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Introduction

Tuned mass dampers are increasingly used for structures such assbtmgers, buildings and
structural parts such as e.g. staircases. The classic design basisetbsay. by Den Hartog [1],
refers to a single damper mounted on a single structural mass. In the déesdlbé structures,

such as e.g. the Millennium Bridge in London [2] and the newly completed élang Pedestrian

Bridge in Copenhagen [3], several modes must be damped. This mayuogroédo new effects

into the design, namely a change in modal frequencies due to the dampes mssseated with
the other modes, and a possible change in the mode shapes.

This paper describes a simple procedure for design of a number of tuassl dampers used to
introduce controlled damping in several modes of a flexible structure.dlloavfng section gives
a brief summary of the design basis for a single damper, and this prodsdbhen extended to
flexible structures via a two-step procedure consisting of an initial estimeta eorrection based
on modal vibrations including the damper masses, but excluding the damfeegtefprovide a
real-valued vibration problem. The procedure is illustrated by an exampéeoted with damping
of the four lowest modes of a four-span bridge.

Single tuned mass damper

The classic design problem for a single tuned mass damper is illustrated in e &tructure is
represented by a massg, supported by a sprinky. The tuned mass damper consists of a damper
massmy mounted on the structural mass by a spring with stiffrigsand a viscous damper with
damper constant;. The motion is described by the motion of the structural masand the
relative motionz, of the damper.
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Figure 1: Single degree of freedom with mass damper

The design procedure for a single tuned mass damper mounted on a wetiddgtfiuctural mass
makes use of the mass rafig the structural angular frequency;, the angular frequency of the
rigidly mounted damper mass; and the damping ratio of the rigidly mounted damper nigss
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The usual design procedure consists in selecting a sufficiently largeratass usually in the
order of 3-5%. The optimal frequency tuning and damping ratio are thienrdmed by

wo 1 %
_ , S 2
“i = T34 Ca 2T+ (2)

The classic damping value of Den Hartog [1] has a fa%tcbut it has recently been demonstrated
that the facto% leads to better damping of the structure and minimizes the relative motion of the
damper mass, [4]. Use of the optimal tuning parameters in Eq. 2 leads to twtedaiructural
modes with identical damping ratiQy ~ %Cd, [4]. Thus, a mass ratio gf = 0.05 leads to a
structural damping ratio af; ~ 0.077, sufficient to eliminate most vibration problems.

Multiple dampers on flexible structures

Let the flexible structure be represented by a discreized model with tHackspent vecton and
eqguation of motion

Mi(t) + Cu(t) + Ku(t) = Q(¢) (3)
M, C andK are the mass, damping and stiffness matrix of the structure(dngis the time
varying external load vector. Damping is typically introduced into the ind&idibration modes
u;, determined from the generalized eigenvalue problem

(K—w]zl\/[)ujzo , j=1,---,n 4)
wherew; is the natural frequency of moge The modal mass is defined as
m; = ll;-r M uy (5)

and represents the part of the structural mass that participates forrtioellpa mode. When one
or more mass dampers are mounted on the flexible structure to introduce dantpimgpde; the
effective mass ratio for this group of dampers is

m? = uJT M;’-l u; (6)

WhereM? contains the masses of the dampers in the diagonal at the degrees ofifreexe-
sponding to the locations of the dampers on the structure. Thus, the\affa@ss ratio of modg
is given as

s,

m
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The optimal parameters for the tuned mass dampers associated with cartbe found by Eqg. 2.

For the flexible structure with dampers the vibration modes and naturakfnems become com-

plex valued due to phase differences. The complex modes and frégsieme found from the

expanded symmetric eigenvalue problem

([5 sle=[onPla]-1s] o

where the system matricéd, C, K and the displacement vectarinclude both structure and
dampers. The damping ratio is extracted as the relative imaginary part ddtimalfrequency,
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Design procedure

The present design procedure for multiple tuned mass dampers relies aptithal expressions
in Eqg. 2 for a single tuned mass damper, where the mass ratio is defined in IHow&ver, to
take the effects from the other dampers into account, the proceduristsonfstwo steps: 1) A
preliminary design based on the undamped vibration modes and 2) a corfeasied on the mode
shape for the structure including mass and stiffness (from step 1) oaalpers forthe other
modes Thus, in step 2 the stiffnegs; and damper parametey from the preliminary design are
recalculated based on the modified vibration form due to the tuned mass dassperated with
the other modes that are being damped.
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Figure 2: Four-span bridge.

The design procedure is illustrated in terms of the four-span bridge shofig. 2. The elastic
modulusF, cross section ared, moment of inertial, mass per unit length and lengthZ are

E =300GPa , A=05m?> , I=008m' , p=6400kg/m , L = 160m

These properties represent typical values for e.g. pedestrian $ridtiespan lengths as shown in
Fig. 2. The aim is to introduce damping into the lowest four vibration modes withersbepes
shown in Fig. 3. Two tuned mass dampers with equal properties are indddimceach mode and
placed according to the maximum of the associated vibration modes as indic&igd3n
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Figure 3: Undamped vibration modes and damper location.

In the idealized form with a single structural mass the use of a single damijisrtisp original
undamped mode into two modes with equal damping rgtie %Cd, the use of two dampers intro-
duces a third mode in which the dampers act in opposite phase and thaegbytre full damping

ratio (s ~ (4. For flexible structures the behavior of the dampers may be more complicated a
illustrated for mode 1 in Fig. 4 showing the real part of the three vibratiomg$or

The desirable mass ratio of the design procedure=s0.05 for all four modes. The results of the
two-step procedure is summarized in Table 1, where the damper paranmetéinge alamping ratio

for the structural modes are given for both the preliminary tuning and thieatmn. It is seen how

the correction step leads to a larger critical damping ratio for each mode.
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Figure 4: Mode shapes with dampers for mode 1. Dampers toneatbide 1 (circle), mode 2 (square), mode
3 (triangle) and mode 4 (diamond).

modej 1 2 3 4

wo 16.51 20.97 27.17 32.31
Damper mass 4700 / 4700 4450 / 4500 3900 / 3900 4150 / 4150

wq 15.72 19.97 25.87 30.77

Step 1 Ca 0.155 0.154 0.155 0.154
G 0.055 / 0.107 0.069 / 0.110 0.096 / 0.103 0.116 / 0.083

wd 14,91 17.17 26.26 32.29

Step 2 Ca 0.163 0.161 0.153 0.147
G 0.071 / 0.074 0.075 / 0.081 0.083 / 0.099 0.091 / 0.091

Table 1: Modal properties of bridge wigh= 0.05.

The effect of the correction step is illustrated in Fig. 5, showing the com@axal frequencies
for modes 1 and 2. The lines represent two half circles, representingpdhéoci for a single
tuned mass damper, see [4]. The loci initiate from the three natural fiesewvhere; — 0. The
dashed line represent the expected damping ratiy ef 0.077, whereby the two intersections
(circles) between the dashed line and the small locus represent theezkpptimal tuning. The
three natural frequencies from step 1) of the procedure (astereskgan to be relatively far away
from the the expected locus. However, following step 2) of the proeethé natural frequencies
(crosses) move very close to the expected locus and to the intersectiote,(cepresenting the
desired efficiency of 7.7% of critical damping.
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Figure 5: Complex roots for mode 1 (left) and 2 (right).
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