

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

JEOPARD Deliverable D2.6 - JOP Scalability Report

Puffitsch, Wolfgang; Schoeberl, Martin; Huber, Bendikt

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Puffitsch, W., Schoeberl, M., & Huber, B. (2010). JEOPARD Deliverable D2.6 - JOP Scalability Report.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13732221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/jeopard-deliverable-d26--jop-scalability-report(a1d05b6d-0623-495c-8daf-7eaf7b348d86).html

Java Environment for Parallel Real-Time Development

Project Number 216682

D2.6– JOP Scalability Report

Version 1.0
4 October 2010

Final

Public Distribution

Wolfgang Puffitsch, Martin Schoeberl, Benedikt Huber
Technical University of Vienna, Technical University of Denmark

Project Partners: aicas, EADS Deutschland, FZI, RadioLabs, SkySoft Portugal,
SYSGO, Technical University Cluj-Napoca, The Open Group,
Technical University of Vienna, University of York, Technical Uni-
versity of Denmark

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
Partners accept no liability for any error or omission in the same.

c©Copyright in this document remains vested in the Partners

D2.6 JOP Scalability Report

Project Partner Contact Information

aicas EADS Deutschland
Fridtjof Siebert Frederic Lamy
Haid-und-Neu-Strasse 18 Woerthstrasse 85
76131 Karlsruhe, Germany 89077 Ulm, Germany
Tel:+49 721 663 968 23 Tel: +49 731 392 7427
Fax:+49 721 663 968 93 Fax: +49 731 392 2074 27
E-mail:siebert@aicas.com E-mail: frederic.lamy@eads.com

FZI RadioLabs
Gábor Szeder Filippo Corsini
Haid-und-Neu-Strasse 10-14 via Cavaglieri 26
76131 Karlsruhe, Germany 00173 Rome, Italy
Tel: +49 721 965 4266 Tel: +39 069 727 8250
Fax: +49 721 965 4259 Fax: +39 069 727 8268
E-mail:szeder@fzi.de E-mail:filippo.corsini@radiolabs.it

SkySoft Portugal SYSGO
José Neves Jacques Brygier
Av. D. João II, Torre Fernão Magalhães, 5, Rue Hans List, Batiment F
7o 1998-025 Lisbon, Portugal 78290 Croissy-sur-Seine, France
Tel: +351 21 382 9366 Tel: +33 1 300 912 63
Fax: +351 21 386 6493 Fax: +33 1 301 504 48
E-mail:jose.neves@skysoft.pt E-mail:jacques.brygier@sysgo.fr

Technical University Cluj-Napoca Technical University of Vienna
Gheorghe Sebestyen-Pal Wolfgang Puffitsch
G. Baritiu 26-28 Treitlstrasse 3
40027 Cluj-Napoca, Romania 1040 Vienna, Austria
Tel:+40 264 401 476 Tel: +43 15 880 118 208
Fax:+40 264 594 491 Fax: +43 15 869 149
E-mail:gheorghe.sebestyen@cs.utcluj.ro E-mail:wpuffits@mail.tuwien.ac.at

The Open Group University of York
Scott Hansen Andrew Wellings
Avenue du Parc de Woluwe 56 Heslington Hall
1160 Brussels, Belgium York YO10 5DD, United Kingdom
Tel: +32 2 675 1136 Tel: +44 1904 432 742
Fax: +32 2 675 7721 Fax: +44 1904 432 767
E-mail:s.hansen@opengroup.org E-mail:andy@cs.york.ac.uk

Technical University of Denmark
Martin Schoeberl
Richard Petersens Plads
Building 322, room 232
2800 Lyngby, Denmark
Tel: +45 45253743
E-mail:masca@imm.dtu.dk

Page ii Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

Contents

1 Introduction 2

2 Rational for Design Decisions 2
2.1 Split Caches . 2

2.1.1 The Object Cache . 3

2.2 TDMA and Round-Robin Memory Arbitration . 5

2.3 Transactional Memory . 6

3 Evaluation 7
3.1 Platform . 7

3.2 Benchmarks . 7

3.3 Scalability . 8

3.4 Feature Impact . 9

3.5 Performance . 10

3.6 WCET Driven Object Cache Evaluation . 11

4 Conclusion 13

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page iii

D2.6 JOP Scalability Report

Document Control

Version Status Date
0.1 Document start 17 June 2010
0.2 Performance figures 10 September 2010
0.3 First draft for partner review 29 September 2010
1.0 Final version 4 October 2010

Page iv Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

Executive Summary

This documents contains the deliverable D2.6 JOP Scalability Report of work-package 2 of the
JEOPARD project due 33 months after project start as stated in the Description of Work. This docu-
ment presents the evaluation of the chip-multiprocessor version of JOP with respect to scalability. In
addition, this document provides rationales for some design decisions, as requested at the first review
meeting.

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 1

D2.6 JOP Scalability Report

1 Introduction

The report evaluates the scalability of a chip-multiprocessor version of the Java processor JOP [5].
Although JOP is intended as a time-predictable processor to enable worst-cases execution time
(WCET) analysis, the average case performance shall not suffer.

The first version of the JOP CMP system, as described in D 2.1 and in [5], provides only moderate
speedup with more than 4 cores. We have improved the cache for heap allocated data, constants, static
fields, and method dispatch table to relax the memory bandwidth requirements of a CMP system. We
call this the split-cache design [8, 13] . The resulting CMP system provides a reasonable speedup in
the average case.

