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Abstract

A hierarchical framework for simultaneous analysis of multiple related individual datasets is pre-

sented. The approach is very similar to mixed effects modelling as known from statistical theory.

The model used at the individual level is, in principle, irrelevant as long as a maximum likelihood

estimate and its uncertainty (Hessian) can be computed. The individual model used in this text is

a hidden Markov model. A simulation study concerning a two-dimensional biased random walk is

examined to verify the consistency of the hierarchical estimation framework. In addition, a study

based on acoustic telemetry data from pike illustrates how the framework can identify individuals

that deviate from the remaining population.
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1 Introduction

The development and availability of electronic tags have revolutionised the study of individual animal
movement. Often, however, the purpose of tagging studies is to investigate movement and behaviour
patterns in the population rather than at the individual. Models with random effects is the common
statistical tool for population analysis of individual measurements. Unfortunately they are not straight-
forward to employ in the context of animal movement, since the movement of an individual is not easily
parametrised such that meaningful population level patterns are captured.

Some studies have integrated state-space models (SSMs) for individual analysis into population frame-
works. In drug development SSMs are used to model the dynamics of the concentration of chemical
compounds in the blood. Nonlinear mixed effects models have been used to provide improved param-
eter estimates because variability between individuals is captured. This enables joint analysis of data
from multiple and possibly unbalanced studies (Tornøe, 2005). It is therefore tempting to take a similar
approach and combine individual SSMs for animal movement to infer population trends.

Using Bayesian methods, Jonsen et al. (2003) implemented a hierarchical model for combining multiple
individual SSMs for simulated movement data. Their inference focused on a parameter which related
movement rate to the sea surface temperature experienced by turtles. The results of the study clearly
illustrated the inferential strength of sharing information between individuals to improve estimation. The
same hierarchical approach was taken in Jonsen et al. (2006) to reveal diel variation in travel rates of
migrating leatherback turtles. Few other studies are found in the literature that deal with the difficult
task of jointly analyse movement data from multiple individuals.

Aarts et al. (2008) present the, perhaps, most extensive (non state-space) attempt to model population
space use using individual tagging data. The paper examines grey seal habitat preference with a case-
control model. Outliers present in the telemetry data are removed with a heuristic scheme and the
remaining locations are smoothed temporally with a generalized additive model (GAM). A number of
static environmental variables (sediment type, depth, distance from haul-out) are related to the number
of observed locations in a region as covariates. Thus, the model can be used for predicting the spatial
usage of the species as a function of the covariates. The model, as discussed by the authors, ignores that
the location data used for estimation is autocorrelated.

The present text studies the use of mixed effects models to combine data from multiple electronic
tags with the aim to draw conclusions about the population. The focus is not on explicitly modelling
the movement of the population, but rather on parameters that are related to the population movement,
e.g. movement rate. First the theory for hierarchical models based on likelihood functions from multiple
individuals is reviewed. This framework is similar to the empirical Bayesian method presented by Efron
(1996) or the mixed effects framework as described in Pawitan (2001). In a simulation study the hierar-
chical model is used to merge individually estimated SSMs for movement data with observation error. In
another study accurate real acoustic telemetry data from pike were used to distinguish individuals that
displayed a deviating behaviour as compared to the remaining population.

2 The hierarchical model

The population has the parameter vector θ. Then, individual i ∈ {1, . . . ,M} of the population has a
parameter vector given by
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θi = θ + wi, (1)

where

wi ∼ N(0,W ).

In mixed-effects modelling θ are referred to as the fixed effects and wi are the mutually independent
random effects. The dataset related to individual i has Ni observations. A general model for the observed
data Z(i)

Ni
=
{
z

(i)
1 , . . . ,z

(i)
Ni

}
from individual i is

Z(i)
Ni

= f(θi,Θ), (2)

where Θ covers other parameters required to generate data. Here, we assume that Θ is known (i.e. it can
be estimated from independent data). The form of f is arbitrary, however here only models with noise
(randomness) are considered, for example f could be a stochastic SSM. In this case the parameters must
be estimated using the probability density of the data conditional on the parameters is p

(
Z(i)
Ni

|θi
)
. For

time series data the observation density is typically obtained by a filtering procedure.
When viewed as a function of θi the observation density is the likelihood function for the parameters

of individual i, i.e. we have

L(θi) = p
(
Z(i)
Ni

|θi
)
, (3)

and therefore that the maximum likelihood (ML) estimate of θi is

θ̂i = argmax
θi

L(θi), (4)

which can be determined independently of the other individuals. The uncertainty of θ̂i is described by
covariance Σi of the parameter estimate, which is computed as the inverse Hessian evaluated at the
optimum of the likelihood function.

The joint probability density of the random effects and individual observations conditional on θ and
W is

p
(
wi,Z(i)

Ni
|θ,W

)
= p

(
Z(i)
Ni

|θ,wi

)
p (wi|W ) , (5)

by the definition of conditional densities. In (5) the first term on the right-hand side is equal to (3) since
θi = θ + wi. The joint likelihood function related to the random effects and the model parameters is
therefore

L(θ,W ,wi) = p
(
wi,Z(i)

Ni
|θ,W

)
.

Then, the ML estimate of the random effects for individual i with fixed θ and W is

ŵi = arg max
w

L(θ,W ,wi). (6)

The population parameters are also of interest so we marginalise over the random effects and get
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p
(
Z(i)
Ni

|θ,W
)

=
∫
p
(
wi,Z(i)

Ni
|θ,W

)
dwi. (7)

This leads to the likelihood function for the population parameter given data from the i’th individual

L
(
θ,W |Z(i)

Ni

)
= p

(
Z(i)
Ni

|θ,W
)
. (8)

Individuals are conditional independent given θ and W . Thus, the full population likelihood, i.e. the
likelihood given data from all individuals, is the product of the individual likelihood contributions

L (θ,W |Z) =
M∏
i=1

∫
p
(
Z(i)
Ni

|θ,wi

)
p (wi|W ) dwi, (9)

where Z =
{
Z(1)
N1
, . . . ,Z(M)

NM

}
. Therefore, the ML estimate of the population parameters is

(θ̂, Ŵ ) = argmax
θ,W

{L(θ,W |Z)} . (10)

2.1 Excluding deviating individuals

Say a population of M individuals has been analysed with the framework described above. Then a new
dataset becomes available from a new individual, which possibly belongs to the same population. The
parameter estimate and parameter covariance matrix for the new individual are θ̂a and Σa respectively.
Two hypotheses are defined:

H0: The new individual comes from the same population as the other individuals.

