke contains moderate concentrations of carbonmonooxide 

(CO) and CO2 and is used for packaging of fresh fish in the USA. It has been shown 

that the treatment decreases the growth rate and delay the formation of histamine in 

mahi-mahi fillets compared to untreated fillets in air (Kristinsson et al. 2007). However 

the use of filtered wood smoke is not allowed within the EU (Directive 95/2/EC on food 

additives other than colours and sweeterners) due to the presence of CO. CO act as a 

colour stabilising component and may mask visual signs of spoilage to the consumer 

(Smulevich et al. 2007).  

 



 

 48

4.6 Other preserving parameters 

 Alternative preserving compounds like clove and cinnamon was shown to have 

a significant inhibitory effect on growth and histamine formation by M. morganii and E. 

aerogenes when 1% was applied to inoculated broth. The addition of NaCl enhanced 

the effect of clove (Wendakoon and Sakaguchi 1993; Shakila et al. 1996). Cardamom 

and turmeric exhibited a moderate inhibitory effect whereas pepper was ineffective 

(Shakila et al. 1996). Likewise, it was shown, that the use of potassium sorbate at a 

concentration of 0.5% inhibited growth and histamine foramtion by M. morganii and 

Klebsiella pneumoniae for at least 120 hours at 32°C and for 216 hours at 10°C. 

Sodium hexametaphosphate and sodium polyphosphate was less effective against 

these HPB (Taylor and Speckhard 1984). A gamma irradiation dose of 2.0 kGy 

decreased the concentration of M. morganii significantly compared to 0.5 kGy, and 

delayed ihistamine formation (Aytac et al. 2000). For M. psychrotolerans, the effect of 

spicies, organic acids and other preserving parameters remain to be determined.  
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5. Modelling growth and histamine formation by Morganella 

psychrotolerans 
 

 

 Mathematical models to predict the effect of environmental parameters on the 

growth of HPB and on their formation of histamine could be of considerable practical 

importance to the seafood sector and inspecting authorities. A predictive model can for 

example be used for: 

 

• Estimation of shelf-life so formation of histamine in high concentrations in seafood 

under realistic storage conditions is prevented. 

• Optimisation of storage conditions so a desired shelf-life is obtained. 

• Exposure assessment studies where the concentration of histamine in seafood must 

be determined at the time of ingestion. In fact, more detailed exposure assessment 

studies cannot be carried out unless models are available to predict histamine 

formation in seafood over time and as a function of product characteristics and 

storage conditions. 

 

 Despite the high occurrence of HFP, limited research concerning prediction of 

histamine formation in fresh and lightly preserved seafood products have been 

performed. Several parameters influence the formation of histamine in seafood (see 

Chapter 5) and the most important parameters must be included in the predictive 

models. Once developed the models must be validated, to ensure that predictions are 

applicable to observed measurements during processing and storage of naturally 

contaminated products. Validated mathematical models that accurately predict 

histamine formation in seafood are important as they can contribute to a reduction of 

histamine intake by consumers.  

 In this chapter development and validation of mathematical models for growth 

and histamine formation of M. psychrotolerans will be discussed and compared to the 

few existing models for histamine formation in food.    

 Growth of microorganisms in food typically follows a pattern with four stages 

referred to as the lag-, exponential-, stationary- and the death phase. The death phase 
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is typically observed when seafood products are sensory spoiled thus, not important for 

HFP and is not included in the present thesis. During the lag-phase cells are adjusting 

their physiology to environmental changes (e.g. packaging, addition of NaCl, change in 

temperature etc.) and no increase in cell concentrations is observed (Figure 5.1). The 

length of the lag-phase varies dependent on a magnitude of the environmental changes, 

and the physiological state of the microorganism. If growing cells are transferred from 

one environment to a similar one, a lag-phase may not occur (Ross and Dalgaard 

2004). During the exponential phase, cells multiply by a constant rate referred to as the 

maximum specific growth rate (µmax) (Figure 5.1). 
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Figure 5.1 A typical microbial growth curve 
showing the lag, exponential and stationary phase. 
µmax is the maximum specific growth rate and Nmax 
the maximum population density.  

 

 µmax is affected by environmental parameters. Depletion of nutrients or 

accumulation of metabolites will also at some stage reduce the specific growth rate and 

lead to the stationary phase where the microorganism reach their maximum population 

density (Nmax) (Figure 5.1). Changes in cell density over time (Figure 5.1) can be 

described with primary growth models to estimate kinetic parameters including lag time, 

µmax and Nmax (McMeekin et al. 1993; McKellar 2004). Secondary models can then be 

used to describe how environmental conditions like temperature, atmosphere, pH, water 

activity (aw) etc. influence the kinetic parameters (Whiting 1995; Ross and Dalgaard 

2004).  
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Formation of metabolites can be modelled by use of the yield concept. The yield 

concept suggests that the formation of biomass can be related to consumption of 

substrate by a constant yield factor (Monod 1949; Bailey and Ollis 1986). In a similar 

way the yield concept can be used to relate microbial metabolite formation to growth 

(Luedeking and Piret 1959; Jørgensen et al. 2000b; Dalgaard 2002). The yield concept 

has previously been used for modelling of histamine and tyramine formation in cold 

smoked salmon (Jørgensen et al. 2000b) and for trimethylamine formation in cod by P. 

phosphoreum (Dalgaard 1995b) Furthermore,  histamine formation by M. morganii in 

fishmeal (Torres et al. 2002) and in jack mackerel (Bermejo et al. 2004) have been 

modelled using the yield concept.  

 

5.1 Growth of Morganella psychrotolerans 

5.1.1 Primary modelling  

 Primary growth models should appropriately describe the kinetics of growth with 

as few parameters as possible. Numerous growth models have been developed (see 

reviews by Baranyi and Roberts (1994); Skinner et al. (1994); Whiting (1995); Baranyi 

and Roberts (1995); McDonald and Sun (1999); McKellar (2004)). The so-called 

Baranyi model is popular but complicated and most useful when included in application 

software (Food Combase Predictor (http://www.combase.cc/predictor.html), MicroFit 

(http://www.combase. cc/predictor.html) and DMfit (http://www.ifr.ac.uk/safety/DMFit/)).  