The data caches are organized as split cache to enable WCET analysis of the data cache. Caching of
constant, static fields, and the method dispatch table is easy to analyze. For heap allocated objects
we have co-developed the object cache and the WCET analysis for this cache type.

2 Rational for Design Decisions

The JOP chip-multiprocessor (CMP) design is driven by the intention to keep the system worst-
cases execution time (WCET) analyzable. Optimizing for WCET instead of optimizing for average
case throughput leads to different solutions in the design space. This section gives the rational for,
probably uncommon, design decisions.

2.1 Split Caches

With respect to caching, memory is usually divided into instruction memory and data memory. This
cache architecture was proposed in the first RISC architectures [4] to resolve the structural hazard of
a pipelined machine where an instruction has to be fetched concurrently to a memory access. This
division enabled WCET analysis of instruction caches.

In former work we have argued that data caches should be split into different memory type areas to
enable WCET analysis of data accesses [8, 13]. We have shown that a JVM accesses quite different
data areas (e.g., the stack, the constant pool, method dispatch table, class information, and the heap),
each with different properties for the WCET analysis. For some areas, the addresses are statically
known; some areas have type dependent addresses (e.g., access to the method table); for heap allo-
cated data the address is only known at runtime. Therefore, the caches are organized to simplify the
analysis.

Different memory areas are cached in different caches:

• An instruction cache for complete methods (method cache)
• A stack cache
• A cache for static data
• An object cache for heap allocated objects
• A cache for constants

The stack cache and method cache are an integral part of the JOP pipeline. The other data caches are
optional and are located in a separate data cache unit. The inclusion or exclusion can be configured.

Page 2 Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

The size of all caches is configurable. Details on the stack cache and method cache can be found in
Deliverable D 2.4.

For data, where the address is statically known or can be inferred by a type analysis a direct mapped
cache is used (see D 2.4). For heap allocated objects we propose to use an object cache. Different
variations of the objects cache are described in the following subsection. In [3] we have shown that
the proposed object cache can be integrated into our WCET analysis tool [14].

Memory accesses can be classified whether the accessed data requires to be held coherent or is core
local. Accesses to static variables and object fields must follow the Java memory model, which
requires some coherence mechanism. Accesses to constant data such as the constant pool or the
method table are implicitly cache coherent. Stack allocated data is thread local in Java and needs no
cache coherence protocol.

2.1.1 The Object Cache

When accessing statically unknown addresses, it is impossible to predict which cache line from one
way is affected by the access. From the analysis’ point of view, a n-way set-associative cache is
reduced to n cache lines when all addresses are unknown. Simpler cache organizations than a fully
associative cache are therefore pointless for the analysis. However, such caches are expensive and
must therefore be kept small. In contrast, accesses to datums with statically known addresses can
be classified as hits or misses even for simple direct-mapped caches. For such a cache, accessing
an unknown address would void information about all other accesses. Therefore, splitting the cache
simplifies the static analysis and allows for a more precise hit/miss classification. For most data areas
standard cache organizations are a reasonable fit. Only for heap allocated data we need a special
organization – the object cache for objects and a solution that benefits mainly from spatial locality
for arrays. The WCET analysis driven exploration of the object cache organization is the topic of [3].

The object cache is intended for embedded Java processors such as JOP [7], jamuth [15], or
SHAP [16]. Within a hardware implementation of the Java virtual machine (JVM), it is quite easy
to distinguish between different memory access types. Access to object fields is performed via byte-
codes getfield and putfield; array accesses have their own bytecode and also accesses to the
other memory areas of a JVM. The instruction set of a standard processor contains only untyped load
and store instructions. In that case a Java compiler can use the virtual memory mapping to distinguish
between different access types.

The object cache architecture is optimized for WCET analysis instead of average case performance.
To track individual cache lines symbolically, the cache is fully associative. Without knowing the
address of an object, all cache lines in one way map to a single line in the analysis. Therefore, the
object cache contains just a single line per way. Instead of mapping blocks of the main memory to
those lines, whole objects are mapped to cache lines. The index into the cache line is the field index.
To compensate for the resulting small cache size with one cache line per way, we also explore quite
large cache lines. To reduce the resulting large miss penalty we also consider to fill only the missed
word into the cache line. To track which words of a line contain a valid entry, one valid bit per word
is added to the tag memory.

The object cache is a data cache with cache lines indexed by unique object identifiers (the Java
reference). The object cache is thus similar to a virtually-addressed cache, except that the cache
index is unique and therefore there are no aliasing issues (different object identifiers map to different
objects). In our system, the tag memory contains the pointer to the handle (the Java reference) instead

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 3

D2.6 JOP Scalability Report

V

V

V

V

VTags

Address

Data

re
p
la

c
e
m

e
n
t

valid?

(a) Fully associative cache

V

V

V

V

VTags Data

re
p
la

c
e
m

e
n
t

valid?

Handle

(b) Object cache with line fill

V

V V V V

V

V V V V

V

V V V V

V

V V V V

V

re
p
la

c
e
m

e
n
t

Tags

Handle

DataIndirection valid?

