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ABSTRACT 

Based on a previously published algorithm capable of es- 
timating the radar cross-section in synthethic aperture radar 
(SAR) intensity images, a new filter is presented utilizing multi- 
look polarimetric SAR images. The underlying mean covari- 
ance matrix is estimated from the observed sample covariance 
matrices, and by applying a set of small orientation-dependent 
filters in an iterative scheme, the input image becomes highly 
filtered while maintaining most of the structures in the: scene. 
Results using multi-look polarimetric C-band data from the 
Danish airborne polarimetric SAR, EMISAR, are presented. 

INTRODUCTION 

The elements of the scattering matrix are measured for each 
resolution cell by a polarimetric SAR system. The covariance 
matrix (CM) is formed from the scattering matrix, and often 
standard multi-look processing involving averaging of neigh- 
boring CMs is applied to reduce the effect of the speckle inher- 
ent in SAR images. As the degree of multi-looking is limited 
by the need to preserve structures in the scene, additional filter- 
ing is often applied using one of several available polarimetric 
SAR filters. 

In this work a new algorithm capable of filtering polarime- 
tric images is presented. It is based on the work by White [ 11, 
McConnell et a1 [2], and Oliver and Quegan [3], but rather than 
estimating the radar cross-section (RCS) given the observed in- 
tensity image, the algorithm estimates the mean CM based on 
the observed polarimetric images, thus providing better esti- 
mates of all the polarimetric parameters characterizing the sur- 
face. 

The algorithm is part of the class of image restoration algo- 
rithms, where the underlying image is restored from the ob- 
served image. Modeling the image as a Markov randoim field 
(MRF), the image restoration is expressed as an estimation 
problem. As a MRF follows the Gibbs distribution, this esti- 
mation problem is equivalent to an energy minimization prob- 
lem, which is solved using simulated annealing (SA) [4][5]. 
The SA algorithm is iterative by nature, hence we can employ 
small filters in the restoration. Also, by choosing between a 
set of orientation-dependent filters, the resulting mean CM es- 
timate provided by the algorithm is highly speckle reduced for 
the distributed targets, while most of the structures in the im- 
ages are preserved. 

MARKOV RANDOM FIELDS AND SIMULATED 
ANNEALING 

If S = {SI, s2,. . . , SN} denotes the N pixels of a 2-11 im- 
age, and the pixel values x = (21, . . . , ZN} are realizations 
of the stochastic variables X = {XI,. . . , X N }  defined on S, 
then X is a random field [5]. 

For the Markov random field defined on S, the probability 
of a particular configuration (image) of X follows a Gibbs dis- 
tribution [4][5] 

where T is called the temperature, and 2 is a normalization 
function called the partition function. The energy function, 
U(x), depends on the pixel values contained in the local neigh- 
borhood. 

When information on a process underlying an observed pro- 
cess is needed, Bayesian methods are often applied. If the un- 
derlying process is called X, and the: observed process Y, then 
Bayes rule states that the a posteriori conditional probability 
P(xly) can be found from the 1ikeli:hood function P(ylx) and 
the a priori probability P(x) by 

P(XlY) P(YIW(X) (2) 

When X is modeled as a MRF, the a posreriori probability can 
be expressed as 

(3) 

using the a posteriori conditional energy function U(x(y'). If 
knowledge about the a priori probability is omitted, the 'esti- 
mate, 8, maximizing (3) is the maximum likelihood (ML:) es- 
timate, and for the mean CM restoration algorithm the aim is 
to estimate the underlying, unspeckled image X from the ob- 
served, speckled image Y using the ML estimate. 

The global maximum of the a posteriori distribution in ( 3 )  
is equivalent to the global minimum of the a posteriori con- 
ditional energy function. This latter minimum is found using 
the stochastic optimization method simulated annealing. SA 
searches for the configuration x that minimizes U(x). It is it- 
erative by nature, where a new confguration x3 for iteration 
j is found from the previous configuration xj-l by applying 
a generation mechanism and accepting the new configuration 
using an acceptance criterion based on the energy divergence 
AU = U(xj) - U(xj-l), and the temperature. At the end 
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Fig. 1: 4 connection filters from the set of 16 filters used by the 
generation mechanism to find the new estimate of C; the remaining 
12 filters are rotated and mirrored versions of these 4. The x marks 
the central pixel and the dark pixels are the neighbors. 

of the minimization the global minimum configuration, k, is 
ideally reached [4][5]. 

The generation mechanism derives the new pixel value at a 
given pixel from a set of N ,  connection filters [l]. In this work 
we apply 16 filters, 4 of which are seen in Fig. 1; each filter 
has n, neighbors and we use nn = 4. For each filter the new 
value of the central pixel is based on the original value of the 
central pixel and the present values of the neighboring pixels. 

only the ML estimate is derived. The CMs entering (6) follow a 
complex Wishart distribution having the same mean CM. The 
original sample CM has L number of looks, and the neigh- 
boring CMs have the effective number of looks cy, which is 
estimated in a window around the central pixel. 

