

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

On user-friendly interface construction for CACSD packages

Ravn, Ole

Published in:
IEEE Control Systems Society Workshop on Computer-Aided Control System Design

Link to article, DOI:
10.1109/CACSD.1989.69828

Publication date:
1989

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ravn, O. (1989). On user-friendly interface construction for CACSD packages. In IEEE Control Systems Society
Workshop on Computer-Aided Control System Design (pp. 35-40). IEEE. DOI: 10.1109/CACSD.1989.69828

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13732206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CACSD.1989.69828
http://orbit.dtu.dk/en/publications/on-userfriendly-interface-construction-for-cacsd-packages(303ef504-c366-4be2-aead-a7133f8d0357).html

ON USER-FRIENDLY INTERFACE CONSTRUCTION FOR CACSD PACKAGES

Ole Ravn, Assoc. Prof. M.Sc.E.E.
Institute of Automatic Control Systems,

Servolaboratoriet, Building 326,
Technical University of Denmark,

DK-2800 Lyngby
Denmark.

Abstract: The paper presents some ideas that
are used in the development of an user-friend-
ly interface for a CACSD package. The concepts
presented are Integration and Extensibility
through the use of object-oriented program-
ming, man-machine interface and user support
using direct manipulation, multiple views on
objects and multiple actions on objects.

Introduation
CAD packages for control systems have been
developed through a number of years. The com-
mercially available state-of-the-art packages
are mostly matrix oriented like MATLAB, but in
the last years packages which integrate gra-
phical input/output and simulation languages
in an environment have emerged. 1 4 1 . Some work
has also been done to analyze the design
process itself for a better understanding of
the iterative nature of most design problems.
[2]. However, only little work has been done
to combine these two approaches and to produce
a package that supports the user better in
solving the deeign problem.
Most of the available packages do not support
the user in the iteration process of solving a
design problem. They provide tools that can
solve parts of the total problem, and the
combination of these tools are up to the user.
The tools are linear in the sense that they
take a description of the system as input and
produce an analysis result (f .ex. Bode plot)
or a controller (f.ex. LQG-design) as output.
It is up to the user to evaluate the results
and decide what to do next. In most cases it
is troublesome to redo the analysis with a
small change in parameters to test out new
ideas. A problem specified by constraints in
several domains (f.ex. time and frequency) is
not easily handled. Furthermore, the results
of the analysis are normally presented in one
domain and the users possibilities of interac-
ting are also restricted to one domain.
The work reported in this paper is done as
part of the cross-departmental project at the
Technical University of Denmark in Automatic
Control. The project involves 5 institutes in
4 different engineering sectors. One of the
achievements of the project has been the pro-
vision of a common hardware and software plat-
form for the participating institutes. This
enables them to cooperate to a greater extent
than before.
The project has at its disposal 5 Apollo work-
stations distributed at the participating
institutes, connected via a network. As a
common software platform for CAD of control
systems PRO-MATLAB and ACSL have been pur-
chased. Furthermore 13 subprojects involving
the different institutes has been defined and
a number of those has been started.

35

One of the subprojects is called 'User-Friend-
ly Interface Construction' and it focuses on
the construction of a prototype system to be
used for testing a number of interface design
concepts. The system should provide the user
with better support in coping with the itera-
tive nature of the design problem and enable
him to get a better overview of the problem to
be solved. The status of the work in this
subproject at the Institute of Automatic Con-
trol Systems is presented in this paper.
The concepts described in this paper are:

use of objectoriented programming.

using direct manipulation.

domains.

domains.

- Extensibility and Integration through the
- Man-machine interface and user support

- Multiple views on objects in different
- Multiple actions on objects in different

Object-orientation
An object-oriented program is based on ob-
jects, which contain both data and the code to
manipulate these data. A class is the basic
data structure definition for an object, along
with the functions used for manipulating
instances of that object. The class is the
template for instances of the object. The
programmer can define classes and hierarchies
of classes. A call of a member function can
depend on the actual type of the object (even
when the actual type of the object is unknown
at compile time).
The concept of integration is based on the use
of already commercially available programs for
solving parts of the design problem. F.ex.
PRO-MATLAB for analysis and synthesis and ACSL
for simulating systems. Integration of these
subsystems is done in such a way that the
total system presents itself to the user in an
uniform manner, but the user should still be
allowed access to the different subsystems in
a transparent way.
Extensibility of the system is seen as the
ability to integrate new methods in to the
system in an easy way. The user should be able
to integrate his own methods effectively,
maybe at different levels of complexity as in
MATLAB.
The system could in a way be seen as growing
by itself. The advantages are that system
administration and maintenance could be mini-
mized and that merging different user environ-
ments could be done by the users. However care
must be taken to make some garbage collection
from time to time.
Often cited benefits of using object-oriented
programming are [6]:

THO270-9/89/OOOO-OO35SOI.OO @ 1989 IEEE.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 01,2010 at 11:57:53 UTC from IEEE Xplore. Restrictions apply.