(c) Object cache with word fill

Figure 1: Comparison of a fully associative cache and object cache variants

of the effective address of the object in memory. This simplifies changing the address of an object
during the compacting garbage collection. For a coherent view of the object graph between the
mutator and the garbage collector, the cached address of an object needs to be updated or invalidated
after the move. The cached fields, however, are not affected by changing the object’s address, and can
stay in the cache. Furthermore, the object cache reduces the overhead of using handles. If an access
is a hit, the cost for the indirection is zero – the address translation has been already performed.

The object cache is organized to cache one object per cache line. If an object needs more space
than available in one cache line, fields with higher indices are not cached. The decision not to cache
fields with higher field indices than words in the cache line simplifies the tag memory and the hit
detection. If we would allow that different fields of one object can map to the same word in the cache
line, we would need an additional tag entry per field. To compensate for possible misses with large
objects, we explore quite long cache lines. The cost for the cache line is less then the cost of the
tag memory, as all tags have to be compared in parallel, but the cache line needs only be read out.
For an implementation in an FPGA this means that the tag memory has to implemented with discrete
registers, but the cache lines can be implemented in standard on-chip memory blocks.

As objects thus cannot cross cache lines, the number of words per cache line is one important design
decision to be taken. To avoid that less frequently accessed fields are cached, a compile time opti-
mization may rearrange the order of object fields. Both benchmarking results and the results of the
static analysis may be used to classify the access frequency of fields.

Figure 1 outlines the differences between a fully associative data cache, and object caches with word
and line fill. While the fully associative cache in Figure 1(a) uses the actual address as tag, the object
caches use the handle. When filling the whole cache line, it is not necessary to keep the indirection
pointer in the cache (Figure 1(b)). Once an object is cached, the indirection is resolved implicitly. For
an object cache with word fill policy (Figure 1(c)), each word requires a valid flag, and the indirection
must also be cached to allow for efficient loading of words that are not yet cached.

To simplify static cache analysis we chose to organize the cache as write through cache. Write back
is harder to analyze statically, as on each possible miss another write back needs to be accounted for.

Page 4 Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

Furthermore, a write-through cache simplifies the cache coherence protocol for a chip multiproces-
sor (CMP) system [6]. The caches are invalidated upon monitorenter and reads from volatile
variables. This scheme is compliant with the Java memory model. Although the coherence imple-
mentation is probably less efficient than other coherence protocols, cache invalidation is always a
core-local action. The cache state does not depend on the behavior of other cores. WCET analysis is
therefore possible for the cache coherence protocol.

The object cache is only used for objects and not for arrays. This is because arrays tend to be larger
than objects, and their access behavior rather exposes spatial locality, in contrast to the temporal
locality of accesses observed for objects. Therefore, we believe that a cache organized as a small set
of prefetch buffers is more adequate for array data. As on the one hand arrays use a different set of
bytecodes and are thus distinguishable from ordinary objects, but on the other hand have a structure
similar to objects, this decision does not restrict our choices for further exploration.

2.2 TDMA and Round-Robin Memory Arbitration

In order to achieve timing predictability, the latency of memory accesses must be bounded. In a
CMP setting, the arbitration of memory accesses must ensure that the memory latencies for all cores
is bounded. To achieve this, we implemented two arbiters: a time-division multiple access (TDMA)
arbiter and a round-robin (RR) arbiter.

The TDMA arbiter reserves a slot for each CPU in which it may access the memory exclusively.
Each slot is long enough to contain a full memory access. Therefore, accesses by one core do not
affect memory accesses of other cores.

The RR arbiter works similarly to the TDMA arbiter, but uses flexible slot lengths. If no memory
access occurs, the slot length is a single cycle. In case of memory accesses, the slot is extended to fit
the current memory access.

For both arbiters, the latency for access is bounded—in a CMP with N cores, a core has to wait at
most N − 1 memory accesses before it is granted access itself. However, the arbiters differ in their
average-case performance and the analyzability of the average case performance.

The TDMA arbiter provides the same performance to a core, without interference from other cores.
The performance does not depend on the amount of contention. This also simplifies WCET analysis,
because the worst case behavior can be analyzed locally, without considering other cores. This arbiter
is therefore a good choice when WCET analyzability is of utmost importance.

WCET analysis is considerably more complex for the RR arbiter. The performance depends on the
level of contention. Intuitively, performance increases with low contention. However, this is not
always the case. Figure 2 shows such an timing anomaly where high bus traffic leads to a lower
execution time than low bus traffic with RR arbitration.

In both Figures 2(a) and 2(b), Core 0 executes a sequence of five operations: first, it issues a read,
rd0A, then it executes three operations that do not access memory (denoted by nop), and finally it
issues a second read, rd0B. Cores 1 to 3 all issue a read operation, rd1 to rd3.

In Figure 2(a), rd0A can be served immediately. Afterwards, the three nops are executed. As there
were no other accesses, rd0B misses the next slot for Core 0, and is delayed until rd1 to rd3 have
been served.

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 5

D2.6 JOP Scalability Report

rd0A rd1 rd2 rd3 rd0B

Memory

Core 3

rd0Bnoprd0A

Core 1

Core 2

Core 0

(a) Low bus traffic increases WCET

rd0A

Memory

Core 3

rd1 rd2 rd3 rd0B

rd0A nop rd0B

Core 1

Core 2

Core 0

(b) Bus contention decreases WCET

Figure 2: Timing anomaly with RR arbitration

In Figure 2(b), rd0A can also be served immediately. However, rd1 to rd3 have been issued earlier,
and are performed back to back with rd0A. Consequently, rd0B catches the next free slot for Core 0,
and is served earlier than in Figure 2(a).

