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A Theoretical  and  Experimental  Analysis of 
Modulated Laser  Fields  and  Power  Spectra 

HENNING OLESEN AND GUNNAR JACOBSEN 

Abstract-A general theoretical  description of modulated  laser  fields 
and  power  spectra  for  a  current  modulated  single-mode  laser is derived, 
taking  into  account  both  the  intensity  and  frequency  modulation (IM 
and FM) of the  emitted light. The  theory relies on an  explicit howl -  
edge of  the  modulus as well as the phase of the  current-to-frequency 
modulation  transfer  function  for  the laser. Numerical  examples  are 
presented  for  sinusoidal,  sawtooth,  and  square wave modulation  con- 
sidering  broad-band  and  narrow-band FM cases with  various  amounts 
of  IM. The IM causes a  significant  distortion  of  the  pure FM spectrum, 
strongly  dependent on the  modulus  and  the  phase  of  the  current-to- 
frequency  modulation  transfer  function. In general, it  causes the FM 
spectrum to become  asymmetrical  with  a  change of the  relative  side- 
band level. The  theoretical results have  been  confirmed  experimentally 
by  Fabry-Perot  interferometer  measurements  on  a  temperature  stabi- 
lized CSP injection laser. In the  interpretation of the  measurement 
results,  the  detailed  characteristics of the  interferometer,  and the  detec- 
tion  system  are  taken into account.  The  measurements  include  narrow- 
band  and  broad-band  sinusoidal  modulation as well as broad-band  saw- 
tooth  and  square wave modulation. 

I. INTRODUCTION 

C OHERENT  optical  transmission  systems, using angular 
modulation  of a  highly coherent  injection  laser,  look  very 

promising for  future long-distance,  high-capacity  transmission 
[ I ]  - [3] . Several methods  for achieving frequency  modulation 
(FM) or phase modulation (PM) of  the  emitted light  have  been 
investigated  and, in  particular,  direct  optical FM by  injection 
current  modulation has received considerable attention 

It is important to realize that direct  current  modulation al- 
ways results in  combined  intensity  and  frequency  modulation 
(IM and FM). For  coherent  applications  the IM is an undesired 

[41- 161 . 
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effect, but since the frequency  deviation per  unit  current is 
in  the range from 0.1-3.5 GHz/mA  [6]  the  spurious IM will 
often be  small. If  the IM cannot be tolerated,  it  may  be re- 
duced  by the use of  injection  locked  repeaters [7], [SI. 

In  conventional  systems,  however, large  signal IM is often 
employed,  and  in this case the FM  is the  unwanted  part. By 
careful design of  the  system  the FM does not cause any  trouble, 
but  it  may have a  serious  influence on system  performance 
if  interference  effects  such as modal  noise [9] , [IO] and 
polarization  noise [ 1 11 , [ 121 are not eliminated. 

For  both applications,  a  proper  characterization of the injec- 
tion laser and  an  understanding  of the IM-FM interaction is 
important. Earlier  papers have dealt  with the physical  expla- 
nation of  FM through  thermal  and  carrier  effects [I31 -[I51 
and  with  the  measurement  of  modulus  [6]  and phase [16]  of 
the  current-to-frequency  modulation  transfer  function (CF- 
MTF). Examples  of  frequency  variation  under  different 
modulation  conditions have  also been  presented [ 121 , [ 141 , 
together  with  modulated  power  spectra [3],  [5] , [6],  [14]. 

In this  paper we present  a  general  theory  for  derivation  of 
the  total (IM t FM) modulation  function  for  the laser  field 
with  arbitrary  current  modulation, based on  the knowledge 
of the transfer  function (CF-MTF) mentioned above. In 
particular, we shall  consider  periodic signals such as sinusoidal, 
sawtooth,  and  square wave modulation.  Furthermore,  the 
modulated  power  spectrum will be derived and  numerical 
examples, as well  as experimental  results, will be  presented 
and  compared. A thorough  theoretical analysis is given in 
Section 11, while  Sections I11 and  IV  present  results of a  nu- 
merical and  experimental  study  of  modulated laser  spectra. 
An analysis  of some  of  the  practical  problems  in  connection 
with  Fabry-Perot  interferometer  (FPI)  measurements is  given 
in the Appendix. 