 In the present thesis an integrated and log transformed version of the expanded 

Logistic model (Turner et al. 1969; Dalgaard 2002) was used as primary model to 

describe growth by M. psychrotolerans (Eqn. 1). This model includes a lag phase and it 

is more flexible than the classical Logistic model where the parameter m has a fixed 

value of 1.0. The parameter m controls the degree of growth dampening when the 

concentration of cells (N) approaches the maximum population density (Nmax). An 

example is shown in Figure 5.2 for m = 1 and m = 0.4.   
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 In Eqn. 1 Nt and N0, (CFU/g) are the concentrations of M. psychrotolerans at 

time t and 0, respectively. µmax is the maximum specific growth rate, m is the dampening 

parameter that influence growth when Nt approaches Nmax. t is storage time (h) and tlag 

the lag time (h).  
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Figure 5.2 Predicted growth (black lines, log CFU/g) and 
histamine formation (blue lines, ppm). Growth and histamine 
formation was simulated by the expanded Logistic model 
(Eqn. 1) with m = 1.0 (solid lines) and m = 0.4 (dashed lines). 
For each of the growth curves histamine formation was 
predicted by using a constant yield factor (YHis/CFU) of 
0.000000063 mg histamine/CFU.  

 

  By combining the expanded logistic growth model with a yield factor (Yhis/CFU, 

mg/CFU) a primary model for histamine formation was obtained (see section 5.2). 
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 In the present thesis the concept of relative lag time (RLT, Eqn. 2) is used 

(Ross (Ross 1999; Mellefont et al. 2003). The concept is based on the hypothesis that 

the lag time is determined by the amount of work a microorganism has to do to adapt to 

a new environment and the rate at which this work can be done. RLT is calculated as 

the ratio of lag time (tlag) and generation time (tg) at identical conditions (Eqn. 2). 
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max
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RLT lag
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g

lag ⋅
=

⋅
==                                  Eqn. 2

   

5.1.2 Secondary modelling 

 Secondary models to predict the effect of environmental conditions on the 

kinetic parameters used in the primary model, have been extensively reviewed (Skinner 

et al. 1994; Whiting 1995; McDonald and Sun 1999; Ross and Dalgaard 2004). Several 

types of secondary models are widely used including square-root type models, cardinal 

parameter models, Arrhenius-type models, polynomial models and artificial neural 

network (ANN) models.  

 Square root type models (Eqn. 3) were initially suggested to replace Arrhenius 

models for the effect of temperature growth rates of bacteria (Ratkowsky et al. 1982).      

 

   ( )minmax TTbµ −⋅=                             Eqn. 3 

 

 In eqn. 3 b is a constant and T is the storage temperature. The parameter Tmin 

is the theoretical minimum temperature for growth (Figure 5.3). Importantly Tmin is a 

parameter that characterises the effect of temperature on growth of a microorganism. Its 

estimated value is below the lowest temperature at which growth of a microorganism is 

actually observed as shown in Figure 5.3 for M. psychrotolerans. In expanded square-

root type models parameters similar to Tmin are used to characterise the effect of e.g. 

pH (pHmin), aw (aw min) and the CO2 concentration in modified atmospheres (CO2 max) 

(Ross and Dalgaard 2004).  
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Figure 5.3 Square-root transformed growth rates 
plotted against the temperature at which they were 
obtained. Tmin can be determined as the intercept 
between the model and the temperature axis.  

 

 Within predictive food microbiology, cardinal parameter models (CPM) were 

described by Rosso et al (1995). These model are in several ways similar to to the 

square-root type model and they both include parameters with a biological 

interpretation. However, CPM includes parameters for minimum, maximum and 

optimum growth conditions (e.g. Tmin, Topt, Tmax, pHmin, pHopt, pHmax). CPM are also 

related to the so-called gamma (γ)-concept. This concept was introduced by Zwietering 

et al. (1992) and based on the assumption that: (i)  environmental parameters act 

independently on the growth rate of microorganisms and (ii) the combined effect can be 

predicted simply by multiplying terms for contributions from different parameter (Eqn. 4.) 

Thus, dimensionless gamma-factors (γ(i)) describe the decrease in growth rate under 

sub-optimal conditions (Eqn. 5). 

 

  ( ) ( ) ( ) ( ) ( )( )otherCOapHTµµ wopt γγγγγ ....2maxmax ⋅⋅⋅⋅⋅=                  Eqn. 4 
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In eqn. 4 and 5 µmax opt is the maximum specific growth rate at optimum conditions and 

γ(i) the relative effect of the different parameters. Importantly, each gamma-factor (γ(i)) 

must have a value between 0 and 1.  

  

 Square-root type models like CPM can be formulated so that terms for 

environmental parameters have values between 0 and 1 (Ross and Dalgaard, 2004, 

Eqn. 6; Eqn. 7). The main different between square-root type models and CPM is then 

the reference temperature that can be selected for the former but must be the optimum 

growth temperature for the latter. This difference can be important for psychrotolerant 

bacteria like M. psychrotolerans where growth at high temperature has little relevance 

for their importance in seafood. 

 ( ) ( )
2

min

min
max

2
minmaxminmax ' ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

⋅=↔−⋅=↔−⋅=
TT

TTbµTTbµTTbµ
ref

      Eqn. 6 

  

 In eqn. 6, Tref is a reference temperature which is lower than the temperature 

optimum for growth. The constant b’ correspond to µmax at Tref.    

 In the present thesis Eqn 7, was used to model the effect of environmental 

parameters (temperature (T), CO2, pH and aw) on square-root transformed growth rates 

(µmax) of M. psychrotolerans (Paper 4).  
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In eqn. 7 b corresponds to μmax at the reference temperature (Tref = 25°C) whereas Tmin, 

aw opt, aw min, pHmin, CO2 opt and CO2 max are the theoretical cardinal parameters 
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describing the effect of temperature, aw, pH and CO2 on μmax. For M. psychrotolerans 

CO2 opt and aw opt was assumed to be 0 and 1, respectively (Paper 4).  

 A term (ξ) was calculated as described by Le Marc et al. (2002) to take into 

account the effect of the interaction between the environmental parameters on μmax 

(Eqn. 7). Interaction between environmental parameters can be important and this has 

for example been shown for Listeria monocytogenes when growth in lightly preserved 

seafood is influenced by temperature, aw, pH, lactic acid, phenol and diacetate 

(Mejlholm and Dalgaard 2007b).  