The performance of the scenario depicted in Figure 2(b) is the same as for a TDMA arbiter. The
scenario in Figure 2(a) performs actually worse than with TDMA arbitration. However, as the results
in Section 3 show, this does not affect the average case performance. Therefore, we suggest using
the RR arbiter when average-case performance is more important than WCET analyzability.

2.3 Transactional Memory

We have implemented hardware transactional memory [2] in the context of the JOP CMP [10]. Trans-
actional memory (TM) is considered as a better scaling alternative than explicit locks. Furthermore,
the usage of TM is simpler than using locks, as the programmer uses atomic sections instead of indi-
vidual lock. The atomic sections are represented by a method annotation (@atomic) and a bytecode
manipulation tool translates those methods to the transactions with retry on a fail.

In [9] we have shown that the maximum retry of conflicting transactions is bounded when transactions
of individual threads are displaced by a minimum time interval. The later is implicitly enforced
when using periodic threads, which are common in real-time systems. Without further analysis the
worst case retry time is the same as the maximum blocking time of a single, global lock. However,

Page 6 Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

detecting non-conflicting transactions is possible with program analysis [9]. Therefore, the model of
atomic sections simplifies the programming model and shifts the burden to find tight blocking times
to program analysis.

3 Evaluation

We chose four benchmarks, from the benchmark suite JemBench [12], with different characteristics
to demonstrate the scalability of our design. Two of the benchmarks have been used in the initial
JOP CMP design document D 2.1. Therefore, the improvements on the scalability can be seen by
comparing the current results with the results reported in D 2.1.

3.1 Platform

The evaluation compares CMP versions of JOP with different heap cache configurations. All config-
urations contain a cache for the instructions (the method cache) and stack allocated data (the stack
cache). The uncached configurations in the following discussion are configurations where heap allo-
cated data is not cached.

The method cache is 4 KB in size, divided into 32 blocks. The stack cache is 2 KB large. Con-
figurations that cache accesses to other memory areas contain three more caches: a direct mapped
cache with 1 KB for constant data with known addresses, a direct mapped cache with 1 KB for data
with known addresses that requires cache coherence, and a 16-way fully associative cache with LRU
replacement for data with unknown addresses.

The development board used in this evaluation is the DE2-70 board from Altera, which features a
Cyclone II FPGA (EP2C70), and 2 MB of synchronous SRAM. The board would have allowed a
latency of only 3 cycles for memory accesses, but we chose to assume a latency of 6 cycles for two
reasons: First, this configuration is similar to the configurations used in earlier experiments, which
were conducted on a DE2 board. Second, scalability is easy to achieve with very fast main memory.
We believe that a setting with memory with a higher latency (and therefore makes scalability more
challenging) is more realistic.

JOP is clocked at 100 MHz in all configurations presented in this section.

3.2 Benchmarks
Matrix benchmarks the performance of matrix multiplication. While there is some computational

complexity, its performance mostly depends on the available memory bandwidth.

Queens computes solutions to the N-Queens problem. It contains a notable amount of synchro-
nization, which has to be handled efficiently for good performance.

Raytrace is a computationally complex benchmark that depends on the performance of floating-
point operations. Parallelization is limited to 6 threads.

LiftCMP is derived from a real-world application. Each core executes one such single-threaded
application, without any cooperation or synchronization. This benchmark therefore evaluates
the performance of independent threads.

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 7

D2.6 JOP Scalability Report

To highlight different aspects for the evaluation, we present the data in three different formats.

• Figure 3 displays the speedups for the benchmark relative to the uniprocessor version. While
uncached CMP variants are scaled to a uniprocessor without heap cache, cache CMP configu-
rations are scaled to a cached uniprocessor. This representation highlights the scalability of the
CMP versions.

• Figure 4 shows the benchmark results scaled to the uncached configuration of a multiprocessor
with a TDMA arbiter. This emphasizes the contribution of the caches and the arbiter to the
overall performance.

• In Figure 5, the benchmark results are scaled to the uncached uniprocessor version, which is
the smallest configuration. The figure displays the possible performance gains. In contrast to
Figure 3, speedups of that are greater than the number of cores are possible, because the cached
uniprocessor version is already faster than the uniprocessor without cache.

There are four main configurations in Figures 3, 4, and 5: TDMA arbitration without heap caching
(TDMA), TDMA arbitration with cache (TDMA $), RR arbitration without cache (RR), and RR
arbitration with cache (RR $). Naturally, there is no arbitration in the uniprocessor versions.

3.3 Scalability

Figure 3 shows the benchmarks results scaled to uniprocessor configurations, such that configura-
tions with caches are compared to a cached uniprocessor, and configurations without caches to a
uniprocessor without cache. This allows us to investigate how well the different configurations scale
without considering absolute performance.

For the Matrix benchmark, the configurations without caches scale poorly, with speedups of around
1.5 at most. The configuration with caches scale considerably better, with RR $ providing a speedup
of around 3 with four cores. Six cores provide a speedup of 2.4 for TDMA $. The memory band-
width demands of the Matrix benchmark limit the scalability, but caching enables considerably higher
speedups. When the memory bandwidth is saturated, additional cores provide no additional perfor-
mance scaling, but impose more synchronization overhead. Therefore, the performance decreases
with 6 or 8 cores.