0018-9197/82/1200-2069$00.75 0 1982  IEEE 
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11. THEORY 
A. Derivation of  the Modulation Function for  the Electrical 
Field 

In  the following we shall derive the  complex  modulation 
function m(t) for  arbitrary  current  modulation,  defined as the 
ratio  between the  modulated laser field and  the  unmodulated 
laser field. 

In  order  to  account  for  the  finite  linewidth (partial  coherence) 
of the source  the  unmodulated laser field is written as [ 171 

Eo(t) = r(t) e . iW3 

The  function r(t) is a  (complex)  random stationary process 
with the  property  that 

(r(t t T ) Y $ ( t ) )  =R0(7). (2) 

The  brackets  and the asterix  denote  ensemble average and 
complex  conjugate,  respectively, Ro(7) is the (low frequency) 
autocorrelation  function of the  unmodulated laser and f o  is 
the  optical carrier  frequency. 

By standard  relations  we  get 

R,(T) = So( f )  eiznf7 df sm- 
which  connects r(t)  to physically  measurable  characteristics. 
S o ( f )  is the  power  spectrum  of  the  unmodulated laser shifted 
to zero  center  frequency  in  the following  named the spectral 
line  shape of the laser. 

The  modulated laser  field  can  now be  written as 

E(t) = m(t)  r(t)  e i2nfot 

and  the effect of the  modulation can  be  conveniently  separated 
from  that  due to  the partial  coherence.  The  modulation  func- 
tion will include both intensity  modulation (IM) and  frequency 
modulation (FM). 

For simplicity, we  will  assume that  the injection  current 
(bias + modulation) is always  greater than  or  equal  to  the 
threshold  current Zth. Transient IM effects  are  neglected, i.e., 
it is assumed that  the  output light intensity always  follows 
the  imposed  current  modulation  exactly,  without  any  time 
delay. If necessary  (at  high  frequencies) the  theory  may be 
extended to include  an  additional  complex  current-to-intensity 
modulation  transfer  function. 

The laser current is represented  by 

I(t)  =Io + I ,  . f ( t )  

where Zo is the  dc bias current, I ,  is the  modulation  current, 
and f ( t )  is a function specifying the  current  modulation,  with 
a  minimum  value  of - 1. 

This  representation is mainly  suited  for  symmetric  modula- 
tion  without dc content,  but  in case of  asymmetry  the  dc  cur- 
rent  may  be  included  in Zo and (5) remains valid. Assuming 
a  linear  light current  characteristic  of  the  laser, the  output 
power  becomes 

dP 
dI 

P(t) = - . [Z(t) - Ithl 

=Po t P, . f ( t )  (6)  

where Po = dP/dI. (Io - Ith) and P, = dP/dI 1 Z, are  the  un- 
modulated  power  and  the  modulation  power, respectively. 

Both  equations  may be  normalized yielding a  normalized 
output  intensity  and  current 

p ( t ]  = 1 t m f ( t )  (7) 

i(t) 

where m is an IM modulation  index given  as 

Again, the  concept  of  an IM index is most meaningful for 
symmetric  modulation  without  any dc content. 

As the  output  intensity is known to be  proportional to the 
squared  modulus of the  electric field we find  as  the first  im- 
portant result that 

Im(t)l = m> (9) 

i.e., the modulus of the  modulation  function is the  square 
root of the normalized  modulation  current. 

It is a  characteristic  feature of the direct  optical FM that  it 
is unavoidably  accompanied by  intensity  modulation  (and vice 
versa). Various  steps  may be taken to remove either  part, e.g., 
use of injection  locked  repeaters  [7] as limiters and  frequency 
stabilization  by the use  of  an external  cavity [ 181 . 