 
Table 5.1 Cardinal parameter values for some microorganisms associated to seafood (modified 
from Dalgaard (2002)). 
 Parameter values  
Organism Tmin aw min pHmin %CO2 max References 

Shewanella putrefaciens -8.0 to -9.0 0.95 Nda 150-156 
Dalgaard (1993); Dalgaard 
(1995a); Koutsoumanis et al. 
(2000) 

Pseudomonads -6.1 to -11.4 0.95 nd 121 Neumeyer et al. (1997); 
Koutsoumanis et al. (2000) 

Photobacterium phosphoreum -9.0 0.95 4.3 376 Dalgaard (1993); Dalgaard et al. 
(1997) 

Lactic acid bacteria -3.1 to -11.4 0.93 4.2 232 
Koutsoumanis et al. (2000); 
Dalgaard et al. (2004), Mejlholm 
and Dalgaard (2007a) 

Brochothrix thermosphacta -10.9 nd Nd 187 Koutsoumanis et al. (2000) 

Listeria monocytogenes -2.3 0.92 5.0 112 Mejlholm and Dalgaard (2006) 

Enterobacteriaceae -0.7 nd nd nd Dalgaard et al. (2004) 

Morganella psychrotolerans -5.8 0.96 5.1 273 Paper 4 
a Not determined 

  

 The developed growth rate model (Eqn. 7) for M. psychrotolerans showed this 

bacterium to be slightly more sentive towards chilling than Shewanella and P. 

phosphoreum, but similar to psychrotolerant pseudomonades (Table 5.1). 

Psychrotolerant pseudomonades, Shewanella and P. phosphoreum are typical spoilage 

bacteria in iced fresh fish. However, M. psychrotolerans is more resistant to CO2 than 

Shewanella and psychrotolerant pseudomonades but less tolerant towards high 

concentrations of NaCl (Paper 5). In disagreement to a challenge test (Paper 2) it was 

found that, M. psychrotolerans was more sensitive towards NaCl than P. phosphoreum. 

 Polynomial models have been applied to describe the effect of many different 

environmental conditions. They are attractive because they relatively easily fits to 

experimental data by multiple linear regression and they allow most of the 

environmental parameters and their interactions to be taken into account (Gibson et al. 



                                                   5. Modelling the growth and histamine formation by Morganella psychrotolerans                         

 57

1988; Ross and Dalgaard 2004). However, their usefulness as secondary predictive 

models has some limitations. Firstly, a large number of parameters without biological 

interpretation. Secondly, polynomial models with cubic or quadratic terms have been 

criticised for being too flexible and with a tendency to model experimental errors 

(Baranyi et al. 1996). To overcome the problem with polynomial models being to flexible 

the use of constrained polynomial models was suggested (Geeraerd et al. 2004; 

Francois et al. 2005). In this way, illogical interpolation results and overfitting of the data 

can be avoided.    

 A constrained polynomial model was used in the present thesis to model the 

effect of environmental parameters on log Nmax for M. psychrotolerans (Paper 4) (Eqn. 

8).  

 

   2
42310maxlog ww abCObabbN ⋅+⋅+⋅+=                  Eqn. 8 

  

 The maximum population density of M. psychrotolerans was clearly affected by 

the concentration of NaCl (included in the model as aw) (Figure 4.1, Paper 4). This 

phenomenon was explained by elongation of the cells when exposed to salt stress 

(Figure 5.4). This phenomenon has been observed previously for Salmonella and 

Listeria (Mattick et al. 2000; Geng et al. 2003; Hazeleger et al. 2006; Mukhopadhyay et 

al. 2006). With specific staining techniques it has been documented for Salmonella and 

Listeria that the prolonged cells or filaments were composed by several normal sized 

cells (Hazeleger et al. 2006).  
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Figure 5.4 Phase contrast microscopy showing the effect of NaCl on the 
length of M. psychrotolerans cells (1000X magnification - Unpublished 
data). 
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Various results were obtained with DAPI (4’,6-Diamidion-2-phenylindole) staining of M. 

psychrotolerans exposed to high salt (results not shown) and could neither disprove or 

confirm the hypothesis. If the filaments are composed of several cells it might mean that 

one prolonged cell result in one single colony while, the histamine formation of the 

prolonged cell corresponds to the outcome from several cells. This also explains the 

apparent increase in histamine yield per cell (Yhis/CFU) observed for high NaCl 

concentrations. The developed model for histamine formation quantitatively takes this 

phenomenon into account.  It is expected, even though not documented, that the same 

phenomenon occurs when M. psychrotolerans are exposed to increasing CO2 

concentrations.   

 Experimental data suggested Nmax of M. psychrotolerans was affected by pH 

(Figure 4.2B). The effect, however, was not statistically significant. This may be due to a 

limited number of experiments with viable count growth data at different pH. Growth 

rate-values for different pH were primarily obtained by automatically absorbance 

measurements (Paper 4). Thus, further studies are needed to determine if pH should be 

included in the model for Nmax.  

 

5.2 Histamine formation by Morganella psychrotolerans 

 Under the assumption, histamine formation is unaffected by the growth phases 

the yield concept was used to relate growth and histamine formation of M. 

psychrotolerans (Eqn. 9, Paper 4). 

  

   ( )( )0/0 NNYHisHis tcfuHist −⋅+=                                              Eqn. 9 

 

In Eqn. 9 Hist and His0 are the concentrations of histamine (ppm) at time t and 0, 

respectively. YHis/CFU is the yield factor for histamine formation per CFU (mg 

histamine/CFU). Nt and N0 is the cell concentration (CFU/g or CFU/ml).  
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 The yield factor (Yhis/CFU) was influenced by the environmental parameters but 

variation in log(Yhis/CFU) was related to variation in log Nmax (Eqn. 10). 

 

   max10/ loglog NbbY cfuHis ⋅+=                  Eqn. 10 

 

 The yield factor has previously been used for comparison of the histamine 

producing abilities for several bacterial strains (Jørgensen et al. 2000b). In that study 

the apparent yield factor was calculated as: 
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where Ninitial and Nfinal are the initial and final cell concentration (CFU/g). Hisinitial and 

Hisfinal are the initial and final concentration of histamine (ppm). Jørgensen et al. (2000b) 

found the highest histamine formation per cell i.e. the lowest pYHis/CFU for P. 

phosphoreum.  

 NaCl- and CO2-concentrations affected the yield factor for M. psychrotolerans 

and a secondary model to describe these effects was developed (Paper 4). Using this 

model the yield factor for histamine formation by M. psychrotolerans was compared to 

yield factors for histamine formation by other HPB as different environmental conditions 

(Table 5.2). In most cases, the predicted yield factor for histamine formation by M. 

psychrotolerans was higher than or similar to values observed for other HPB.  