The performance of the Queens benchmark saturates at a speedup of around 3 for the plain TDMA
configuration. Using either RR or TDMA $ provides similar speedups of up to 5. The scalability of
the TDMA $ configuration is limited by synchronization—memory bandwidth is reserved for cores
even if they are blocked by other cores. The RR configuration can use this available bandwidth, but
suffers from its high memory bandwidth demands. The combination of RR arbitration and caching
combines the benefits, leading to speedups that scale almost linearly with the number of cores for
RR $.

The results for the Raytrace benchmark do not vary greatly between the different configurations.
Most of the computation time is spent for floating-point computation, leading to low memory band-
width demands, and speedups of around 4 to 4.5. Only for configurations with six and eight cores,
there is a notable difference beteen TDMA and the other three configurations. Please note that the
benchmark cannot scale beyond six cores, simply because it consists of only six threads. This also
explains the super-linear speedup from four to six cores, because the scheduling overhead disappears
for six cores.

Page 8 Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

1 2 4 6 8

0

0.5

1

1.5

2

2.5

3

3.5

TDMA
TDMA $
RR
RR $

(a) Matrix
1 2 4 6 8

0

1

2

3

4

5

6

7

8

TDMA
TDMA $
RR
RR $

(b) Queens

1 2 4 6 8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

TDMA
TDMA $
RR
RR $

(c) Raytrace

1 2 4 6 8

0

1

2

3

4

5

6

7

TDMA
TDMA $
RR
RR $

(d) LiftCMP

Figure 3: Benchmark results scaled to uniprocessor

The LiftCMP benchmark is limited in its scalability by its memory bandwidth demands for the un-
cached configurations. Only speedups of around 2.2 can be achieved. In contrast, the cached config-
urations scale up to 5.7 for TDMA $ and 6.6 for RR $.

3.4 Feature Impact

The graphs in Figure 4 emphasize the observations from the previous section. For the Matrix and
LiftCMP benchmark, caching can be singled out as most important feature for performance. They
have considerably memory bandwidth demands and little synchronization. For the Raytrace bench-
mark, both the RR arbitration and the caches contribute to performance enhancements. Their impact
is limited though. The Queens benchmark demonstrates that the scalability of TDMA arbitration is
limited if there is a considerable amount of synchronization. Combining RR arbitration and caching
enables considerably higher performance for eight cores.

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 9

D2.6 JOP Scalability Report

1 2 4 6 8

0

0.5

1

1.5

2

2.5

TDMA
TDMA $
RR
RR $

(a) Matrix

1 2 4 6 8

0

0.5

1

1.5

2

2.5

3

TDMA
TDMA $
RR
RR $

(b) Queens

1 2 4 6 8

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

TDMA
TDMA $
RR
RR $

(c) Raytrace

1 2 4 6 8

0

0.5

1

1.5

2

2.5

3

3.5

4

TDMA
TDMA $
RR
RR $

(d) LiftCMP

Figure 4: Benchmark results scaled to uncached TDMA multiprocessor

The usefulness of caching increases with the number of cores. For the uniprocessor version, the
minor performance improvements hardly justify spending the additional hardware resources. When
adding more cores, the effectiveness of the caches increases, and it becomes more likely that the
improved performance warrants the additional costs.

3.5 Performance

Figure 5 shows the achievable speedups, compared to the plain, uncached uniprocessor configuration.
The results are similar to the results displayed in Figure 3, but the speedups for the cached versions
are slightly higher. Especially notable is the LiftCMP benchmark, where a speed up of 8.1 can be
achieved with eight cores. This speedup is the result of combining heap caching and multiprocessing.

For all benchmarks the best performance could be achieved with the RR arbiter. However, as ex-
plained in Section 2.2, it may be difficult to guarantee the performance through static analysis. For

Page 10 Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

1 2 4 6 8

0

0.5

1

1.5

2

2.5

3

3.5

4

TDMA
TDMA $
RR
RR $

(a) Matrix
1 2 4 6 8

0

1

2

3

4

5

6

7

8

TDMA
TDMA $
RR
RR $

(b) Queens

1 2 4 6 8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

TDMA
TDMA $
RR
RR $

(c) Raytrace

1 2 4 6 8

0

1

2

3

4

5

6

7

8

9

TDMA
TDMA $
RR
RR $

(d) LiftCMP

Figure 5: Benchmark results scaled to uncached uniprocessor

most benchmarks TDMA arbitration, which simplifies static analysis, leads to fairly similar speedups.
An exception is the Queens benchmark, where synchronization limits the scalability.

For eight cores, RR $ achieves an average speedup of 5.7; TDMA $ achieves a speedup of 4.7. We
believe that these speedups are reasonable, especially when considering that the processor design was
driven by predictability rather than average case performance.

3.6 WCET Driven Object Cache Evaluation

The possible configurations of the object cache have been evaluated with our WCET analysis
tool [14] to find the best configuration for embedded Java systems. For the caching of heap allo-
cated objects we have evaluated different design options, such as cache line length and line or word
fill. The detailed results can be found in [3] and some average case evaluations with cross-profiling
in [11].