H1: The new individual does not come from the same population as the other individuals.

Under H0 it holds that

θa ∼ N(θ,W ), θ̂a|θa ∼ N(θa,Σa),

which leads to

θ̂a ∼ N(θ,W + Σa),

using the rules for conditional mean and variance. The H0 hypothesis can be tested with

Sa = (θ̂a − θ)T (Σa + W )−1(θ̂a − θ) ∼ χ2(n),

where n is the number of parameters in θ, i.e. the dimension of the parameter space. So, H0 is rejected if

Sa > χ2(n)1−α,

where the conventional level of significance, α = 0.05, is chosen.
This simple test can be used to eliminate individuals that deviate from the population by setting

a = i and comparing with the population comprised by all individuals except i. This procedure is carried
out for all i. The individual that deviates the most (smallest p-value) is eliminated from the population.
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Then for the remaining M−1 individuals the procedure is repeated. The scheme runs until no individuals
deviate from the population. Before the population comprised by the remaining individuals is accepted
forward selection of the eliminated individuals may be performed. That is, using the above test to ensure
that none of all the eliminated individuals can be included in the reduced population. This might be the
case as the population composition has changed since the first individual was eliminated.

3 Algorithm for estimating the hierarchical model

It is difficult to estimate the random effects and the population parameters simultaneously because their
respective likelihood functions are coupled. That is, when estimating wi values of θ and W are required,
when estimating θ the value of W is required and finally for estimating W values for θ and wi for all i
are required. Instead of direct numerical optimisation of all parameters, an iterative algorithm (Pawitan,
2001) is employed:

1. Set W = Ŵ , where Ŵ is a starting guess.

2. Compute the estimate θ̂ using Ŵ .

3. Compute the estimate ŵi for all i using θ̂ and Ŵ .

4. Update Ŵ using θ̂ and wi.

5. Iterate step 2 to 4 until convergence.

It is clear, however, that step 2 and 4 require that the integral (7) over the random effects be com-
puted. This integral is the main challenge of parameter estimation in a nonlinear mixed-effects model.
The optimisation routine that maximises (9) requires for each function evaluation that (8) be computed
for all individuals. It not possible in general to compute the integral on closed form and therefore approx-
imation schemes must be employed. The computing effort required to evaluate (8) with quadrature based
algorithms grows rapidly in n (the number of parameters and dimension of the integral). Therefore, even
for moderate values of n these methods are not suitable. Alternative approaches to solving the integral
are Monte Carlo simulation, first-order conditional estimation (FOCE) and the Laplacian approximation.
Here, an approach similar to the latter is employed.

The individual log-likelihood function

l(θi) = log p
(
Z(i)
Ni

|θ,wi

)
(11)

is assumed to take a quadratic form, i.e. it satisfies

l(θi) = Ki + log
(
|2πΣi|1/2

)
− log

(
|2πΣi|1/2

)
− 1

2
(θi − θ − wi)TΣ−1

i (θi − θ − wi), (12)

where Σi comes from the inverse Hessian of the individual likelihood function at θ̂i, i.e. the observed
Fisher information, and Ki is value of the individual log-likelihood function at its maximum. Note that
the two latter terms of (12) comprise a Gaussian density in the log-domain. The quadratic form is a
reasonable assumption since the likelihood function is asymptotically Gaussian around the maximum
likelihood estimate (Wasserman, 2005). Assuming a quadratic form for l(θi) is equivalent to developing
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the second-order Taylor expansion of l(θi) around its maximiser θ̂i. As mentioned above this technique
is similar to the Laplace approximation (Vonesh, 1996).

By assumption, the log-density of the random effects also has a quadratic form. Therefore, it is
evident that the log of (5) is

li = log
[
p
(
Z(i)
Ni

|θ,wi

)
p (wi|W )

]
= l(θi) + log p (wi|W )

= Ki + log
(
|2πΣi|1/2

)
− log

(
|2πΣi|1/2

)
− 1

2
(θi − θ − wi)TΣ−1

i (θi − θ − wi)

− log
(
|2πW |1/2

)
− 1

2
wT
i W−1

i wi.

For θi = θ̂i and W = Ŵ , the estimate for the random effects is found by taking the derivative of li with
respect to wi:

∂li
∂wi

= −1
2
Σ−1
i (θ̂i − θ − wi) − 1

2
Ŵ−1

i wi.

Equating to the zero-vector and solving for wi gives the random-effects estimate

ŵi = (Σ−1
i + Ŵ−1)−1Σ−1

i (θ̂i − θ). (13)

The covariance of the random effects is therefore

Si = (Σ−1
i + Ŵ−1)−1.

Now, while dropping unimportant constant terms, the population likelihood (9) can be rewritten as

l (θ,W |Z) =
M∑
i=1

log
(∫

exp (li) dwi

)

=
M∑
i=1

−1
2

log (|Σi + W |) − 1
2
(θi − θ)T (Σi + W )−1(θi − θ). (14)

This log-likelihood is similar to that of a linear mixed-model with the exception that the individuals have
different covariance matrices Σi whereas for the standard linear model they are normally assumed equal
across individuals (Pawitan, 2001).