Next,  the  optical  frequency  modulation is considered. Here 
it is assumed that  the CF-MTF of the laser is known,  either 
from  theoretical  investigations  or  from  measurements  of the 
modulus  and  phase [6],  [ 161.  The  complex CF-MTF is 
written as 

typically  measured  in  units  of  GHz/mA. It seems  reasonable 
to assume that 

Both  modulus  and phase are  functions  of  the bias current Io, 
especially at higher  frequencies,  where the carrier  effect is 
dominating.  This  may  introduce  nonlinearities  in  the case of 
large-signal modulation, which  are not  included in the  present 
model. 

From (10) and  (1 1) the  corresponding  temporal  impulse 
response may (in  principle) be calculated by  Fourier 
transformation 

and  the  optical  frequency  modulation  due  to f ( t )  is then  ob- 
tained by convolution (,'@") 

v(t> = -Zmf(t) @ hf(Zo, t). (13) 

Here the negative  sign accounts  for the fact  that  the  frequency 
and  current  modulation are in  counterphase  at  low  frequency 
[4], where the thermal  effect is dominating.  The phase ofHf 
is accordingly  assumed to  go to zero  at  low  frequencies. 

The  temporal  phase  variation  due to f ( t )  is found  by  integra- 
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tion  of (1 3 )  

O ( t )  = 2n v(t')  dt'  I 
= - 2 n I m  [ f ( t ' )  @h&, t ')] dt' .  I (14) 

Finally,  combining (9) and  (14)  yields  the  general  expression 
for  the  complex  modulation  function 

m(t)  = 4- exp -j2nIm [f(t ' )  @ hf(Io, t')] dt' I -I 1 
(1 5) 

which  includes both IM and FM. The  steps involved in the 
construction  of m(t)  from  the dc  bias and  modulation  current 
are illustrated  schematically  in Fig. 1. The  nonuniform  fre- 
quency  response Hf(Io,  f )  is modeled as a linear network 
possessing the  same  amplitude transfer function. 

As a  simple  example  illustrating  the  theory  let  us  consider 
the case of  sinusoidal  modulation.  The  function  specifying  the 
current  modulation is now given  as 

f ( t )  = sin ( b f ,  t )  (16) 

where f m  is the  modulation  frequency. 
The  temporal  frequency  variation  (13)  becomes 

v(t) = - I m  sin (2nfmt)  @ hf(Io, t) 

= -A f  * sin  I2nf,t + r#&?,f,)I (1 7) 

where 

Af = Im . IHf(l,,fm)I (1 8) 

is the  peak  frequency  deviation  due to  the  modulation. 
Inserting (1 7) in  (14)  and  integrating we get 

m(t)  = 4 1  t m sin (2nfm t )  

- ~ X P  { ~ P C O S  [2nfmt+@f(I , , fm)I l  (19) 

where p is the  usual FM index 

p = -  Af 
f m  . 

This case has  been  analyzed  in  an  earlier  paper  by  the  authors 
(161.  The  argument  of  the CF-MTF enters as a  phase delay 
between  intensity  and  frequency  modulation, while the  modu- 
lus allows a  determination  of  the  actual FM index.  In case of 
incoherent  detection  the  (normalized)  detected  intensity is 

id(t) = 1 t m sin (2nfmt) (2 1) 

as desired. 
For  arbitrary  periodic  modulation  a similar  procedure  can be 

used to determine  the  modulation  function m(t). In  this case 
the  phase  modulation is obtained  by  adding  the  contributions 
from  each  Fourier  component given  as above. 

In  both cases the  knowledge of f ( t )  and H f  is sufficient  for 
the  calculation  of rn(t), i.e., a  Fourier  transformation ofHf is  
not  required.  This is obviously  convenient as it saves a  compu- 

FREQUENCY BRANCH 

Fig. 1. Schematic diagram illustrating the construction of the modula- 
tion function m(t)  (15). 

tational  step  and relates m(t)  more  directly to measurable 
quantities. 