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 11

D2.6 JOP Scalability Report

The details of the object cache analysis are not the focus of this deliverable, but some insights into
its workings are necessary to interpret the evaluation results. As a consequence of the fact that the
dataflow analysis abstracts the actual program, we do not always know the exact object a variable
points to, but only have a set of objects the variable may point to at hand. Therefore, we perform
a persistence analysis instead of a hit/miss classification, and try to identify scopes where accesses
to an object are persistent. A particularly simple criteria for persistency in an object cache with
associativity N is that at most N distinct objects are accessed within one scope. The main challenge
for the analysis is thus to identify the number of distinct objects possibly accessed in a scope.

With this form of persistence analysis it is irrelevant if the replacement policy is LRU or FIFO. With
classic cache analysis, FIFO replacement results in less hit classifications than LRU replacement [1].

We investigate two different behaviors on a cache miss: The first is to fill the whole cache line on a
miss, loading all fields into the cache at once. This might be attractive if the memory has a longer
latency for the first word accessed. The second option is to only load the missed field, which requires
an additional tag bit for each word. It would also be possible to consider tradeoffs between these two
extremes, e.g., loading four words on a cache miss, though this is not explored here.

For the evaluation of the object cache we consider several different system configurations: (1) the
main memory is varied between a fast SRAM memory and a SDRAM memory with a higher latency;
(2) uniprocessor and a 8 core chip-multiprocessor are considered. Finally we explore the difference
between single word and full cache line loads on a cache miss. To compare the WCET analysis
results with average case measurements the same configurations as in [11] are used.

The best cache configuration is dependent on the properties of the next level in the memory hierar-
chy. Longer latencies favor longer cache lines to spread the latency over possible hits due to spatial
locality. Therefore, we evaluate two different memory configuration that are common in embedded
systems: static memory (SRAM) and synchronous DRAM (SDRAM). For the SRAM configuration
we assume a latency of two cycles for a 32 bit word read access. As an example of the SDRAM
we select the IS42S16160B, the memory chip that is used on the Altera DE2-70 FPGA board. The
latency for a read, including the latency in the memory controller, is assumed to be 10 cycles. The
maximum burst length is 8 locations. As the memory interface is 16 bit, four 32 bit words can be
read in 8 clock cycles. The resulting miss penalty for a single word read is 12 clock cycles, for a
burst of 4 words 18 clock cycles. For longer cache lines the SDRAM can be used in page burst mode.
With page burst mode, up to a whole page can be transferred in one burst. For shorter bursts the
transfer has to be explicitly stopped by the memory controller. We assume the same latency of 10
clock cycles in the page burst mode.

For the evaluation of different object cache configurations we show the results of two single core
benchmarks, Lift and UDP/IP, from the benchmark suit JemBench [12]. Further results can be found
in [3].

Table 1 displays the detailed analysis results for the UDP/IP benchmark and Table 2 for the Lift
benchmark. More results are available in an accompanying technical report [11]. The results are
shown for a cache configuration with single word fill on a miss, complete line fill on a miss, and as a
reference a cache configuration for single words, as we have presented it in [13].

From the results we can see that the maximum analyzable hit rate without line fill is between 46 %
and 99 % [11]. This hit rate can be achieved with a moderate associativity between 2 and 16 way,
depending on the program. Furthermore, even the simple configuration of a fully associative cache,
as shown by the single field rows, results in a reasonable hit rate with a moderate associativity.

Page 12 Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

When the cache is configured with full line fill the hit rate naturally is increased as some fields that
are later used will be loaded on the line fill. Longer lines result in higher hit rates. However, the
miss penalty also increases and so the miss cycles per field access. The best configuration depends
on the relation between latency and bandwidth of the main memory. For a main memory with a short
latency, as represented by the SRAM configuration, individual field loads on a miss give a better miss
cycles per access rate than filling the whole cache line.

For the SDRAM memory the optimal line size and whether individual fields should be filled is not
so clear. There is at least one configuration for every benchmark, where a line fill configuration with
8 to 32 bytes per line (depending on the benchmark) performs better than the individual field fill.
However, there is no single line size, which gives better results on line fill than on word fill for all
benchmarks. Moreover, the performance gained using the optimal line fill configuration is relatively
small. Choosing the line size optimal for one benchmark, results in a higher miss penalty for other
benchmarks than using a word fill configuration. This result is a little bit different from average-
case measurements with DaCapo application benchmarks [11]. With the DaCapo benchmarks single
field fill was always more efficient than loading whole cache lines, which indicates only small spatial
locality in heap allocated objects. For these reasons, we lean slightly towards filling only individual
fields even with a SDRAM main memory.

4 Conclusion

In this deliverable we report on the scalability of a chip-multiprocessor Java processor, which is
designed to enable WCET analysis. Although design optimization for WCET is different from opti-
mizations for average case throughput, the JOP CMP design scales reasonable for parallel workloads.
As the pressure on the memory bandwidth increases with several processor cores on a shared memory
architecture, we have added additional caches to the processor cores: direct mapped caches for data
where the address can be statically predicted and highly associative cache for heap allocated, shared
data. The resulting speedup of a 8 core system compared to a uniprocessor system is between 3 and
7, depending on the type of application.