For known W = Ŵ and Vi = Σi+Ŵ , a closed-form expression for the maximum likelihood estimate
of θ is now available by
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0 =
∂

∂θ
l
(
θ, Ŵ |Z

)
0 =

M∑
i=1

−1
2
V −1
i (θ̂i − θ)

θ̂ =

[
M∑
i=1

V −1
i

]−1 [ M∑
i=1

V −1
i θ̂i

]
. (15)

The Hessian of l
(
θ, Ŵ |Z

)
at the optimum is

Hbθ =
M∑
i=1

V −1
i ,

so the covariance matrix of θ̂ is Σbθ = H−1
bθ

.
The estimation procedure for the variance component W is not immediately tractable via (14) owing

to the Vi terms which involve a sum of two covariances. With θ = θ̂, wi = ŵi, and using equation
(17.14) in Pawitan (2001), (14) can be rewritten as

l
(
θ̂,W |Z

)
=

M∑
i=1

− 1
2

log |Σi| − 1
2
(θ̂i − θ̂ − ŵi)TΣ−1

i (θ̂i − θ̂ − ŵi)

− 1
2

log |W | − 1
2
ŵT
i W−1ŵi − 1

2
log |Σ−1

i + W−1|. (16)

It is not possible in general to find an expression for W from (16). Therefore W has to be estimated
numerically. Alternatively (16) can be simplified by assuming that W = σ2

wR, i.e. that the structure of
the covariance matrix of the random effects is known. Then (as in Pawitan, 2001) define the objective
function

Q =
M∑
i=1

− 1
2

log |Σi| − 1
2
(θ̂i − θ̂ − ŵi)TΣ−1

i (θ̂i − θ̂ − ŵi)

− n

2
log σ2

w − 1
2σ2

w

ŵT
i R−1ŵi − 1

2
log |Σ−1

i + σ−2
w R−1|.

With n parameters

∂Q

∂σ2
w

=
M∑
i=1

− n

2σ2
w

+
1

2σ4
w

ŵT
i R−1ŵi

+
1

2σ4
w

tr{(Σ−1
i + σ−2

w R−1)−1R−1}. (17)

By equating (17) to zero it can be shown that σ2
w can be updated via
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Figure 1: Simulated data from M = 30 individuals with a biased random walk in two dimensions.

σ2
w =

1
Mn

M∑
i=1

ŵT
i R−1ŵi + tr{(Σ−1

i + σ−2
w R−1)−1R−1}. (18)

It is not necessarily straightforward to determine the structure matrix R. In the simplest case it may
be set to the identity matrix (I), however this may be a too rough approximation. An alternative and
somewhat heuristic approach to get a more reasonable R is to do one iteration of the loop described
in the beginning of this section with R = I. Then, using the estimated random effects it possible to
empirically calculate R, which can be used in subsequent iterations.

4 Examples

Here we use the presented methodology to analyse data from multiple individuals. First a simulation
study is considered. Then real tagging data is analysed.

4.1 Simulation

In the simulation study data were generated from a two-dimensional SSM for M = 30 individuals (see
Figure 1). The aim was to mimic an object moving in the plane. Specifically, data for the i’th individual
were simulated from a biased random walk model

x
(i)
k+1 = x

(i)
k + ui + ν

(i)
k , (19)
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Param. D ux uy σ2
ε σ2

w R M Ni
Value log(10) 1 0 1 0.32 I 30 200

Table 1: Parameter values used for generating data for the simulation study.

where x
(i)
k is the two-dimensional location vector at time tk, ui is the drift (or advection) vector and

ν
(i)
k ∼ N(0, 2DiIdt). The time-step dt is constant in time and for all individuals. The observation

equation is

y
(i)
k = x

(i)
k + ε

(i)
k , (20)

where y
(i)
k is the observed location at time tk and ε

(i)
k ∼ N(0, σ2

εI). In this example it is assumed that
σ2

ε is independent of i and known. Equations (19) and (20) comprise the mapping f in (2).
The individual parameters θi = {Di,ui} are generated from the population parameters θ = {D,u}

as described by (1), restated here

θi = θ + wi,

with wi ∼ N(0, σ2
wR) with R = I. Data were generated with the parameter values shown in Table 1.

4.1.1 Estimation scheme

The only known parameters are R = I and the variance of the observation noise σ2
ε . All other parameters

are estimated. First, all individual parameters θi are estimated separately and independently of each
other such that θ̂i and Σi is computed for all i, see (4). This estimation is carried out with a hidden
Markov model (HMM), which discretises the two-dimensional domain into grid cells and solves the filtering
equations on this grid. For further details see Thygesen et al. (2009). Note that the simple SSM considered
here could be estimated using the Kalman filter. However, the purpose of the simulation study is to show
the use of mixed effect modelling together with HMMs because this framework generalises to nonlinear
and non-Gaussian SSMs.

The model parameters are estimated with the recursive scheme described in Section 3. With the
starting guess σ2

w = 1 the population parameters are estimated with (15). The random effects are then
estimated with (13) using the previous values for θ̂ and σ2

w. The final step in the recursion is to update
the value of σ2

w with (18). This loop continues until the parameter values converge. The recursive
scheme is very similar to an Expectation-Maximization algorithm, which is a derivative-free approach to
ML estimation. It is guaranteed that the likelihood will increase with every iteration, however sometimes
the algorithm converges slowly. Fortunately, all the estimation steps in the algorithm have closed-form
solutions (subject to some assumptions). This allows the recursion to converge rapidly.

4.1.2 Estimation results

Estimation time of one individual was approximately three minutes on a standard desktop computer.
Obviously, this time depends on the resolution of the discrete grid in the HMM, which in turn depends
on the parameter values (or rather the path of the simulated data). The computing time spent to
estimate random effects, random effects variance, and population parameters was around one second.
This estimation was quick because only analytical expressions are part of the estimation procedure.
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Test D ux uy σ2
w

1 (8.85 9.87 11.02) (0.35 0.80 1.25) (−0.38 0.06 0.50) 0.272

Table 2: Results from simulation study. Estimated population parameter values with 95% confidence
bounds. Estimated of diffusivity are transformed back from log.
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Figure 2: Length distribution of the tagged pike.

Estimation of the individuals can be parallelised to obtain further speed-up since they are conditional
independent.

The estimation results for the simulation study are shown in Section A.1 and summarised in Table 2.
All confidence intervals for the population parameters contained the true parameter values. The 95%
confidence intervals for the individual parameters also behaved as expected (approximately 5% did not
contain the true parameter values). The individual estimates of the advection parameters were relatively
uncertain. The random effects therefore had a large influence on the updated estimates, i.e. the estimates
of ui. That is, ui were close to u in general. In contrast, the diffusivity estimates were only modified
slightly by the random effects. Overall the estimation performance of the HMM with mixed effects was
satisfactory.

4.2 Acoustic data from pike

Here we use the mixed effects framework to estimate the behaviour ofM = 20 pike with length distribution
as shown in Figure 2. Data are recorded using acoustic tags and hydrophones (listening stations) in a
lake. Via triangulation, the location of the pike is measured. The location data are accurate, but prone
to outliers. Therefore, data are pre-filtered with a robust SSM (using t-distributed observation noise).
After filtering we assume that locations are known without error.