B. Derivation of the Modulated Laser Spectrum 
The  modulated  power  spectrum is an important characteristic 

of  the laser, both  for  coherent  and  incoherent  applications.  In 
coherent  systems  the FM index is a  measure  of  the  necessary 
bandwidth of the  transmission  system,  and  for  incoherent 
analog  transmission,  the  modulated  spectrum will be  indicative 
of the  harmonic  distortion  components arising from,  for 
example,  modal  distortion [ 101 . 

In this  analysis we will concentrate  on  periodic  modulation, 
but an extension to the  general case is straightforward. Iff(t) 
is assumed to  be  periodic,  then m(t) will  be periodic  with  the 
same  period T. It  may,  therefore,  be  expanded  in a Fourier 
series 

with 

The  modulated laser  field  (4) is neither  periodic  nor  stationary, 
so in  order to  obtain  a  time-independent  autocorrelation  func- 
tion,  both  a  time  and  ensemble average  is required [ 191 

T 
R(7) = f (E(t dt. (24) 

The  ensemble average affects  only r(t)  and  the result is 

R(7) = R ,  (7) . &(T) - e 

where Ro(7) is  given by (2)  and 

i2n.67 
(2 5) 

Rm(7)  = 2 lynl 
2 ei2nnfmr 

(26) 
n=-m 

is the  autocorrelation  function  of  the  modulation. 

by  Fourier  transformation 
From  (25)  and  (26)  the  modulated  laser  spectrum is obtained 

S ( f ) = S , C f ) @ S o ( f ) ~ S ( f - f , )  

= & a ( f ) @ S o ( f - f o )  

= 2 IYn12 so(f- - nfm>. 
n=-m 
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This  expression  shows that  the  modulated laser spectrum is 
obtained  by  translation  of S,(f) to  a center  frequency  off, 
followed by a  convolution  of  each  sideband  with  the  spectral 
line  shape  of  the  unmodulated laser. Depending  on  the  relation 
between the  modulation  frequency  and  the  spectral  linewidth, 
the  spectrum will consist of  separated  or overlapping  versions 
of S,(f). The relative height  of the individual  sidebands is 
determined  only  by  the  modulation  and  the  influence  of 
various modulation  parameters  may,  therefore, be studied  by 
analyzing only S,(f) as the translation  and  convolution  with 
S,(f) are easily performed  when  necessary. 

In  the high  frequency  region,  where f, is much greater than 
the  spectral  linewidth,  the  spectrum  may be  correctly  recorded 
by  an  FPI analysis, apart  from a possible line  broadening  due 
to  the finite  FPI  resolution (see the  Appendix).  In  the  low 
frequency  region the FM index is always  very  high, and  in  this 
case, the  spectrum S,(f) approaches  a  limit  distribution  [20] 
given by (A23) 

Slirn(f) = Im(t(f)) I’ . ~ ( f ) .  (28) 
Here w(v) is the  probability  density  of  the  instantaneous fre- 
quency  deviation v ( t )  (13)  and Irn(t(v))12 is equal to  the nor- 
malized  intensity  (7)  at  the  time  where v(t)  equals v. A 
correct  FPI  measurement  in  this case  is more  complicated (see 
the Appendix). 

Usually the influence  of IM and FM on  the  modulatedlaser 
spectrum are  difficult to separate.  The expression for m(t) 
(15)  implies  a  multiplication  of the  square-root IM term  and 
the  exponential FM term.  This  means  that  the  complex ampli- 
tude  spectrum of m(t) is obtained  by  convolution of the 
amplitude  spectra  for  the IM and FM terms.  In  order to  get 
from the amplitude  spectrum to the power  spectrum, we then 
take the squared  modulus  of the  complex  amplitude  of  each 
sideband, as indicated by (27). However, in  many cases the 
number of sidebands  due to the  frequency  modulation will 
largely  exceed the  number  due to  the  intensity  modulation. 
This is illustrated  in  the  next  section  for  the case  of  sinusoidal 
modulation. 