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 13

D2.6 JOP Scalability Report

Table 1: Object cache hit rate and miss penalty per field access for the UDP/IP benchmark.
Field access cost per access

Cache Uniprocessor 8 core CMP

Type Size Line Assoc. Hit rate SRAM SDRAM SRAM SDRAM

word fill 0 B 128 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 0.00 % 2.00 12.00 17.00 161.00
8 B 8 B 1 way 25.00 % 1.50 9.00 12.75 120.75

16 B 16 B 1 way 58.33 % 0.83 5.00 7.08 67.08
32 B 32 B 1 way 54.17 % 0.92 5.50 7.79 73.79
64 B 64 B 1 way 54.17 % 0.92 5.50 7.79 73.79
8 B 4 B 2 way 2.08 % 1.96 11.75 16.65 157.65

16 B 8 B 2 way 27.08 % 1.46 8.75 12.40 117.40
32 B 16 B 2 way 60.42 % 0.79 4.75 6.73 63.73
64 B 32 B 2 way 62.50 % 0.75 4.50 6.38 60.38

128 B 64 B 2 way 62.50 % 0.75 4.50 6.38 60.38
16 B 4 B 4 way 2.08 % 1.96 11.75 16.65 157.65
32 B 8 B 4 way 27.08 % 1.46 8.75 12.40 117.40
64 B 16 B 4 way 60.42 % 0.79 4.75 6.73 63.73

128 B 32 B 4 way 66.67 % 0.67 4.00 5.67 53.67
256 B 64 B 4 way 66.67 % 0.67 4.00 5.67 53.67

line fill 0 B 128 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 0.00 % 2.00 12.00 17.00 161.00
8 B 8 B 1 way 29.17 % 1.75 8.83 14.71 114.04

16 B 16 B 1 way 70.83 % 1.58 4.50 12.96 46.96
32 B 32 B 1 way 66.67 % 5.33 8.67 43.00 101.67
64 B 64 B 1 way 66.67 % 10.67 14.00 85.67 197.67
8 B 4 B 2 way 2.08 % 1.96 11.75 16.65 157.65

16 B 8 B 2 way 31.25 % 1.54 8.42 13.02 110.69
32 B 16 B 2 way 72.92 % 1.04 3.75 8.60 43.60
64 B 32 B 2 way 79.17 % 3.33 5.42 26.88 63.54

256 B 128 B 2 way 79.17 % 13.33 15.42 106.88 243.54
16 B 4 B 4 way 2.08 % 1.96 11.75 16.65 157.65
32 B 8 B 4 way 31.25 % 1.54 8.42 13.02 110.69
64 B 16 B 4 way 72.92 % 1.04 3.75 8.60 43.60

256 B 64 B 4 way 83.33 % 5.33 7.00 42.83 98.83
512 B 128 B 4 way 83.33 % 10.67 12.33 85.50 194.83

single field 0 B 4 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 0.00 % 2.00 12.00 17.00 161.00
8 B 4 B 2 way 4.17 % 1.92 11.50 16.29 154.29

16 B 4 B 4 way 62.50 % 0.75 4.50 6.38 60.38
32 B 4 B 8 way 66.67 % 0.67 4.00 5.67 53.67
64 B 4 B 16 way 66.67 % 0.67 4.00 5.67 53.67

Page 14 Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

Table 2: Object cache hit rate and miss penalty per field access for the Lift benchmark.
Cache hit rate

Cache Uniprocessor 8 core CMP

Type Size Line Assoc. Hit rate SRAM SDRAM SRAM SDRAM

word fill 0 B 0 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 41.86 % 1.84 11.05 15.66 148.29
8 B 8 B 1 way 3.92 % 1.98 11.89 16.85 159.59

16 B 16 B 1 way 31.31 % 1.73 10.37 14.69 139.11
8 B 4 B 2 way 90.70 % 1.66 9.95 14.09 133.46

16 B 8 B 2 way 86.27 % 1.61 9.68 13.72 129.93
32 B 16 B 2 way 88.89 % 1.23 7.37 10.44 98.86
64 B 32 B 2 way 89.55 % 0.95 5.68 8.05 76.26

128 B 64 B 2 way 90.54 % 0.23 1.37 1.94 18.36
256 B 128 B 2 way 89.47 % 0.21 1.26 1.79 16.95
16 B 4 B 4 way 93.02 % 1.65 9.89 14.02 132.75
32 B 8 B 4 way 88.24 % 1.61 9.63 13.64 129.22
64 B 16 B 4 way 89.90 % 1.22 7.32 10.36 98.15

128 B 32 B 4 way 90.30 % 0.94 5.63 7.98 75.56
256 B 64 B 4 way 90.99 % 0.22 1.32 1.86 17.65
512 B 128 B 4 way 89.91 % 0.20 1.21 1.71 16.24

line fill 0 B 0 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 41.86 % 1.84 11.05 15.66 148.29
8 B 8 B 1 way 5.88 % 2.55 12.42 21.41 158.88

16 B 16 B 1 way 33.33 % 3.45 12.00 28.43 137.70
8 B 4 B 2 way 90.70 % 1.66 9.95 14.09 133.46

16 B 8 B 2 way 90.20 % 1.64 9.62 13.92 128.52
32 B 16 B 2 way 94.95 % 1.31 7.18 11.04 94.62
64 B 32 B 2 way 95.52 % 1.25 5.63 10.40 74.40