The aim of the study is to investigate the movement behaviour of the pike and to identify individuals
that deviate from the rest of the population. Our approach is to set up a three-state HMM where each
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state corresponds to either “resting”, “cruising”, or “aggressive”. First, the location data is converted
to speed data by differencing. This is only possible when the location error is small, otherwise the speed
becomes uncertain. The speed data pertaining to individual i are denoted Z(i)

Ni
= {z(i)

1 , . . . ,z
(i)
k , . . . ,z

(i)
Ni
}.

4.2.1 Estimation scheme

For each data point the likelihood of having one of the three behaviours can be computed using the
following scheme:

1. Resting (no movement),

L
(i)
1,k = 1 − Φ

(
z
(i)
k − µ1

σ1

)
,

where µ1 = 0.025 m/s and σ1 = 0.002 m/s.

2. Cruising,

L
(i)
2,k = Φ

(
z
(i)
k − µ2

σ2

)
− Φ

(
z
(i)
k − µ3

σ3

)
,

where µ2 = 0.03 m/s, µ3 = 0.25BLi m/s, σ2 = 0.01 m/s and σ3 = 0.02 m/s. Here BLi is the body
length of individual i.

3. Aggressive,

L
(i)
3,k = Φ

(
z
(i)
k − µ3

σ3

)
.

Here Φ(·) is the cumulative density function of a standard Gaussian distributed random variable. The
likelihood scheme is illustrated in Figure 3. The data likelihood (Thygesen et al., 2009; Zucchini and
MacDonald, 2009) vector to be used in the HMM is then

L(i)
k = diag(L(i)

1,k, L
(i)
2,k, L

(i)
3,k).

The data sampling interval was 45 seconds. However, with acoustic data many transmissions are
lost so the resulting data are very unevenly sampled. It is therefore necessary to formulate the HMM in
continuous time. Then the dynamics of the Markov process is described by its generator

G =

 −λ12 − λ13 λ12 λ13

λ21 −λ21 − λ23 λ23

λ31 λ23 −λ31 − λ32

 ,

where λab is the rate of jumping from state a to state b.
We are also interested in if the fish display different behaviours at day and night so we setup an

HMM for the (approximately) twelve hours of darkness and one for the twelve hours of daylight. This
corresponds to considering time as a covariate with two levels (day and night). The generators pertaining
to daytime and night time are Gd and Gn respectively. The probability transition matrices needed in
the HMM iterations are Pk = exp(G∆k), where ∆k = tk+1 − tk. The parameter vectors of the model for
individual i for day and night are respectively
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Figure 3: The likelihood of each of the three movement behaviours as a function of the observed speed.

θdi = (λ12, λ13, λ21, λ23, λ31, λ32)
(d)
i

θni = (λ12, λ13, λ21, λ23, λ31, λ32)
(n)
i .

Thus the total parameter vector for individual i is θi = (θ(d)
i , θ

(n)
i ).

The state probability distribution of the HMM at time tk conditional on Zk is φ(tk,xk|Zk) = φk|k.
This distribution is updated (omitting the i index) with

φk+1|k+1 = ψ−1
k φk|kPkLk, (21)

where

ψk = [φk|kPkLk] · 1n,
where 1n is a column vector of ones of length n and ‘·’ is the dot-product. The likelihood of the HMM
parameters (Zucchini and MacDonald, 2009) is then calculated using

p
(
Z(i)
Ni

|θi
)

= p
(
z

(i)
1 |θi

) Ni∏
k=2

ψk.

For a faster and more accurate likelihood estimation we also implement the recursion for calculating
the gradient of the likelihood function (see Section A.2).

Now, the mixed effects procedure explained in Section 3 can be utilised to estimate population param-
eters and random effects for the transition rates. However, we are interested in the stationary distribution
of the Markov chain rather than the state transition rates in the generators because these have a more
intuitive interpretation (Patterson et al., 2009). Note, though, that time series are not stationary. Still,
the stationary distributions can provide useful information on how the fish spent their time, but should
not be used for prediction under different conditions.
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The stationary distribution of a Markov chain is a function of the estimated transition rates. Specifi-
cally, the estimated stationary distribution is the vector µ̂, which fulfills

µ̂Ĝ = 0.

Knowing the uncertainty of Ĝ (from the Hessian of the likelihood function), the uncertainty of µ̂ can
be calculated with the delta method (Wasserman, 2005). Then, setting θ̂i = µ̂i with estimated covari-
ance matrix Σi found with the delta method, we perform mixed effects estimation on the stationary
distributions for day and night with the scheme of Section 3.

For this application it is unrealistic to assume that the elements of the stationary distribution are
uncorrelated. In other words R 6= I, but other than that the structure of R is unknown. Instead, the
empirical estimate of the covariance matrix W is used. Specifically, the first three steps of the algorithm
stated in Section 3 are performed using I as starting guess for W . After step 3 the empirical estimate of
W is computed from the residuals of the model. Thereafter W remains fixed to its empirical estimate.
Then the fixed and random effects are estimated as before. While this scheme is somewhat ad hoc it
does provide a much higher likelihood value than directly using the algorithm in Section 3.

4.2.2 Estimation results

The numbering and individual parameter estimates are shown in Section A.3. The backward-elimination
procedure outlined in Section 2.1 was used for the M = 20 pike with the estimated parameters for day
time and night time. For the day time parameters no deviating individuals were found. For the night time
parameters individuals were eliminated in the following order: #7, #2, #14, #18, #11. None of these
five individuals could be included in the remaining population by forward selection (see Section A.3).

It is important to note that the three largest fish and the two smallest were excluded from the group.
This suggests that the size of a pike influences its behaviour, which seems plausible from a biological
point of view. Further study of the excluded individuals and the remaining group is required to enable
detailed biological conclusions about the pike population to be made.

5 Discussion

The modelling framework presented here is similar to the hierarchical Bayes approach presented in Jonsen
et al. (2003) with (at least) two important differences: first, prior information about parameters is not
required, and second, our framework allows the investigator to test if individuals deviate from the rest
population using backward elimination and forward selection. A Bayesian alternative to the latter point
has been investigated by Efron (1996) based on so-called parameter relevance. The technique requires a
prior probability that an individual belongs to the population and then provides the posterior probability.