The  model  presented  in  this  and  the previous section is 
adequate  for  most purposes and provides  a  good  understanding 
of  the IM-FM interaction. However,  there  are  effects  which 
cannot be treated  by  the simple approach,  such as, e.g., the 
line  broadening  and  multimode  operation observed for high- 
frequency  modulation. This  implies  a  coupling between 
the  modulation  and  the  source  properties  which causes devia- 
tions  from  the assumed stationarity.  These  effects seem to 
require further investigations  in order to obtain a thorough 
understanding. 

111. NUMERICAL EXAMPLES 
In this  section  results  of  a  numerical  investigation ofmodu- 

lated laser  spectra will be presented.  The  influence  of  the 
IM index rn, the FM index 0, and  the phase  delay q5 of  the 
transfer  function H f  will be demonstrated.  The  types  of 
modulation  considered are sinusoidal, sawtooth,  and  square 
wave modulation. 

A.  Sinusoidal Modulation 
The  plots,  which are  presented  in  the following, may  be 

scaled  arbitrarily  with the  modulation  frequency, as the inde- 
pendent variable is the  number  of  the  actual  Fourier  compo- 

nent, i.e., the harmonics number,  and  only  the spectrumS,(f) 
is considered.  This  has  been  justified  earlier in this  paper, 
since the field spectrum  may be obtained  from S,(f) by  a 
parallel shift  and a  convolution  with S,(f). 

The  interesting  parameters to vary  are  therefore rn, 0, and 
@ = q5f(lo, f,) and  the following  examples will illustrate  their 
influence. The  modulation  function rn(t) is given by (19). 
At first, we consider the IM term 

mz(t) = 41 t m sin (27rf,t). (29) 

Fig. 2 shows the  time variation of rnz(t) over one  period  with 
rn as parameter.  For small rn values rnz( t )  may be  approxi- 
mated  with a  sine wave 

rnz(t) = 1 t - sin (27rf,t) 
m 
2 (3 0)  

while for rn approaching  1 the  function deviates  substantially 
from  a  sine wave. 

In Fig. 3 we  have plotted  in  logarithmic scale the  power 
spectrum of rnz(t) (29) also with rn as parameter. It is seen 
that  for small rn values only few  harmonics  are  significant, 
whereas the  spectrum  broadens  strongly as rn approaches  1. 
This  is, of course, to  be  expected  from Fig. 2. 

A plot in  linear  scale, Fig. 4 ,  shows the  power level of  the 
carrier and  first  sideband as a function  of rn. The carrier de- 
creases from l to  about  0.7 as rn goes from 0 to l while the 
first  sideband is only  just visible in  this  linear plot. However, 
although the  spectrum  of rnz(t) is narrow  with  only  few sig- 
nificant  components,  it  has a  strong  influence on  the com- 
bined IM-FM spectrum S,(f) as shown  in the following. 

When analyzing the  spectrum S,(f) with m(t) given by (19), 
one  must  keep  in  mind  that  the parameters rn, 0, f,, and @ 
cannot  be varied  independently.  The  modulus  and  phase of 
the  transfer  function Hf(I , , f )  behave as shown  in Fig.  5(a) 
and (b), taken  from  [16].  At  low frequencies lHfl is  large so 
that rn should be  close to  zero, 0 much greater than 1 and  in 
addition q5 close to zero.  Between 10 MHz and 1 GHz 0 is 
typically  in  the  order  of 1-10 and q5 between 0 and -7r/2. The 
case of rn = 0 can,  of  course,  not  be  fully realized in  practice, 
but is included  in  order to  be able to compare  with  a  pure 
FM spectrum. 

Using (30) an approximate  analytic  expression  for S,(f) can 
be found in the case of  weak IM (rn << 1) [ 161 

~ m ( f ) =  / J ~ ( o ) - : ( J ~ + ~ ( P ) J ~  + ~ a - l ( ~ ) e - ’ ~ ) /  
m 2 

n=-m 

* w- nf,) (3  1) 

with @ = q5f(lo, f,). For larger rn values a  numerical  calculation 
is  necessary. We see that  the  pure FM spectrum (rn = 0) is 
symmetric  about n = 0 (the carrier component), whereas the 
IM generally causes the spectrum to become  asymmetric.  This 
is a  characteristic  property  for  a  combined IM and FM signal. 