128 B 64 B 2 way 97.30 % 0.89 1.42 7.21 19.84
256 B 128 B 2 way 97.37 % 1.68 1.95 13.50 30.76
16 B 4 B 4 way 93.02 % 1.65 9.89 14.02 132.75
32 B 8 B 4 way 94.12 % 1.61 9.50 13.63 127.11
64 B 16 B 4 way 96.97 % 1.24 7.03 10.47 93.21

128 B 32 B 4 way 97.76 % 1.04 5.29 8.71 70.39
256 B 64 B 4 way 98.65 % 0.47 0.87 3.83 12.04
512 B 128 B 4 way 98.68 % 0.84 0.97 6.75 15.38

single field 0 B 4 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 0.00 % 2.00 12.00 17.00 161.00
8 B 4 B 2 way 0.00 % 2.00 12.00 17.00 161.00

16 B 4 B 4 way 14.47 % 1.71 10.26 14.54 137.70
32 B 4 B 8 way 84.65 % 0.31 1.84 2.61 24.71
64 B 4 B 16 way 89.47 % 0.21 1.26 1.79 16.95

128 B 4 B 32 way 89.91 % 0.20 1.21 1.71 16.24

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 15

D2.6 JOP Scalability Report

References

[1] Daniel Grund and Jan Reineke. Precise and efficient FIFO-replacement analysis based on static
phase detection. In Proceedings of the 22nd Euromicro Conference on Real-Time Systems
(ECRTS 2010), July 2010.

[2] M. Herlihy, J. Eliot, and B. Moss. Transactional memory: Architectural support for lock-free
data structures. In Computer Architecture, 1993. Proceedings of the 20th Annual International
Symposium on, pages 289–300, 1993.

[3] Benedikt Huber, Wolfgang Puffitsch, and Martin Schoeberl. WCET driven design space explo-
ration of an object caches. In Proceedings of the 8th International Workshop on Java Technolo-
gies for Real-time and Embedded Systems (JTRES 2010), pages 26–35, New York, NY, USA,
2010. ACM.

[4] David A. Patterson. Reduced instruction set computers. Commun. ACM, 28(1):8–21, 1985.

[5] Christof Pitter and Martin Schoeberl. A real-time Java chip-multiprocessor. ACM Trans. Embed.
Comput. Syst., 10(1):9:1–34, 2010.

[6] Wolfgang Puffitsch. Data caching, garbage collection, and the Java memory model. In Pro-
ceedings of the 7th International Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES 2009), pages 90–99, New York, NY, USA, 2009. ACM.

[7] Martin Schoeberl. A Java processor architecture for embedded real-time systems. Journal of
Systems Architecture, 54/1–2:265–286, 2008.

[8] Martin Schoeberl. Time-predictable cache organization. In Proceedings of the First Interna-
tional Workshop on Software Technologies for Future Dependable Distributed Systems (STF-
SSD 2009), pages 11–16, Tokyo, Japan, March 2009. IEEE Computer Society.

[9] Martin Schoeberl, Florian Brandner, and Jan Vitek. RTTM: Real-time transactional memory. In
Proceedings of the 25th ACM Symposium on Applied Computing (SAC 2010), pages 326–333,
Sierre, Switzerland, March 2010. ACM Press.

[10] Martin Schoeberl and Peter Hilber. Design and implementation of real-time transactional mem-
ory. In Proceedings of the 20th International Conference on Field Programmable Logic and
Applications (FPL 2010), pages 279–284, Milano, Italy, August 2010. IEEE Computer Society.

[11] Martin Schoeberl, Benedikt Huber, Walter Binder, Wolfgang Puffitsch, and Alex Villazon. Ob-
ject cache evaluation. Technical report, Technical University of Denmark, 2010.

[12] Martin Schoeberl, Thomas B. Preusser, and Sascha Uhrig. The embedded Java benchmark
suite JemBench. In Proceedings of the 8th International Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES 2010), pages 120–127, New York, NY, USA, August
2010. ACM.

[13] Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. Towards time-predictable data
caches for chip-multiprocessors. In Proceedings of the Seventh IFIP Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems (SEUS 2009), number LNCS 5860,
pages 180–191. Springer, November 2009.

Page 16 Version 1.0
Confidentiality: Public Distribution

4 October 2010

D2.6 JOP Scalability Report

[14] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen, and Benedikt Huber. Worst-
case execution time analysis for a Java processor. Software: Practice and Experience, 40/6:507–
542, 2010.

[15] Sascha Uhrig and Jörg Wiese. jamuth: an IP processor core for embedded Java real-time sys-
tems. In Proceedings of the 5th International Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2007), pages 230–237, New York, NY, USA, 2007. ACM Press.

[16] Martin Zabel, Thomas B. Preusser, Peter Reichel, and Rainer G. Spallek. Secure, real-time
and multi-threaded general-purpose embedded Java microarchitecture. In Prceedings of the
10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD
2007), pages 59–62, Lübeck, Germany, Aug. 2007.

4 October 2010 Version 1.0
Confidentiality: Public Distribution

Page 17

	Introduction
	Rational for Design Decisions
	Split Caches
	The Object Cache

	TDMA and Round-Robin Memory Arbitration
	Transactional Memory

	Evaluation
	Platform
	Benchmarks
	Scalability
	Feature Impact
	Performance
	WCET Driven Object Cache Evaluation

	Conclusion