A limitation of our framework is that the individual log-likelihood functions must be approximatively
quadratic. The degree to which this assumption holds has not been dealt with in depth here, instead
the reader is referred to Vonesh (1996); Mortensen (2009). It is known, though, that the log-likelihood is
asymptotically quadratic as the number of observations approach infinity, however the order of conver-
gence is problem dependent.

Similar to previous individual based population models (Aarts et al., 2008) explanatory covariates
can be incorporated into the model presented here. In the study of pike this was done simplistically by
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letting parameters depend on time of day (night or day time). Naturally, functional links could also be
used as in Bestley et al. (2008). The use of environmental covariates improves the model’s ability to make
predictions in other but similar environments. Furthermore, can inference based on covariates provide
ecological insights into animal’s usage of space and indicate possible behavioural responses to changes in
the environmental variables.

As discussed by Aarts et al. (2008) the broader terms of the inference the higher the uncertainty
of the results. Inference within the estimation dataset can be carried out with high confidence in the
conclusions. Using the estimated model to predict behaviour for other populations of the same species in
a similar environment seems reasonably safe also. Extrapolation, on the other hand, to different environ-
mental properties, other species, different seasons etc. should only be carried out if this can be justified
empirically. One should also be aware than even within seemingly similar environments unmodelled co-
variates may differ such as prey distribution, risk of predation or other influential information, which is
unavailable to the modeller.

Explicit modelling of space use with data from electronic tags is difficult because data are temporally
and spatially correlated. Ignoring correlation will possibly bias conclusions. On the other hand, the
high temporal resolution of tagging data can, if correlation is accounted for, provide unique insights into
behavioural responses of the animal. Archival tags are becoming increasingly advanced measuring not
only temperature and depth, but also salinity, oxygen levels, magnetic field, and physiological variables
such as visceral warming, and heart rate. These explanatory variables will become important for future
studies of individual and population behaviour.
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A Appendix

A.1 Simulation results

sigma_b: 0.2727169 (0.300), niter: 86, likval: 72.4821775

- Pop D: [ 8.85 9.87 11.02]

# 1, w rand D: [10.24 12.76 15.91] (D indv: [10.20 13.08 16.77]) (true: 13.23)

# 2, w rand D: [10.10 12.56 15.62] (D indv: [10.28 13.06 16.60]) (true: 11.37)

# 3, w rand D: [ 7.44 9.46 12.03] (D indv: [ 7.16 9.37 12.26]) (true: 9.81)

# 4, w rand D: [ 6.17 8.01 10.40] (D indv: [ 5.54 7.47 10.08]) (true: 7.27)

# 5, w rand D: [ 5.38 7.02 9.17] (D indv: [ 4.62 6.28 8.55]) (true: 8.96)

# 6, w rand D: [ 7.34 9.35 11.90] (D indv: [ 7.01 9.19 12.05]) (true: 9.65)

# 7, w rand D: [ 8.71 10.90 13.64] (D indv: [ 8.43 10.81 13.86]) (true: 12.08)

# 8, w rand D: [12.61 15.67 19.47] (D indv: [13.57 17.21 21.83]) (true: 15.25)

# 9, w rand D: [10.17 12.58 15.57] (D indv: [10.43 13.16 16.60]) (true: 10.16)

#10, w rand D: [ 6.21 7.98 10.27] (D indv: [ 5.65 7.51 10.00]) (true: 6.95)

#11, w rand D: [ 7.22 9.13 11.53] (D indv: [ 6.92 8.98 11.66]) (true: 9.18)

#12, w rand D: [14.40 17.76 21.90] (D indv: [15.72 19.75 24.80]) (true: 18.19)

#13, w rand D: [ 6.33 8.12 10.42] (D indv: [ 5.80 7.69 10.19]) (true: 7.34)

#14, w rand D: [ 6.37 8.11 10.34] (D indv: [ 5.88 7.71 10.12]) (true: 8.09)

#15, w rand D: [ 6.62 8.55 11.04] (D indv: [ 6.12 8.20 10.98]) (true: 10.32)

#16, w rand D: [11.67 14.35 17.65] (D indv: [12.09 15.14 18.95]) (true: 14.17)

#17, w rand D: [ 7.47 9.67 12.52] (D indv: [ 7.16 9.62 12.93]) (true: 11.07)

#18, w rand D: [ 8.82 11.08 13.90] (D indv: [ 8.75 11.27 14.52]) (true: 10.92)

#19, w rand D: [ 7.77 10.02 12.93] (D indv: [ 7.52 10.05 13.43]) (true: 9.24)

#20, w rand D: [ 7.24 9.22 11.75] (D indv: [ 6.90 9.06 11.88]) (true: 8.08)

#21, w rand D: [ 7.02 9.04 11.64] (D indv: [ 6.61 8.81 11.73]) (true: 9.72)

#22, w rand D: [ 6.97 8.89 11.33] (D indv: [ 6.60 8.67 11.38]) (true: 8.47)

#23, w rand D: [ 7.89 10.01 12.70] (D indv: [ 7.80 10.19 13.31]) (true: 7.65)

#24, w rand D: [10.61 13.05 16.06] (D indv: [10.94 13.70 17.16]) (true: 12.41)

#25, w rand D: [ 5.72 7.58 10.05] (D indv: [ 4.92 6.86 9.55]) (true: 7.08)

#26, w rand D: [ 7.97 10.23 13.14] (D indv: [ 7.78 10.33 13.70]) (true: 10.30)

#27, w rand D: [ 6.69 8.49 10.78] (D indv: [ 6.25 8.16 10.66]) (true: 8.23)

#28, w rand D: [ 6.08 7.88 10.21] (D indv: [ 5.47 7.35 9.88]) (true: 8.52)

#29, w rand D: [ 4.24 5.67 7.58] (D indv: [ 3.17 4.48 6.34]) (true: 6.04)

#30, w rand D: [10.23 12.51 15.30] (D indv: [10.45 12.99 16.15]) (true: 13.31)

- Pop Ux: [ 0.35 0.80 1.25]