I Resources

User

x
Tasks n

TASK1 r/A

Dialogue

H-
// i TASK2 \ \U

I TASKN Ll

DBMS: Data Base Management System

RMS: Resource Management System
....._......

Figure 1.
- Programs can be developed more quickly and
inexpensively than with standard program-
ming techniques

- Programs are more modular and lend them-
selves well to structured design

- New objects can be easily defined and
added to the system without impacting the
established part of the system

- Testability of objects can be built into
the objects themselves

- Integration of systems is easier and
- Objects and methods may be re-used by

Thereby object-oriented programming supports
the concepts of extensibility and integration.
Object in the system are transfer functions,
matrices, collections of subsystems, etc. Each
object has a content and some attributes. The
content is the coefficients of a transfer
function or the elements of a matrix. The
attributes of an object is owner, creation
date, graphical representation, etc.
Objects always know what to do themselves. If
an instance of the class 'transfer function'
is told to draw a Bode plot, it uses the
bodeplot class function (which passes the
coefficient to MATLAB and tells MATLAB to draw
a Bode plot). If no class function for Bode
plots exists an error message is produced. It
is now easy to see how the modularity comes
into play. If a new class called transfer
function matrix is needed it may be derived
from the transfer function class, and many of
the class functions may be re-used or new may
be written. This can be done without having to
change the original system.
The prototype system is implemented using the
compiler based C++ programming language in an

others.

,.... ..__

"I NIAL

...
. , _.. .._,

- m i NEXPERT"

UNIX environment on the Apollo workstation.
Phaal [5] used Smalltalk on a SUN to develop
an object-oriented system for Control System
Design. However, Phaal finds that Smalltalk is
too slow to make the design environment sui-
table for real work in its present form.

Resource manaaement
On figure 1 a blockdiagram of the system is
presented.
The user is in contact with the system through
the man-machine interface shown to the left.
This is described in more detail later. The
user can set up various tasks to be performed,
either once or continuously, f.ex. the moni-
toring of an object. The actual calculations
are performed by so-called resources shown to
the right in figure 1. The resources are dif-
ferent packages. MATLAB and ACSL are the cen-
tral resources of the system, but other re-
sources such as an expert system shell could
easily be connected.
The easy integration of new resources is one
of the key features of the system. This fea-
ture expands the lifetime of the system as new
software can be incorperated when available.
This easy extensibility is accomplished by
viewing the resources as objects, and letting
a resource manager supervise the use of re-
sources. It should be mentioned that resources
can be running on the same machine as the rest
of the system o r at another machine connected
via the network using TCP/IP. This feature
enhances the total flexibility of the system,
regarding both computational load and economy,
as licenses for all resources not necessarily
have to be available for all machines running
the system.

36

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 01,2010 at 11:57:53 UTC from IEEE Xplore. Restrictions apply.

The resource manager handles the communication
with the actual resources through UNIX-pipes,
and performs the administration if several
tasks need access to a single resource. A
resource object has several class functions. A
constructor function that checks for availabi-
lity, sets up communication pipes and starts
the resource. A destructor function that
closes down operation of the resource. Get and
put functions perform the actual communica-
tion. Furthermore, there are some utility
functions such as statistics monitoring, error
functions , etc.
At this moment no interpretation of the com-
mands is done in the resource manager. It just
sends the commands on to the resource, recei-
ves the answers and returns it to the requ-
esting task. In the future some command inter-
pretation should be put into the resource
manager to enable it to perform new opera-
tions, such as adaptive load optimization,
that is, the ability to start and manage
several copies of the same resource if load
demands it, and the ability to decide which
resource should be used if several different
resources can perform the same operation.
The database manager in the prototype is quite
simple, but it could be extended to incorpora-
te object orientation. Some work has been done
in the area of databases for CACSD packages
t 3 1 .

Man-Machine Interface and User Buvvort
The man-machine interface is based on direct
manipulation. Direct manipulation refers to
interfaces having the following properties

- Continuous representation of the objects
of interest. - Physical actions or labeled button presses
instead of complex syntax.

- Rapid incremental reversible operations
whose impact on the object of interest is
immediately visible.