 In some experiments with M. psychrotolerans an increase in the histamine 

concentration was observed after the time when the bacteria reached the maximum 

population density (Figure 3.1; Paper 4). In these situations, a constant yield factor for 

histamine formation is not optimal to describe the entire histamine formation curve. 

However, to predict the time to reach toxic histamine concentration (500-100 ppm) the 

simple yield concept seemed appropriate (Figure 3.1, Figure 4.1, Figure 4.2, Paper 4). 



 

   

Table 5.2 Apparent yield factor values (pYhis/CFU) for formation of histamine by selected strongly histamine producing strains and the predicted 
yield factor value for Morganella psychrotolerans stored at the same conditions.  

Organism Substrate Temp 
(°C) 

Time 
(hours) 

pYhis/CFU 
(-log(µg/CFU)) 

 

Predicted pYhis/CFU 
(-log(µg/CFU 
Morganella 
psychrotolerans)a 

References 

Enterobacter aerogenes Mackerel extract 20 96 5.3 ± 0.1 (n=2) 4.9 Wendakoon and Sakaguchi (1992) 
 Broth 10 168 6.0 4.9 Ryser et al. (1984) 
 Broth 20 96 5.9 4.9 Ryser et al. (1984) 
Klebsiella oxytoca Tuna 8 84 4.3 4.8 López-Sabater et al. (1996b) 
 Tuna 20 15 4.6 4.9 Veciana-Nogués et al. (2004) 
 Tuna 20 18 4.8 4.8 López-Sabater et al. (1996b) 
Klebsiella pneumoniae Broth 10 48 5.8 4.8 Ryser et al. (1984) 
 Broth 20 24 5.9 4.8 Ryser et al. (1984) 
Morganella morganii Broth 4 336 -b 4.6 Kanki et al. 2004 (2004) 
 Mackerel/albacore/mahi-mahi 4 336 - 4.9 Kim et al. (2002) 
 Bluefish 15 72 2.8 4.8 Lorca et al. (2001) 
 Tuna 20 15 3.5 4.9 Veciana-Nogués et al. (2004) 
 Tuna 8 84 4.1 4.8 López-Sabater et al. (1996b) 
 Albacore juice 15 72 4.6 4.9 Kim et al. (2000) 
 Broth 12 240 4.7 4.6 Kanki et al. 2004 (2004) 
 Tuna 20 18 4.8 4.8 López-Sabater et al. (1996b) 
 Mackerel extract 20 96 4.9 ± 0.2 (n=2) 4.9 Wendakoon and Sakaguchi (1992) 
 Bluefish 10 120 5.1 4.8 Lorca et al. (2001) 
 Broth 20 120 5.2 4.6 Kanki et al. 2004 (2004) 
 Broth 25 40 5.3 4.9 Klausen and Huss (1987b) 
 Broth 10 168 5.8 4.8 Ryser et al. (1984) 
 Broth 20 96 5.9 4.8 Ryser et al. (1984) 
 Mackerel/albacore/mahi-mahi 15 48 6.1 ± 0.1 (n=3) 4.9 Kim et al. (2002) 
 Bluefish 5 168 6.3 4.8 Lorca et al. (2001) 
Morganella psychrotolerans Tuna 2 528 4.1 4.9 Paper 1 
 Tuna 2 720 4.3 4.6 Paper 1 
 Broth 10  4.5 4.9 Paper 1 
Photobacterium phosphoreum Tuna 2 528 3.4 4.9 Paper 1 
 Broth 10  4.2 4.9 Paper 1 
 Broth 10  4.4 4.9 Paper 2 
 Herring 7 120 4.4 ± 0.3 (n=2) 4.6 Van Spreekens (1987) 
 Broth 4 336 4.5 4.6 Kanki et al. 2004 (2004) 
 Broth 20 120 4.6 4.6 Kanki et al. 2004 (2004) 
 Broth 12 240 4.6 4.6 Kanki et al. 2004 (2004) 
 Herring 4 192 5.0 ± 1.4 (n=2) 4.6 Van Spreekens (1987) 
a Where no information on NaCl concentration and pH where provided, the following values were assumed: pH 5.9, NaCl in broth: 0.5%, in fish, fish juice 
and extract: 0.3% 
b No histamine produced. 
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5.3 Comparison of models for histamine formation in seafood 

 Prior to the present thesis more detailed mathematical models have not been 

developed for histamine formation in seafood (Paper 4). However, a few simple models 

that take into account the effect of storage temperature but not the initial concentration 

of bacteria have been suggested. These models are briefly described and an evaluation 

of their performance for prediction of histamine formation in different seafoods is 

presented. 

  

 Frank et al. (1983) suggested a simple and entirely empirical model describing 

the formation of histamine in skipjack tuna when stored at constant temperatures 

between 70°F and 100°F (21.1°-37.8°C) (Eqn. 12): 

 

  13.854.86-32 TempTime10 28  (mg/kg)  Histamine ⋅⋅⋅=                           Eqn. 12                  

 

where Time is the storage time in hours and Temp is the storage temperature in °F. The 

model was developed on the basis of histamine concentrations in skipjack tuna as 

determined for 34 different combinations of storage temperature (21.1°C - 37.8°C) and 

time (0 - 42 h). No other parameters were taken into account. As shown in Paper 5 this 

simple model provide predictions for the formation of toxic concentration of histamine in 

skipjack tuna that correspond reasonably with the histamine formation observed in 

some other studies with this fish species. However, the model is not very accurate for 

skipjack tuna and for other fish species the lack of accuracy seems to be even worse. 

  

 Frank et al. (1981) showed the histamine formation in skipjack tuna to be faster 

in portions of tuna flesh close to the head (anterior part) than in portions of flesh closer 

to the tail (posterior part). As shown in Figure 5.5 the model of Frank et al. (1983) 

provides predictions corresponding to the highest histamine concentrations observed in 

anterior parts of skipjack tuna.   

  

 

 

 



                                                5. Modelling growth and histamine formation by Morganella psychrotolerans                          

  63   

 By using the same approach as for the model described above Frank and 

Yoshinaga (1987) developed an empirical model for histamine formation in skipjack 

tuna stored at constant temperatures between 30°F and 60°F (-1.1°C to +15.6°C) (Eqn. 

13): 

 

 Time4.436-7 (1.0907)12.92)-(Temp1019.27  (mg/kg)  Histamine ⋅⋅⋅=                   Eqn. 13 

 

where Temp is the storage temperature in °F and Time is the storage time in days. 