# 1, w rand Ux: [ 0.37 0.89 1.42] (Ux indv: [ 0.48 3.28 6.08]) (true: 1.54)

# 2, w rand Ux: [ 0.32 0.85 1.37] (Ux indv: [-0.86 2.24 5.34]) (true: 1.02)

# 3, w rand Ux: [ 0.27 0.79 1.31] (Ux indv: [-1.97 0.61 3.19]) (true: 1.11)

# 4, w rand Ux: [ 0.16 0.68 1.21] (Ux indv: [-4.16 -1.76 0.64]) (true: 0.59)

# 5, w rand Ux: [ 0.30 0.82 1.34] (Ux indv: [-0.76 1.23 3.22]) (true: 0.97)

# 6, w rand Ux: [ 0.24 0.75 1.27] (Ux indv: [-2.05 -0.02 2.01]) (true: 0.76)

# 7, w rand Ux: [ 0.36 0.88 1.40] (Ux indv: [ 0.57 3.09 5.61]) (true: 0.11)

# 8, w rand Ux: [ 0.32 0.85 1.37] (Ux indv: [-0.71 2.63 5.96]) (true: 0.93)

# 9, w rand Ux: [ 0.25 0.76 1.28] (Ux indv: [-1.68 0.31 2.30]) (true: 1.01)
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#10, w rand Ux: [ 0.33 0.85 1.37] (Ux indv: [-0.41 1.92 4.26]) (true: 0.90)

#11, w rand Ux: [ 0.33 0.85 1.37] (Ux indv: [-0.01 2.31 4.63]) (true: 1.39)

#12, w rand Ux: [ 0.23 0.76 1.29] (Ux indv: [-5.02 -1.27 2.48]) (true: 1.20)

#13, w rand Ux: [ 0.24 0.76 1.28] (Ux indv: [-1.76 0.20 2.16]) (true: 1.06)

#14, w rand Ux: [ 0.32 0.85 1.37] (Ux indv: [-0.67 1.78 4.23]) (true: 0.83)

#15, w rand Ux: [ 0.21 0.73 1.25] (Ux indv: [-2.68 -0.59 1.50]) (true: 1.00)

#16, w rand Ux: [ 0.32 0.85 1.38] (Ux indv: [-0.58 2.89 6.37]) (true: 0.99)

#17, w rand Ux: [ 0.30 0.83 1.35] (Ux indv: [-1.13 1.52 4.18]) (true: 1.36)

#18, w rand Ux: [ 0.23 0.75 1.28] (Ux indv: [-3.75 -0.78 2.20]) (true: 0.82)

#19, w rand Ux: [ 0.27 0.79 1.31] (Ux indv: [-1.34 0.86 3.05]) (true: 0.79)

#20, w rand Ux: [ 0.35 0.87 1.40] (Ux indv: [ 0.11 2.71 5.31]) (true: 0.96)

#21, w rand Ux: [ 0.29 0.81 1.33] (Ux indv: [-1.44 1.02 3.47]) (true: 0.47)

#22, w rand Ux: [ 0.21 0.73 1.25] (Ux indv: [-3.07 -0.71 1.65]) (true: 0.28)

#23, w rand Ux: [ 0.34 0.86 1.39] (Ux indv: [-0.38 2.46 5.30]) (true: 1.06)

#24, w rand Ux: [ 0.21 0.73 1.26] (Ux indv: [-5.10 -1.84 1.43]) (true: 0.93)

#25, w rand Ux: [ 0.30 0.82 1.34] (Ux indv: [-0.88 1.28 3.43]) (true: 0.88)

#26, w rand Ux: [ 0.31 0.83 1.35] (Ux indv: [-0.79 1.70 4.19]) (true: 1.15)

#27, w rand Ux: [ 0.28 0.80 1.32] (Ux indv: [-1.27 0.99 3.24]) (true: 0.96)

#28, w rand Ux: [ 0.26 0.78 1.30] (Ux indv: [-1.61 0.59 2.80]) (true: 1.22)

#29, w rand Ux: [ 0.26 0.77 1.28] (Ux indv: [-1.53 0.36 2.25]) (true: 1.02)

#30, w rand Ux: [ 0.24 0.76 1.29] (Ux indv: [-3.80 -0.64 2.52]) (true: 1.17)

- Pop Uy: [-0.38 0.06 0.50]

# 1, w rand Uy: [-0.46 0.06 0.59] (Uy indv: [-3.27 -0.45 2.38]) (true: 0.15)

# 2, w rand Uy: [-0.49 0.04 0.57] (Uy indv: [-3.75 -0.59 2.58]) (true: -0.12)

# 3, w rand Uy: [-0.44 0.08 0.60] (Uy indv: [-1.70 0.36 2.42]) (true: -0.24)

# 4, w rand Uy: [-0.42 0.09 0.61] (Uy indv: [-1.24 0.75 2.74]) (true: 0.08)

# 5, w rand Uy: [-0.60 -0.08 0.43] (Uy indv: [-4.71 -2.52 -0.33]) (true: -0.11)

# 6, w rand Uy: [-0.49 0.04 0.56] (Uy indv: [-3.30 -0.68 1.94]) (true: -0.45)

# 7, w rand Uy: [-0.38 0.14 0.66] (Uy indv: [-0.11 2.20 4.51]) (true: 0.09)

# 8, w rand Uy: [-0.44 0.09 0.62] (Uy indv: [-2.01 1.64 5.30]) (true: 0.18)

# 9, w rand Uy: [-0.49 0.04 0.57] (Uy indv: [-3.81 -0.62 2.57]) (true: -0.20)

#10, w rand Uy: [-0.41 0.10 0.62] (Uy indv: [-1.21 0.82 2.86]) (true: -0.13)

#11, w rand Uy: [-0.37 0.15 0.67] (Uy indv: [-0.22 2.05 4.32]) (true: 0.09)

#12, w rand Uy: [-0.39 0.14 0.67] (Uy indv: [ 0.41 4.25 8.09]) (true: -0.11)

#13, w rand Uy: [-0.45 0.07 0.59] (Uy indv: [-2.20 0.25 2.69]) (true: -0.11)

#14, w rand Uy: [-0.42 0.09 0.61] (Uy indv: [-1.42 0.54 2.50]) (true: 0.09)

#15, w rand Uy: [-0.52 -0.01 0.51] (Uy indv: [-3.61 -1.41 0.78]) (true: -0.06)