The interaction is mainly done through gra-
phics using the mouse as input media. The
interface is specified using an interface
design program available from Apollo Inc.
called Dialogue. The screens shown in this
paper are produced with the first prototype
system that used Domain/Dialogue and the
Display Manager from Apollo Inc. Since then
Apollo has developed an new package called
OpenDialogue which runs under the X Window
System and is portable to other machines. The
new version of the prototype system uses this
interface design package.
Another aspect of using OpenDialogue and the X
Window System is that since X is serverbased
the client program can run on a different
machine as X server. This adds another dis-
tribution level to the system: since resources
can run on one machine, the system itself on a
second and the interface graphics etc. on a
third. This adds flexibility to the total
system.
OpenDialogue is a declarative interface design
program that uses events to trigger actions in
the interface or in the application. The
specification of the interface consists of two

111:

37

parts: an application oriented part and an
user oriented part. The application oriented
part contains the specification of the tasks
which the application can handle. The user
oriented part contains the specification of
the graphical interface layout with menus,
scrollbars, buttons etc. This last part can be
changed without having to recompile the whole
system. The advanced user can therefore speci-
fy his own favorite interface layout.
OpenDialogue has a number of build-in objects
f.ex. menus, mouse sensitive buttons, graphics
areas. These are known to the system and may
be used directly in the interface design.
However, user specification of interface
objects is also possible. The user can extend
the known interface objects by defining the
new ones in C++ and integrating them in the
OpenDialogue system.
A screendump from the system is shown in
figure 2.
The system main window is show to the left.
The model loaded into the system is a model
reference adaptive system. The two top rows of
icons are mousesensitive buttons that enables
the user to perform different tasks. A button
can be selected by pointing to it and pressing
the mousekey.
Every function has a number of options definpd
for it. There are three levels of defaults for
these options. The bottom level is the hard-
coded defaults of the system. These are used
if defaults at a higher level is not present.
The middle level is user specific defaults.
These are stored in a user specific file and
loaded when the system is started. These
defaults can be configured by the user. At the
top level there are session specific default
which can be used temporarily in a single
session. These can also be loaded and stored
in user accessible files. The three level
default scheme gives the user a lot of flexi-
bility, and enables the user to setup a fa-
vorite environment. The user hardly ever has
to alter options for functions from the de-
faults. The options-popup is displayed when
mousebutton 2 is pressed over a function icon.
A helping text for the function is provided
when mousebutton 3 is pressed.
In complex and changing environments the need
arises for some kind of command-map that dis-
plays the connections between different com-
mand sequences and displays which commands are
applicable at this state of the design pro-
cess. This facility will be implemented as a
resource in the future.
The objects in the blockdiagram can be opened
by pressing a mousekey and the content (data)
of the object can be examined and altered. The
attributes of the object can also be viewed by
pressing another mousekey.
The two windows to the right on the screen are
normally not open. They are windows that dis-
play the communication with the connected
resources, in this case the simulation langu-
age ACSL and the package PRO-MATLAB. The
windows would normally just be icons like the
three at the bottom right. These are a network
mail facility, an on-line manual facility and
a print facility. The X Window System clients

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 01,2010 at 11:57:53 UTC from IEEE Xplore. Restrictions apply.

I

Figure 2.

xclock and xload are also shown. In this way
the normal UNIX-operating system facilities
are available in a similar way as the system
facilities.

Multiple views
One of the main facilities of the system is
the ability to define a view on an object.
This view can be graphical or alphanumerical.
For instance if the object is a transfer
function then a Bode plot of that transfer
function is a graphical view on that object. A
display of the values for the poles and zeroes
would be an alphanumerical view on the object.
Views can be defined to be static or dynami-
cal. The dynamical views can be updated at a
regular interval or update can be triggered by
some event in the system. The facility of
using dynamical views offers the user good
possibilities to check the action he performs
in any domain he chooses, not necessarily in
the domain in which the action is performed.
The user can define multiple views on an
object, that is, define views in different
domains. These views can be updated each time
the user makes an action in one of the do-
mains.
An example of a design problem where this
feature gives superior overview is the design
of a PD-controller. In figure 3 three views

38

are shown: to the right a closed loop stepre-
sponse, below the polplacement of the closed
loop system and to the left a Bode plot of the
open loop system. The controller phase is also
plotted. Two alphanumerical views are provided
(but not shown in the figure) , they are the
gain and phase margins of the system. These
views are just examples, many other views
could be thought of. New views can be added or
changed at any time during the design process.
Each time the user makes a change to the
controller parameters the views are updated
and the user is able to monitor system perfor-
mance in both the time-, frequency- and pol-
placement domains at the same time, without
having to enter tedious command sequencies.
The concept of multiple dynamical views is one
of the main features to be tested in the sys-
tem. In earlier packages the user has to
either write a command file with the commands
to be repeated or re-enter the commands to
produce the plot each time change to the
controller parameters is made. In practice it
will enhance both the users overview (as no
superfluous commands need to be entered) and
the time consumption for the total design
process. This may be because, the time from a
change is made to the result can be evaluated,
is minimized.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 01,2010 at 11:57:53 UTC from IEEE Xplore. Restrictions apply.