Unfortunately, the ability of this model to predict histamine formation in skipjack tuna or 

in other seafoods at low temperature seems limited (Table 5.3). 
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Figure 5.5 Comparisons of histamine concen-
trations (ppm) predicted by the model of Frank et 
al. (1983) and concentrations observed in the 
anterior or posterior part of skipjack tuna. The fish 
was stored for 24 hours at different storage 
temperatures from 26.7°C to 37.8°C.  
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Table 5.3 Comparisons of histamine concentrations as observed in storage trials with seafood 
and concentrations predicted by the model of Frank and Yoshinaga (1987). 

Histamine (ppm) Fish species Temp. 
(°C) 

Time 
(days) Predicted Observed 

Difference 
(%)b References 

Tuna   0 21    6 950 -99.4 López-Sabater et al. (1996b) 
Garfish, spring   0 15    3   21 -83.8 Dalgaard et al. (2006) 
Garfish, autumn   0 17    4 406 -99.0 Dalgaard et al. (2006) 
Yellowfin tuna   0 17    4        26 -84.5 Kerr et al. (2002) 
Yellowfin tuna   0 17    4        77 -94.8 Kerr et al. (2002) 
Yellowfin tuna   2 19  10 140 -92.6 López-Gálvez et al. (1995) 

Mackerel   2 12   6    14 -59.7 Fernández-Salguero and Mackie 
(1979) 

Skipjack   4   9   8 2,800a -99.5 Silva et al. (1998) 
Skipjack   4 12 11 4,000a -99.6 Silva et al. (1998) 
Yellowfin tuna   4 15 14        61 -77.0 Kerr et al. (2002) 
Yellowfin tuna   4 15 14      150 -90.6 Kerr et al. (2002) 
Garfish, spring   5   9   11      893 -98.7 Dalgaard et al. (2006)  
Garfish, autumn   5   7    9    1,270 -99.3 Dalgaard et al. (2006)  
Bluefin tuna   8   7 21       506 -95.9 Veciana-Nogués et al. (1997) 
Bluefin tuna   8   9 24  3,682 -99.3 Veciana-Nogués et al. (1997) 
Skipjack 10   6 30 6,000a -99.7 Silva et al. (1998) 
Yellowfin tuna  17   2 77        71  +8.0 Kerr et al. (2002) 
Yellowfin tuna  17   2 77      150 -48.9 Kerr et al. (2002) 
a The histamine concentrations were measured in the anterior part of the Skipjack tuna. 
b Calculated as ((predicted-observed)*100/observed). 
 

 More recently Torres et al. (2002) proposed a model for the effect of 

temperature (10°C to 30°C) on growth and histamine formation by the mesophilic and 

histamine-producing bacterium M. morganii. The growth and histamine formation by this 

bacterium was stated by Torres et al. (2002) to be independent of pH within the range 

from 5.5 to 7.0. The effect of temperature on the maximum specific growth rate (µmax) of 

M. morganii was described by Arrhenius kinetics (Eqn. 14). 

   ⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅=

TR
E-ExpA  )(days a1-

maxμ                 Eqn. 14                 

 

with A = 3.63*1016 (days-1), the activation energy (Ea = 88.89 kJ*mol-1) and the gas 

constant (R = 8.31 J*mol-1 * K-1). A specific primary model to describe growth of M. 

morganii as a function of time was not specified by Torres et al. (2002) who found a 

simple yield factor sufficient to relate histamine formation to growth of M. morganii. In 

addition Bermejo et al. (2002; 2004) suggested a primary model for histamine formation 

by mixed microflora broth and fresh fish. 
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The models by Torres et al. (2002) and Bermejo et al.  (2002; 2004) were 

developed for Chilean jack mackerel (Trachurus murphyii) and jack mackerel 

(Trachurus symmetricus) respectively. Fish species primarily used for reduction to fish 

meal. The maximum (observed and predicted) concentration of histamine was 200-300 

ppm, which is markedly different from products of main interest in the present thesis. 
  
 A secondary polynomial model including the effect of temperature, pH and NaCl 

on growth rate, lagphase and the formation of 2-phenylethylamine, tyramine and total 

biogenic amines by the Gram-positive Enterococcus faecalis in skim milk was proposed 

by Gardini et al. (2001). The growth rate of E. faecalis was influenced by all three 

parameters and it was conclude that the production of amines was mainly dependent on 

the extent of growth. However, the model for formation of biogenic amines was not 

related to the growth rate and temperature was shown not to affect the concentration of 

biogenic amines (Gardini et al. (2001) 

 

 A growth model developed to predict food spoilage with a mixture of mesophile 

Enterobacteriaceae (Escherichia coli, Enterobacter agglomerans, Klebsiella oxytoca, 

Klebsiella pneumoniae and Proteus vulgaris) and one strain of Aeromonas hydrophila 

was constructed using a quadratic polynomial model (Braun and Sutherland 2005). 

Growth predicted by this model, however, was markedly slower than the predicted 

growth for M. psychrotolerans (results not shown). Also, predicted growth rates for 

psychrotolerant bacteria in beef (Giannuzzi et al. 1998) were slower from those 

predicted for M. psychrotolerans. None of the available models was able to predict 

growth of M. psychrotolerans or histamine formation in chilled seafood. The 

development of a new model for growth and histamine formation by M. psychrotolerans 

therefore seems relevant. In fact, further, studies are needed to validate the developed 

model with naturally contaminated seafood and define the developed models range of 

applicability with respect to products and storage conditions (Paper 4).  
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6. Assessment and management of histamine formation in 
seafood  

 

 

 Control, regulation and information are crucial elements to reduce the frequency 

of HFP and ensure product safety. EU and USA have established critical limits for 

concentrations of histamine in seafood and require all seafood dealers and processors 

to comply with the Hazard Analysis Critical Control Point (HACCP) regulation 

(FDA/CFSAN 2001c; EC 2005). In this chapter, the current legislation and 

recommendations within EU and USA are discussed in relation to the new results from 

the present thesis.   

 

6.1 Control approaches towards formation of histamine in seafood 

 Temperature is the most important parameter to control histamine formation in 

fresh fish and seafood products (Chapter 4.2). At the same time, temperature is 

exposed to the highest risk of fluctuation during storage and distribution. Regulations for 

both EU and USA aim as preventing high temperature storage and thereby reducing 

histamine formation in fresh fish and seafood products. According to EU regulation (EC 

853/2004) “Fresh fishery products, thawed unprocessed fishery products, and cooked 

and chilled products from crustaceans and molluscs, must be maintained at a 

temperature approaching that of melting ice” (EC 2004). With respect to practical 

seafood inspection this is interpreted as temperatures between 0°C and +2°C (DVFA 

2007). The regulation also applies for fishing vessels but the time to reach this 

temperature is not specified as in the guidance from FDA (Table 6.1). Storage and 

distribution of lightly preserved seafood within EU are regulated by local authorities and 

in Denmark products like smoked and gravad products with less than 6% salt and pH 

above 5 should be stored and distributed at 5°C or below (DVFA 2006). In USA fresh 

fish and seafood products are to be stored at 4.4°C or below (FDA/CFSAN 2001c). 