#16, w rand Uy: [-0.56 -0.04 0.49] (Uy indv: [-7.22 -3.84 -0.46]) (true: -0.45)

#17, w rand Uy: [-0.42 0.09 0.61] (Uy indv: [-1.40 0.67 2.73]) (true: -0.03)

#18, w rand Uy: [-0.44 0.09 0.61] (Uy indv: [-1.88 0.78 3.44]) (true: 0.05)

#19, w rand Uy: [-0.51 0.01 0.54] (Uy indv: [-3.66 -1.03 1.60]) (true: -0.02)

#20, w rand Uy: [-0.51 0.00 0.52] (Uy indv: [-3.10 -1.05 1.00]) (true: -0.29)

#21, w rand Uy: [-0.48 0.04 0.56] (Uy indv: [-2.45 -0.29 1.87]) (true: 0.11)

#22, w rand Uy: [-0.47 0.04 0.56] (Uy indv: [-2.82 -0.57 1.67]) (true: -0.34)

#23, w rand Uy: [-0.41 0.11 0.63] (Uy indv: [-1.34 1.13 3.60]) (true: 0.52)

#24, w rand Uy: [-0.49 0.04 0.57] (Uy indv: [-3.66 -0.53 2.59]) (true: 0.16)

#25, w rand Uy: [-0.39 0.13 0.65] (Uy indv: [-0.88 1.30 3.48]) (true: -0.09)
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#26, w rand Uy: [-0.51 0.01 0.53] (Uy indv: [-3.45 -1.09 1.27]) (true: -0.36)

#27, w rand Uy: [-0.49 0.02 0.54] (Uy indv: [-2.87 -0.61 1.64]) (true: -0.34)

#28, w rand Uy: [-0.43 0.09 0.61] (Uy indv: [-1.62 0.58 2.77]) (true: 0.24)

#29, w rand Uy: [-0.43 0.08 0.60] (Uy indv: [-1.53 0.40 2.34]) (true: 0.11)

#30, w rand Uy: [-0.52 0.01 0.54] (Uy indv: [-4.85 -1.69 1.48]) (true: -0.78)

A.2 Gradient of likelihood function for HMMs

The optimum (θ̂) found by a numerical optimising routine is only a value close to the true optimum θ,
that is

θ̂ = θ + e,

where e is the approximation error. The size of e depends on the termination criteria for the optimising
routine. The curvature of the likelihood function around θ is approximated by the Hessian calculated
around θ̂. For some problems the approximation of the Hessian is quite sensitive to the point around
which it is calculated.

For likelihood estimation it is common to optimise the likelihood function only using evaluations of
the function itself. However, in some cases it is possible to calculate the gradient of the likelihood function
analytically and provide this as input to the optimiser along with the function value. This will typically
lead to a faster and more accurate estimation of the optimum and therefore also a more accurate Hessian
estimate. Below, the recursions for calculating the likelihood value and its gradient with respect to the
model parameters are derived.

The parameter vector for individual i is θi = {θ1, . . . , θnpar}i. Define the short-hand notation

ψk = p
(
z

(i)
k |Z(i)

k−1,θi

)
,

for k > 1. The gradient of the likelihood function (3) with respect to θj is

∂l(θi)
∂θj

=
∂

∂θj

[
logψ1 +

Ni∑
k=2

logψk

]

=
1
ψ1

∂ψ1

∂θj
+

Ni∑
k=2

1
ψk

∂ψk
∂θj

, (22)

where ψ1 = p(z(i)
1 |θi). The way to compute ∂ψk

∂θj
is through a recursion similar to that for computing the

likelihood value itself. For a continuous-time Markov chain the following relation holds

φ̇k|k = φk|kGk, (23)

where φ̇k|k = ∂φk|k
∂t . Taking the partial derivative of (23) with respect to θj gives

∂φ̇k|k
∂θj

=
∂φk|k
∂θj

Gk + φk|k
∂Gk

∂θj
.

Define the derivative of the state probabilities
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sk =
∂φk|k
∂θj

and concatenate φk|k and sk to get

πk =
(
φk|k , sk

)
.

The system of differential equations analogous to (23), but including sk is then

π̇k = πkΓk,

where

Γk =

(
Gk

∂Gk

∂θj

0 Gk

)
.

The matrix Γk is the generator for the augmented system comprising both φk|k and sk. Then the usual
relation holds

Πk = exp (Γk∆k) , (24)

where Πk is the transition matrix for πk. Thus, the time-evolution of the state probabilities (φk|k) and
the state probability derivatives (sk) is described by Πk. This matrix is not a transition probability
matrix because it can have element values below zero and larger than one.

As for the standard HMM filter (21), time and data-updates of πk are performed analogously

µk = πkΠkΛk, (25)

where Λk is the concatenated data likelihood matrix, i.e.

Λk =

(
Lk 0
0 Lk

)
.

Note that µk has not yet been normalised. The normalisation constants for µk are

(
ψk ,

∂ψk
∂θj

)
= µk

(
1n 0
0 1n

)
,

which are the ones required to calculate the sum (22). To complete the recursion the normalisation of
µk is given by

πk+1 = µkΨk, (26)

where

Ψk =

(
ψ−1
k 1n − 1

ψ2
k

∂ψk

∂θj
1n

0 ψ−1
k 1n

)
.

The matrix Ψk is found using the rules for differentiation of a fraction.
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The steps of the filter recursion are summarised by (25) and (26). The main concern with the recursion
is (24) which can be a computationally demanding operation depending on the size of Γk.

A similar recursive scheme can also be derived for the Hessian of the likelihood function.

A.3 Individual estimates of pike data

Below StatDay and StatNight refer to the stationary distribution for the day and night time periods
respectively.

