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Introduction

Tuned mass dampers are increasingly used for structures such as bridges, towers, buildings and
structural parts such as e.g. staircases. The classic design basis described e.g. by Den Hartog [1],
refers to a single damper mounted on a single structural mass. In the case offlexible structures,
such as e.g. the Millennium Bridge in London [2] and the newly completed Langelinie Pedestrian
Bridge in Copenhagen [3], several modes must be damped. This may introduce two new effects
into the design, namely a change in modal frequencies due to the damper masses associated with
the other modes, and a possible change in the mode shapes.

This paper describes a simple procedure for design of a number of tunedmass dampers used to
introduce controlled damping in several modes of a flexible structure. The following section gives
a brief summary of the design basis for a single damper, and this procedureis then extended to
flexible structures via a two-step procedure consisting of an initial estimate and a correction based
on modal vibrations including the damper masses, but excluding the damping effect to provide a
real-valued vibration problem. The procedure is illustrated by an example concerned with damping
of the four lowest modes of a four-span bridge.

Single tuned mass damper

The classic design problem for a single tuned mass damper is illustrated in Fig. 1. The structure is
represented by a massm0 supported by a springk0. The tuned mass damper consists of a damper
massmd mounted on the structural mass by a spring with stiffnesskd and a viscous damper with
damper constantcd. The motion is described by the motion of the structural massx0 and the
relative motionxd of the damper.
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Figure 1: Single degree of freedom with mass damper

The design procedure for a single tuned mass damper mounted on a well defined structural mass
makes use of the mass ratioµ, the structural angular frequencyω0, the angular frequency of the
rigidly mounted damper massωd and the damping ratio of the rigidly mounted damper massζd,
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The usual design procedure consists in selecting a sufficiently large massratio - usually in the
order of 3-5%. The optimal frequency tuning and damping ratio are then determined by
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ω0

1 + µ
, ζd =

√
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2

µ

1 + µ
(2)

The classic damping value of Den Hartog [1] has a factor3
8
, but it has recently been demonstrated

that the factor1
2

leads to better damping of the structure and minimizes the relative motion of the
damper mass, [4]. Use of the optimal tuning parameters in Eq. 2 leads to two coupled structural
modes with identical damping ratioζs ≃ 1

2
ζd, [4]. Thus, a mass ratio ofµ = 0.05 leads to a

structural damping ratio ofζs ≃ 0.077, sufficient to eliminate most vibration problems.

Multiple dampers on flexible structures

Let the flexible structure be represented by a discreized model with the displacement vectoru and
equation of motion

Mü(t) + Cu̇(t) + Ku(t) = Q(t) (3)

M, C andK are the mass, damping and stiffness matrix of the structure, andQ(t) is the time
varying external load vector. Damping is typically introduced into the individual vibration modes
uj , determined from the generalized eigenvalue problem

(K − ω2
j M )uj = 0 , j = 1, · · · , n (4)

whereωj is the natural frequency of modej. The modal mass is defined as

mj = uT
j Muj (5)

and represents the part of the structural mass that participates for the particular mode. When one
or more mass dampers are mounted on the flexible structure to introduce dampinginto modej the
effective mass ratio for this group of dampers is

md
j = uT

j Md
j uj (6)

whereMd
j contains the masses of the dampers in the diagonal at the degrees of freedom corre-

sponding to the locations of the dampers on the structure. Thus, the effective mass ratio of modej
is given as

µj =
md

j

mj

(7)

The optimal parameters for the tuned mass dampers associated with modej can be found by Eq. 2.

For the flexible structure with dampers the vibration modes and natural frequencies become com-
plex valued due to phase differences. The complex modes and frequencies are found from the
expanded symmetric eigenvalue problem
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(8)

where the system matricesM, C, K and the displacement vectoru include both structure and
dampers. The damping ratio is extracted as the relative imaginary part of the natural frequency,

ζj =
Im[ωj]

|ωj |
(9)



Design procedure

The present design procedure for multiple tuned mass dampers relies on theoptimal expressions
in Eq. 2 for a single tuned mass damper, where the mass ratio is defined in Eq. 7. However, to
take the effects from the other dampers into account, the procedure consists of two steps: 1) A
preliminary design based on the undamped vibration modes and 2) a correction based on the mode
shape for the structure including mass and stiffness (from step 1) of all dampers forthe other
modes. Thus, in step 2 the stiffnesskd and damper parametercd from the preliminary design are
recalculated based on the modified vibration form due to the tuned mass damperassociated with
the other modes that are being damped.
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Figure 2: Four-span bridge.

The design procedure is illustrated in terms of the four-span bridge shownin Fig. 2. The elastic
modulusE, cross section areaA, moment of inertiaI, mass per unit lengthρ and lengthL are

E = 300 GPa , A = 0.5 m2 , I = 0.08 m4 , ρ = 6400 kg/m , L = 160 m

These properties represent typical values for e.g. pedestrian bridges with span lengths as shown in
Fig. 2. The aim is to introduce damping into the lowest four vibration modes with mode shapes
shown in Fig. 3. Two tuned mass dampers with equal properties are introduced for each mode and
placed according to the maximum of the associated vibration modes as indicated inFig. 3.
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Figure 3: Undamped vibration modes and damper location.

In the idealized form with a single structural mass the use of a single damper splits the original
undamped mode into two modes with equal damping ratioζs ≃

1
2
ζd, the use of two dampers intro-

duces a third mode in which the dampers act in opposite phase and thereby retain the full damping
ratio ζs ≃ ζd. For flexible structures the behavior of the dampers may be more complicated as
illustrated for mode 1 in Fig. 4 showing the real part of the three vibration forms.

The desirable mass ratio of the design procedure isµ = 0.05 for all four modes. The results of the
two-step procedure is summarized in Table 1, where the damper parameters and the damping ratio
for the structural modes are given for both the preliminary tuning and the correction. It is seen how
the correction step leads to a larger critical damping ratio for each mode.



0 40 80 120 160
−2

0

2

0 40 80 120 160
−2

0

2

0 40 80 120 160
−2

0

2

Figure 4: Mode shapes with dampers for mode 1. Dampers tuned to: mode 1 (circle), mode 2 (square), mode
3 (triangle) and mode 4 (diamond).

modej 1 2 3 4

ω0 16.51 20.97 27.17 32.31
Damper mass 4700 / 4700 4450 / 4500 3900 / 3900 4150 / 4150

ωd 15.72 19.97 25.87 30.77
Step 1 ζd 0.155 0.154 0.155 0.154

ζj 0.055 / 0.107 0.069 / 0.110 0.096 / 0.103 0.116 / 0.083

ωd 14.91 17.17 26.26 32.29
Step 2 ζd 0.163 0.161 0.153 0.147

ζj 0.071 / 0.074 0.075 / 0.081 0.083 / 0.099 0.091 / 0.091

Table 1: Modal properties of bridge withµ = 0.05.

The effect of the correction step is illustrated in Fig. 5, showing the complex natural frequencies
for modes 1 and 2. The lines represent two half circles, representing theroot loci for a single
tuned mass damper, see [4]. The loci initiate from the three natural frequencies whencd → 0. The
dashed line represent the expected damping ratio ofζj = 0.077, whereby the two intersections
(circles) between the dashed line and the small locus represent the expected optimal tuning. The
three natural frequencies from step 1) of the procedure (asterisk) are seen to be relatively far away
from the the expected locus. However, following step 2) of the procedure the natural frequencies
(crosses) move very close to the expected locus and to the intersections (circle), representing the
desired efficiency of 7.7% of critical damping.
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Figure 5: Complex roots for mode 1 (left) and 2 (right).
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