However, if fresh fish are packed in reduced oxygen atmosphere (MAP or vacuum) the 

temperature limit is reduced to 3.3°C in order to prevent growth of Clostridium 

botulinum. Lightly preserved seafood products, packed in reduced oxygen, can be 
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stored at 4.4°C if the concentration of salt in the water phase is above 3.5% 

(FDA/CFSAN 2001a; FDA/CFSAN 2001b).  

 
Table 6.1 Summary of the current FDA guidance for maximum time limits for vessels to chill their 
fish, to prevent formation of histamine. (Modified from FDA/CFSAN 2001 and 
http://www.iceyourfish.seagrant.org/haccp.html - accessed June 17th 2007). 

 Ice 
Ice slurry or 

refrigerated seawater 
or brine at 4.4°C 

Ice slurry or 
refrigerated seawater 

or brine at 10°C 
All fish prone to 
histamine formation < 9 
kg 

Store in ice within 12 
hours of death 

Store in slurry or 
refrigerated seawater 
within 12 hours of death 

Store in slurry or 
refrigerated seawater 
within 9 hours of death 

    
All fish prone to 
histamine formation 
when water or air 
temperature is 28.3°C or 
above 

Store in ice 6 hours 
of death 

Store in slurry or 
refrigerated seawater 
within 6 hours of death 

Store in slurry or 
refrigerated seawater at 
4.4oC or below 

    
Tuna > 9 kg - gutted Store in ice 6 hours 

of death 
Store in slurry or 
refrigerated seawater 
within 6 hours of death 

Store in slurry or 
refrigerated seawater at 
4.4oC or below 

   
Tuna > 9 kg - ungutted Bring internal 

temperature to 10°C 
within 6 hours of 
death, continue 
chilling until 4.4°C or 
less 

Bring internal 
temperature to 10°C 
within 6 hours of death, 
continue chilling until 
4.4°C or less 

Use slurry or refrigerated 
seawater at 4.4oC or 
below 

 

 Within both EU and USA regulations require all seafood dealers and processors 

that sell fish and seafood products to follow strict monitoring and control procedures to 

prevent the development of histamine. They have to comply with the HACCP 

regulations (FDA/CFSAN 2001c; EC 2005).  The HACCP principles are based on 

identification of the hazard followed by pointing out critical control points (CCPs) where 

specific controls can be applied to prevent, eliminate or minimise risk of food safety 

hazards. Typical manufacturing CCPs are receiving, cooking, cooling or storing 

seafood. To ensure that safe products are produced maximum or minimum boundaries, 

called critical limits are established. For fresh fish and seafood products prone to 

histamine formation maximum temperatures for storage is an obvious critical limit. In 

case products surpass the critical limits corrective actions must be implemented. If a 

cooler fails, for example, a dealer could ice the fish to keep it cold or move it to another 

cooler. All monitoring activities must be documented on paper, and records are 

reviewed weekly by a HACCP-trained individual (Huss et al. 2004). 
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6.2 Critical limits for histamine concentrations in seafood  

6.2.1 EU  

 The Commissions regulation (EC) No 2073/2005 of 15. November 2005, on 

microbiological criteria for foodstuffs (EC 2005) indicates histamine monitoring of fish 

species of the following families: Scombridae, Clupeidae, Engraulidae and 

Coryphaenidae. 

 Nine samples must be withdrawn from each batch and concentrations of 

histamine must comply with the requirements indicated in Table 6.2. Specifically: 

  

• The mean value must not exceed 100 ppm 

• Two samples may have a value of more than 100 ppm but less than 200 ppm 

• No sample may have a value exceeding 200 ppm. 

  
Table 6.2 Critical limits for histamine in seafood. 

  Limitsa  
Region Products m M Regulation 

EU Fishery products from fish species 
associated with a high amount of histidineb  100 200 

EU 

Fishery products which have undergone 
enzyme maturation treatment in brine, 
manufactured from fish species associated 
with a high amount of histidineb 

200 400 

Commission regulation 
(EC) No 2073/2005 of 
15 November on  
2005,  Chapter 1 Food 
safety criteria  

USA 
Tuna, mahi-mahi and many other species 
(www.cfsan.fda.gov/~comm/haccp4c1.html 
- Accessed July 17th, 2007)   

50c 500d FDA/CFSAN 2001  

a mg histamine per kg product (ppm). m and M indicate the lower and upper limit respectively. 
b Particularly fish species of the families: Scombridae (bonitos, kingfish, mackerels, seerfish, tunas 
and wahoo), Clupeidae (herrings, shads, sardines and manhadens), Engraulidae (anchovies), 
Coryphaenidae (dolphinfishes including mahi-mahi), Pomatomidae (bluefishes) and 
Scombresosidae (sauries).   
c Defect action level 
d Toxicity level 

 
 For fishery products, which have undergone enzymatic maturation treatment in 

brine other critical limits are applicable (Table 6.2). It is surprising that Belonidae 

(garfish), Gempylidae (escolar and oilfish), Istiophoridae (marlin and sailfish) and 

Xiphiidae (swordfish) are not mentioned in the EU regulation as these fish species have 

caused several incidents of HFP (Table 2.7, Table 2.6).  
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 Examinations of histamine must be carried out in accordance with reliable, 

scientifically recognised methods, such as HPLC. Histamine is the only biogenic amines 

for which critical limits have been settled. 

 

6.2.2 USA 

 Because histamine generally is not uniformly distributed in a decomposed fish, 

a guidance level of 50 ppm has been set in USA. If 50 ppm is found in one section, 

there is the possibility that other sections may exceed 500 ppm (Table 6.2). The 

legislation applies to many fish species including escolar, oilfish, and marlins but not 

garfish, sailfish and swordfish (FDA/CFSAN 2001c). According to the U.S. Food and 

Drug Administration compliance programs the official fluorometric method from AOAC is 

used for detection of histamine in seafood (Rogers and Staruszkiewicz 1997).  