# 1, Length: 578 mm, StatDay: [ 0.897 0.096 0.007], StatNight: [ 0.994 0.005 0.001]

# 2, Length: 805 mm, StatDay: [ 0.794 0.202 0.004], StatNight: [ 0.691 0.306 0.003]

# 3, Length: 694 mm, StatDay: [ 0.731 0.261 0.008], StatNight: [ 0.981 0.018 0.001]

# 4, Length: 560 mm, StatDay: [ 0.702 0.269 0.029], StatNight: [ 0.948 0.047 0.006]

# 5, Length: 740 mm, StatDay: [ 0.857 0.137 0.006], StatNight: [ 0.980 0.017 0.002]

# 6, Length: 772 mm, StatDay: [ 0.918 0.079 0.003], StatNight: [ 0.987 0.012 0.001]

# 7, Length: 992 mm, StatDay: [ 0.732 0.265 0.004], StatNight: [ 0.768 0.230 0.002]

# 8, Length: 628 mm, StatDay: [ 0.837 0.158 0.005], StatNight: [ 0.990 0.009 0.001]

# 9, Length: 780 mm, StatDay: [ 0.815 0.183 0.002], StatNight: [ 0.968 0.030 0.002]

#10, Length: 531 mm, StatDay: [ 0.698 0.278 0.023], StatNight: [ 0.958 0.036 0.005]

#11, Length: 422 mm, StatDay: [ 0.852 0.121 0.028], StatNight: [ 0.970 0.022 0.008]

#12, Length: 617 mm, StatDay: [ 0.720 0.267 0.014], StatNight: [ 0.981 0.017 0.003]

#13, Length: 554 mm, StatDay: [ 0.837 0.152 0.011], StatNight: [ 0.977 0.021 0.002]

#14, Length: 798 mm, StatDay: [ 0.747 0.248 0.005], StatNight: [ 0.926 0.073 0.001]

#15, Length: 676 mm, StatDay: [ 0.894 0.101 0.006], StatNight: [ 0.986 0.013 0.001]

#16, Length: 585 mm, StatDay: [ 0.679 0.311 0.010], StatNight: [ 0.989 0.010 0.002]

#17, Length: 680 mm, StatDay: [ 0.876 0.121 0.003], StatNight: [ 0.995 0.004 0.001]

#18, Length: 485 mm, StatDay: [ 0.923 0.064 0.013], StatNight: [ 0.987 0.009 0.004]

#19, Length: 530 mm, StatDay: [ 0.884 0.106 0.010], StatNight: [ 0.987 0.011 0.002]

#20, Length: 615 mm, StatDay: [ 0.933 0.062 0.005], StatNight: [ 0.992 0.008 0.001]

Day time population estimates:

theta = [ 0.8259 0.1638 0.0078]

[ 0.2569 -0.2675 -0.0107]

W = [-0.2675 0.2812 -0.0194] (in logit domain)

[-0.0107 -0.0194 0.4353]

# 1: [ 0.8212 0.1682 0.0078], L: 578, p-val: 0.638035

# 2: [ 0.8268 0.1624 0.0082], L: 805, p-val: 0.685034

# 3: [ 0.8312 0.1584 0.0077], L: 694, p-val: 0.725120

# 4: [ 0.8270 0.1632 0.0073], L: 560, p-val: 0.284323

# 5: [ 0.8236 0.1657 0.0079], L: 740, p-val: 0.916625

# 6: [ 0.8203 0.1688 0.0080], L: 772, p-val: 0.350415

# 7: [ 0.8290 0.1603 0.0083], L: 992, p-val: 0.347690

# 8: [ 0.8255 0.1638 0.0080], L: 628, p-val: 0.941316

# 9: [ 0.8298 0.1595 0.0085], L: 780, p-val: 0.073640

#10: [ 0.8329 0.1575 0.0072], L: 531, p-val: 0.088945

#11: [ 0.8256 0.1650 0.0073], L: 422, p-val: 0.213921

#12: [ 0.8318 0.1581 0.0075], L: 617, p-val: 0.506483

#13: [ 0.8253 0.1643 0.0076], L: 554, p-val: 0.919697
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#14: [ 0.8303 0.1592 0.0080], L: 798, p-val: 0.653147

#15: [ 0.8244 0.1649 0.0079], L: 676, p-val: 0.870831

#16: [ 0.8338 0.1560 0.0077], L: 585, p-val: 0.375426

#17: [ 0.8217 0.1673 0.0081], L: 680, p-val: 0.570583

#18: [ 0.8182 0.1720 0.0076], L: 485, p-val: 0.165754

#19: [ 0.8217 0.1678 0.0077], L: 530, p-val: 0.705593

#20: [ 0.8155 0.1747 0.0079], L: 615, p-val: 0.152295

Night time population estimates (with indviduals #7, #2, #14, #18, and #11 excluded):

theta = [ 0.9844 0.0139 0.0016]

[ 0.4468 -0.4565 -0.3659]

W = [-0.4565 0.4681 0.3582] (in logit domain)

[-0.3659 0.3582 0.4425]

# 1: [ 0.9834 0.0149 0.0017], L: 578, p-val: 0.486218

# 3: [ 0.9846 0.0137 0.0016], L: 694, p-val: 0.357374

# 4: [ 0.9857 0.0128 0.0014], L: 560, p-val: 0.095166

# 5: [ 0.9846 0.0137 0.0015], L: 740, p-val: 0.897195

# 6: [ 0.9841 0.0141 0.0017], L: 772, p-val: 0.569789

# 8: [ 0.9839 0.0144 0.0016], L: 628, p-val: 0.746050

# 9: [ 0.9852 0.0132 0.0015], L: 780, p-val: 0.494091

#10: [ 0.9855 0.0130 0.0015], L: 531, p-val: 0.137100

#12: [ 0.9846 0.0138 0.0015], L: 617, p-val: 0.802857

#13: [ 0.9848 0.0135 0.0016], L: 554, p-val: 0.844332

#15: [ 0.9842 0.0140 0.0017], L: 676, p-val: 0.649057

#16: [ 0.9840 0.0143 0.0016], L: 585, p-val: 0.781717

#17: [ 0.9830 0.0153 0.0017], L: 680, p-val: 0.157704

#19: [ 0.9841 0.0142 0.0016], L: 530, p-val: 0.899792

#20: [ 0.9836 0.0145 0.0017], L: 615, p-val: 0.286372

- Forward selection

# 2: [ 0.6908 0.3058 0.0034], L: 805, p-val: 0.000000 *

# 7: [ 0.7684 0.2295 0.0020], L: 992, p-val: 0.000000 *

#11: [ 0.9700 0.0223 0.0077], L: 422, p-val: 0.000262 *

#14: [ 0.9257 0.0730 0.0013], L: 798, p-val: 0.000001 *

#18: [ 0.9871 0.0091 0.0039], L: 485, p-val: 0.000641 *