For each of the connections, the log likelihood function at 
site i is given as Lf(Cik )  = logP(C0, Zlk , .  . . , Znnk(Cik). 
The ML estimate of the mean CM is derived by setting 
= 0, with 0 being the 3 x 3 null matrix, resulting in 

(7) 

It is seen, that the locally estimated number of looks, a, con- 
trols the deqee of averaging. For a smooth surface a is high, 
resulting in Cik = &(Zlk + . . . + Zn,k), whereas a discon- 
tinuity in the local window makes o small, and thus gives a 
higher priority to the original sample CM. This expression is a 
generalization of the RCS estimate [ 1][2][3] given as 

.. Eo + ?(Zlk + . . . + Znnk) 
Cik = 

l + n n z  

(8) 
10 + Z ( . l k  + Z 2 k )  

= 1 +'q COVARIANCE MATRIX RESTORATION 

In the following we will assume that reciprocity holds [3], 
thus the Hermitian sample CM E at each pixel can be ex- 
pressed as 

with i?ik being the estimated RCS, 10 the original sample in- 
tensity and z1 and 22 the current estimates of the RCS at the 2 
neighboring pixels. 

(4) 

where * denotes complex conjugation. The sample covariance 
matrix follows a complex Wishart distribution, which is a func- 
tion of the number of looks L and the Hermitian mean CM C 
161 

The mean CM restoration is performed as an energy mini- 
mization process, with the a posteriori energy function given 
as , 

(9)  
U M L ( C i k l % , Z l k , - * *  , Z N , k )  = 

1 IShb]' S h h S i ,  ShhS,*, 
x=4r( s h v s i h  Ishvl' ShvSpTV ) [ sVVsih s V ? J s i ,  I S V V l 2  

- W T O ,  Zlk,. . * 7 Z N , k l C i k ) )  
. .  

LLplElL-pe-L@(C-* E) 
(5) ~('1'' = r t p ( p - l )  n;='=, r ( L  - j + 1 ) l c l L  

where p is the dimension of E, ie. p = 3 assuming reci- 
procity, I . . . I and tr(. . . ) denote the determinant and trace, re- 
spectively, and r(. . .) is the Gamma function. Goodman [6] 
shows, that is an unbiased estimate of the mean CM, C, and 
as the mean CM is the quantity to be restored by the algorithm, 
(5) represents the likelihood function. 

Using the connection filters the new estimate of the mean 
CM for the central pixel is based on the original sample CM at 
the central pixel of the connection filter, and the present esti- 
mates of the mean CM for the neighbors. Denoting the origi- 
nal, central sample CM as EO, and the neighboring mean CM 
estimates as Z1, . . . , Z n ,  we find the a posteriori probability 
as 

P(CikIE0, Zlk,. * * , Zn.,,) P(E0, Zlk, . . ' f ZnnklCik) 
(6) 

It is seen, that a high likelihood probability results in a small 
a posteriori energy function, as needed when the restoration is 
performed as an energy minimization process. For each of the 
connections, the probability 

is calculated with the partition function given as 

Y 

k 

The connection IC0 resulting in the highest a posteriori proba- 
bility (the lowest a posteriori energy) is identified, and subse- 
quently accepted or rejected based on the Metropolis criterion 
[41 [Si. 

EXPERIMENTAL RESULTS 

where suffix i denotes the pixel and suffix IC denotes the con- 
nection filter. The a priori probability, P(Cik),  is omitted, as 

The CM restoration algorithm is tested on fully polarimetric 
13-look C-band data from the Danish airborne SAR, EMISAR 
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Fig. 2: ML Covariance matrix estimation using 100 iterations, and a 
local 5 x 5 window for estimating a. Top: Uhh original, Bottom: &,h 

[7]. The test site, shown at the top in Fig. 2, includes a num- 
ber of natural and man-made targets, and these 13-look data 
having a 5 x 5 m ground pixel spacing are in the following de- 
noted as the original data. At the bottom of Fig. 2, &h.h from 
the mean CM restoration is shown. The homogeneous areas 
in the restored image appear very smooth, while most of the 
structures are maintained in the image. Estimating the effec- 
tive number of looks for the 4 large fields in the right part of 
Fig. 2 yields 271,448,539, and 255 when estimated from d h h ,  
compared to 9.8,8.4, 10.5, and 9.6 when estimated from Qhh. 
The estimate &hh for the entire scene is, however, biased by 
-0.88 dB. Fig. 3 shows the original and restored coherence, 
Phh,vv = --, and again the homogeneous areas in 

the restored image appear highly filtered. 

CONCLUSION 

A new approach for mean CM estimation is presented, work- 
ing on polarimetric SAR data and capable of achieving a very 
high degree of speckle reduction. The restored mean CM, C, 
contains the full polarimetric information, although a bias in 
the estimate is observed, and C can be used by any application 
using polarimetric data, e.g. target detection, segmentation, 
and classification. 

Fig. 3: ML Covariance matrix estimation using 100 iterations, and a 
local 5 x 5 window for estimating a. To$: IPhh,ww I original, Bottom: 
18hh,ww 1 
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