 

6.3 Application of the developed models  

 To demonstrate the potential use of the M. psychrotolerans model for 

management of safety and shelf-life, three examples are provided, where realistic 

product characteristics and storage conditions are varied. A preliminary software 

version of the M. psychrotolerans model was made in Excel to demonstrate and 

illustrate its application (see e.g. Figure 6.1). 

 

6.3.1 Temperature 

 In Figure 6.1 the difference between the recommended storage temperature for 

fresh vacuum packed fish in EU and USA are illustrated. A critical limit of 100 ppm 

histamine is used (Table 6.2) to determine the shelf-life. For fresh tuna (pH 5.8) with a 

low initial concentration of 10 M. psychrotolerans/g the predicted time to reach the 

critical histamine concentration is 3-5 days shorter at 3.3°C compared to at 2.0°C 

(Figure 6.1). At 0°C the predicted time to formation of 100 ppm histamine in this product 

is 28 days (results not shown).  It is interesting to predict histamine formation under 

fluctuating temperature storage conditions. The developed model, however, have not 

yet been validated under such conditions. 
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  Product characteristics and storage conditions Product 1  Product 2 
  Morganella psychrotolerans, CFU/g 10  10 
   Storage period, days 30  30 
   Temperature, °C  2.00  3.30 
   Water phase salt in product, % 0.30  0.30 
   pH  5.80  5.80 
   % CO2 in headspace gas equilibrium  0.0  0.0 
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Figure 6.1 Predicted growth (without lag time) and histamine formation in 
fresh vacuum packed tuna by the Morganella psychrotolerans model (Paper 
4). Growth (bold lines) and histamine formation (fine lines) was predicted at 
2°C (red curves) representing he EU regulation (EC 2004) and at 3.3°C (Blue 
curves)  representing the recommendation by FDA (FDA/CFSAN 2001c). 

 

6.3.2 Initial concentration of M. psychrotolerans 

 HPB have been isolated from skin, gills intestines and muscle tissue of spoiling 

fish and are considered a natural part of the microflora associated with fish (Chapter 4; 

Paper 5). The prevalence of M. psychrotolerans in fresh fish and in seafood products is 

however unknown and future surveys of M. psychrotolerans are needed. It is not 

unrealistic to assume that the natural concentration of M. psychrotolerans on skin and 

gills is low and that a slightly higher concentration is present in the intestines. Post 

harvest contamination of the fresh fish is critical and may occur at several levels; aboard 

the vessel, at the processing plant, in the distribution system and at the end user (Taylor 

1986; Kim et al. 2003b). A post harvesting contamination of 104 CFU/g and further 

storage at 5°C in the consumer’s home is illustrated in Figure 6.2. The higher initial 

concentration of M. psychrotolerans results in a decreased safe shelf-life with 4 days. It 

is, however, worth to mention that studies in New Zeeland, Sweden, Ireland, USA, 

Greece and France have shown that the temperature in home refrigerators fluctuate 
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and often are 1-2° above the temperature recommended. In some studies 25% of the 

investigated refrigerators were above 10°C (Sergelidis et al. 1997; Laguerre et al. 2002; 

Marklinder et al. 2004; Kennedy et al. 2005; Gilbert et al. 2007; Godwin et al. 2007). It 

has been stated, that the shelf-life of high quality tuna is 11 to 14 days in ice (Kim et al. 

2004). It is therefore interesting that even with a high initial contamination of M. 

psychrotolerans (104 CFU/g), a predicted histamine concentration of 100 ppm is not 

reached until day 14 (results not shown).   
 

            
  Product characteristics and storage conditions Product 1  Product 2 
  Morganella psychrotolerans, CFU/g 10  10000 
   Storage period, days 15  15 
   Temperature, °C  5.0  5.0 
   Water phase salt in product, % 0.30  0.30 
   pH  5.80  5.80 
   % CO2 in headspace gas equilibrium  0.0  0.0 
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Figure 6.2 Predicted growth (without lag time) and histamine formation in 
fresh vacuum packed tuna by the Morganella psychrotolerans model 
(Paper 4). Growth (bold lines) and histamine formation (fine lines) were 
predicted for low (red curves) and high (blue curves) initial concentration 
of M. psychrotolerans. 

 

6.3.3 Product formulation 

 The M. psychrotolerans model can be used to identify combinations of product 

characteristics and storage conditions that prevent or delay the growth of M. 

psychrotolerans to achieve a desired shelf-life. Figure 6.3 illustrates how adjustment of 

the water phase salt (WPS) concentration can prolong the safe shelf-life for products 

like cold-smoked tuna. In this example the 2.2% WPS is derived from an incident of 
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HFP (Paper 2) and compared to a product with 5% WPS. By adding the right amount of 

salt a desired shelf-life can be obtained. This clearly demonstrates that the salting 

process during production of cold-smoked tuna is critical to control the growth and 

formation of histamine by M. psychrotolerans.  

 
            
  Product characteristics and storage conditions Product 1  Product 2 
  Morganella psychrotolerans, CFU/g 10  10 
   Storage period (Days) 60  60 
   Temperature, °C  5.0  5.0 
   Water phase salt in product, % 2.2  5.0 
   pH  5.90  5.90 
   % CO2 in headspace gas equilibrium  0.0  0.0 
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Figure 6.3 Predicted growth (without lag time) and histamine formation 
in vacuum packed cold-smoked tuna by the Morganella psychrotolerans 
model (Paper 4). Growth (bold lines) and histamine formation (fine lines) 
were predicted in a product with 2.2% WPS involved HFP (red curves, 
Paper 2) and in a product with 5% WPS (blue cueves) as suggested in 
Paper 2.  

 

 

 The suggested WPS of 5% in cold-smoked tuna combined with a shelf-life of no 

more than 3-4 weeks seems to agree with the prediction (paper 4). However, from the 

validation of the model it was obvious that further evaluation and possibly improvement 

of the model are needed. Particular for seafood with added salt, high concentration of 

CO2 and products stored at fluctuating temperatures, improvements are needed. Adding 

the concentration of smoke components as a parameter in the model may improve the 

accuracy of the model for that type of products. It has been shown that lactic acid 

bacteria often dominate the spoilage flora of cold smoked seafood products (Sims et al. 
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1992; Paludan-Muller et al. 1998; Leroi et al. 1998; Hansen and Huss 1998; Jørgensen 

et al. 2000b; Lyhs et al. 2002; Olofsson et al. 2007). Thus, an extension of the model to 

include the interaction of lactic acid bacteria and M. psychrotolerans may therefore 

improve the performance of the model.  
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7. Conclusion and perspectives 
 

 

 Seafood is beneficial for the human health but consumption is also associated 

with certain risks of diseases, including the risk of histamine fish poisoning (HFP). Even 

though good statistics on the occurrence are lacking due to underreporting and 

misdiagnosis, HFP is one of the most frequently observed diseases caused by seafood. 