I00 101 102 I 03

w (rad/s)

100 IO' 102 I 03

w (rad/s)

Figure

~ Poles and

x

(I * = I

' t L

(1

Real

Zeros

Step Response

0 2 4 8

,5 Closed Loop Stepresponse
I 1

,5 Closed Loop Stepresponse

0.5

0 0.5 I
"
0 0.5 I

Time (R)

-10
-150 -100 -50 0

Real

1.

Magnitude
lo' r------?

10-1 100 IO' 102

o Enter o Zoom o Mooz o Exit

Figure 4.

Multiple actions
Actions are the users possibility to change
the system. Actions may be graphical or alpha-
numerical. The graphical actions are the most
efficient when it comes to testing ideas
quickly. In the example with the PD-controller
the user can graphically change the gain of
the controller by pressing the mousekey and
pointing to the point in the amplitude plot
where the open loop gain should be. The posi-
tion of the zero in the controller can also be
specified graphically. The differentiation
bandwidth or the polplacement may be entered
alphanumerically. The ability to make key-
actions graphically greatly enhances perfor-
mance of the system.

39

Another important feature of the system is the
possibility to make multiple actions. That is
change parameters in different domains at the
same time. As an example of how this feature
works a graphical transfer function specifica-
tion is presented. Three views on the system
can be seen on figure 4. The pole-zeroes in
the complex plane, a stepresponse and a Bode

Actions can be made in either the pole-zero
plot or in the Bode plot. The user can add or
delete poles and zeroes in the complex plane,
or change gain or poleplacements in the Bode
plot. This example is used to train students
in seeing how the positions of poles and

plot.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 01,2010 at 11:57:53 UTC from IEEE Xplore. Restrictions apply.

zeroes changes a systems stepresponse. Especi-
ally in showing of the effect of the positions
of the zeroes a system like this is helpful.

Conclusion
The paper present a system for testing dif-
ferent concepts in CACSD. Especially the use
of multiple views and actions in combinations
with graphics is seen to enhance the users
ability to get an overview of the system to be
designed. Good support for iteration is pro-
vided and the short time between action and
presentation allows the user to evaluate ac-
tions quickly. Object-oriented programming has
been used to provide modularity and encapsula-
tion.
This paper has presented the current status of
the project and some ideas for future enhance-
ments.

Acknowledaements
The author wishes to acknowledge the work done
by M.Sc.E.E. Jesper Pedersen to implement the
first prototype version of the system in his
master thesis. The screendump presented in
this paper are produced from this system.
Acknowledgements are also given to Jesper
Heurlen for his work with the resource manage-
ment system and for the example using multiple
actions. This work is also done in his master
thesis.

References
[l] Hutchins, E. L., Hollan, J. D., Norman, D.

A. (1986). Direct ManiDulation Interfaces.
User Centered Svstem Desian.

[2] MacFarlane, A. G. J., Gruebel, G., Acker-
mann, J. (1987). Future Design Environ-
ments for Control Engineering. Proc. of
JO th World Congress on Automatic C o n t a ,
Munich, FRG.

[3] Maciejowski, J. M. (1988). Data Structures
and Software Tools for the Computer Aided
Design of Control Systems: A Survey. proCS
of 4'th IFAC Svmvosium on ComDuter Aid ed
Desisn in Control Svstems, Beijing, P.R.
China.

141 Munro, N. (1988). ECSTASY - An Environment
for Control System Theory, Analysis, and
Synthesis. Proc. of 4'th IFAC S Y ~ D osium on

Bei j ing, P. R. China.
Comvuter Aided Desisn in Control Sv sterna,

[5] Phaal, P. (1987). An Object-Oriented En-
vironment for Control System Desian. Ph.D.
Thesis, Cambridge.

[6] Witten, S. (1987). Object-Oriented Pro-
gramming. TC Interface, Nov/Dec 1987.

40

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 01,2010 at 11:57:53 UTC from IEEE Xplore. Restrictions apply.