Related to the present Ph.D. project, all reported incidents of HFP caused by seafood in 

Denmark during a three-year period were investigated. The study focused on 

identification of the histamine-producing bacteria (HPB) present in the seafood and 

chemical characterisation of the products. In addition, patients answered a 

questionnaire concerning seafood consumption and symptoms. The typical symptoms 

observed during the three-year period were flushing, rash, diarrhoea, vomiting and 

headache. Tuna products (fresh, cold-smoked and canned) caused 69% of the 

observed incidents and escolar (fresh and smoked) caused 25%. Swordfish caused the 

last incidents.  

 It is generally accepted, that concentrations of 500-1,000 ppm histamine cause 

HFP in the average individual. These findings were supported in the present thesis. 

Histamine concentration may vary within a batch of fish as well as within a single fish. 

The findings of 50-100 ppm histamine in one sample may imply that other samples may 

contain histamine in higher concentrations. Thus, the critical limits (100 ppm in EU and 

50 ppm for USA) for histamine in seafood were found appropriate. The evaluation of 

HFP showed no evidence for establishment of critical limits for biogenic amines other 

than histamine since proportionality was shown between concentrations of histamine 

and of other biogenic amines. Furthermore, new investigations with volunteers are 

required to elucidate the uncertainties concerning the toxic threshold of histamine and 

the potentiating effects of other biogenic amines.       

 Identification of the microorganism associated with histamine formation was 

successful in a total of five Danish incidents (Table 3.1). For the first time, the bacteria 

responsible for histamine formation in cold smoked tuna were identified. For the 

remaining incidents either no isolates were obtained at all (no remnants or heat-treated 
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sample) or no strongly HPB were identified. From 1955 to 2002, the HPB responsible 

for histamine formation in seafood causing HFP have only been identified in five 

incidents. Hence, the present Ph.D.-thesis significantly increases the knowledge about 

the specific HPB that actually causes HFP. It was shown that psychrotolerant HPB 

might be as important as mesophile HPB with respect to histamine formation in seafood 

causing HFP in Denmark. A strongly histamine-producing and psychrotolerant variant of 

M. morganii was isolated in two incidents of HFP. The organism was identified during 

the present Ph.D. study using a polyphasic approach including multi locus sequence 

and recognised as a new species of Morganella. This new species was named 

Morganella psychrotolerans. Fragments of seven protein-encoding housekeeping genes 

all showed less than 90.9% similarity between the two groups of M. morganii and M. 

psychrotolerans. M. psychrotolerans differ from M. morganii with respect to growth at 

0°C and 37°C or in 8.5% NaCl (w/v) and fermentation of D-galactose. Gene-sequences-

analysis revealed the possibility for subdivision of M. psychrotolerans just as with M. 

morganii. However, further studies with new strains of M. psychrotolerans are needed 

before such a division can be applied. Specific detection of M. psychrotolerans is 

needed to determine its prevalence in seafood, marine environments, processing 

facilities and to determine the natural habitat. A specific detection method would also (i) 

assist the further investigation of the strongly HPB causing incidents of HFP, which are 

needed to support the findings of this thesis and (ii) improve the usefulness of the 

developed models for growth and formation of histamine by M. psychrotolerans.  

 A predictive model for the growth and histamine formation by M. 

psychrotolerans was developed. As primary model the expanded logistic model with a 

dampening factor (m) fixed to 0.7 was used. A square-root type model including cardinal 

parameters modelled the growth rate of M. psychrotolerans.  This model included the 

effect of storage conditions (temperature (0-25°C) and CO2 (0-100%)) and product 

characteristic (pH (5.4-6.5) and NaCl (0-5%)). A constrained polynomial model 

successfully modelled the effect of the environmental parameters (CO2 and NaCl) on 

the maximum population density (log Nmax). Histamine formation was modelled by 

relating it to growth of M. psychrotolerans with a constant yield factor (YHis/CFU). Log 

YHis/CFU was proportional to log Nmax under different environmental conditions. This is the 

first model for histamine formation, which considers the effect of four parameters. The 

model predicted the average time to formation of 500 ppm histamine for fresh fish and 

liquid cultures with a deviation of ± 10%. On the other hand, further validation studies 
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and more storage trials of lightly preserved seafood products like cold-smoked tuna are 

needed before the model can be applied to that group of products. In addition 

evaluation of the model used under dynamic conditions are needed to further improve 

the model. The model could be further developed by adding terms for the effect of 

smoke components. For quantitative risk assessment of histamine formation in seafood, 

development of equivalent models of histamine formation for other strongly HPB 

especially, P. phosphoreum and M. morganii are needed. Finally, uncertainty and 

variability of predictions can be studied to improve the applicability of the models for 

assessment and management of risks.  

 Storage trials showed that psychrotolerant HPB formed histamine in toxic 

concentration in vacuum-packed tuna stored at ~2°C within 12-14 days. However, it 

was, also shown that modified atmosphere packaging with O2 and CO2 was an efficient 

way to reduce the growth and the concomitant formation of histamine of both M. 

psychrotolerans and P. phosphoreum in fresh tuna and could improve the safety of 

fresh tuna and other fishes. More studies are needed to determine if this preserving 

technique is as efficient at temperatures higher than 2°C.  

 The present Ph.D. thesis has provided crucial information on psychrotolerant 

HPB and their importance for HFP. A new psychrotolerant and strongly histamine-

producing species; M. psychrotolerans was isolated from seafood causing HFP.  

Furthermore, it was demonstrated that psychrotolerant HPB might be as important as 

mesophilic HPB with respect to HFP. It was suggested that a modified atmosphere with 

O2 and CO2 can be used instead of vacuum packaging since growth-inhibition of M. 

psychrotolerans and P. phosphoreum was observed. In cold smoked tuna more than 

5% WPS are needed in combination with at shelf-life of no more than 3-4 weeks to 

prevent toxic concentrations of histamine in the product. Finally, a predictive model for 

the growth and histamine formation by M. psychrotolerans was developed. This model 

is the first step towards a quantitative exposure assessment and may work as a 

template for similar models for other HPB. The model will be included in the software 

SSSP, from where, it can be used as an important decision tools by the seafood 

industry as well as regulatory authorities. 
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