The  phenomenon is further  illustrated  by  the  first series of 
spectra, Fig. 6(a)-( f). Here  a 0 value of  2.405 [= first  zero of 
J,(x)] has  been  chosen and  the  three figures in  the  left  column 
have a q5 value of 0, while those  in  the right column have 4 
equal to -7~12. The  three  rows of figures  have rn = 0.0, 0.5, 
and 1.0, respectively, taken  from  the  top. All spectra  are  ob- 
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Fig. 2.  Temporal  variation over one  period of the  amplitude of the 
modulation  function m(t)  (19)  for sinusoidal  modulation,  with m 
as parameter. 
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Fig. 3. Power spectrum  of the square-root  amplitude of m ( t ) ,  Fig. 2, 
for  sinusoidal  intensity  modulation,  with m as  parameter. 
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Fig. 4. Power level of carrier and  first  sideband versus IM index  (linear 
scale). Pure  intensity  modulation. 

tained  numerically  from m(t) by a  fast  Fourier  transform 
(FFT). 

Some  important  tendencies  can be  deduced  from  these 
figures. For  the  pure FM spectrum m = 0, the carrier  compo- 
nent is 0 (3 1 j regardless of @ = 0 or -77/2. With  increasing m 
the  spectrum becomes more  and  more  skew  for @ = 0 with  a 
relative  increase of  the lower  sidebands,  while it  remains sym- 
metric  for @ = -7~/2. For @ = 0 the carrier component remains 
(close to) zero,  while it increases  significantly for @ = -77/2. 

The degree  of  skewness of the  spectrum is therefore  depen- 
dent  on  the values of $I together  with  the IM index.  If @ were 
equal to -71 the  spectrum  would be  equally  skew as for @ = 0, 
but with the  upper  sidebands  enhanced  instead of the lower 
ones. For a given @ value  (which  permits  skewness) the degree 
of  skewness is indicative of  the  amount  of IM. 

The  next  example is for = 100 and @ = 0, Fig.  7(a)-(c), 
corresponding to a value off, less than  approximately 10 
MHz.  Again the figures represent m = 0,0.5, and 1 .O, and  the 

la O - -  
2 w 

-30- 

k 

2 -  
-60- 

MOD. FREQ.  (Hz) 
(b) 

Fig. 5. Measured example of the current-to-frequency  modulation 
transfer  function  for a CSP  laser [16]. (a) Modulus. (b) Phase. 

1.25. 
Current values: --: zo/Ith = 1.11; -: zo/zth = 1.16; -'-: zo/Ith = 

example.  This is a  broad-band FM case and we  have therefore 
included  the limiting  distribution  for large p(28j given by 

where n is the  harmonics  no.  The  amplitude  of  the  harmonics 
is seen to assume  almost  random values in a region between 
zero and 2 * SIi,(n) (although  there is a  certain  substructure). 
Therefore,  it seems  reasonable that  the  limit  distribution  may 
be obtained  by averaging  over a  narrow  frequency  band  (con- 
taining several sidebands), with increasing  accuracy as -+ 00 

[20] .  By asymptotic  expansion  of  the Bessel functions (3 1) 
it  can be  shown  that (32) is  valid to  including O(m). 

B. Sawtooth Modulation 
Next, we will consider  symmetric  sawtooth  modulation  with 

f ( t j  g' wen as 

[-I + 4 T '  o < t < -  t T 
2 

f ( t> =( (33) 

For simplicity we shall  assume  a  flat  frequency  response  with- 
out phase  delay for H f ,  so that hf( l , ,   t )  becomes 

h f ( L  tj = H f V O  Y 0)  Wt).   (34) 

tendency of spectral  skewness is the same as in  the previous Using the  procedure  outlined  in  Section 11-A we find  the  in- 
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Fig. 6 .  Modulation  power  spectra for sinusoidal modulation with FM 
index p = 2.4. (a) @ = 0, m = 0. (b) @ = 0, m = 0.5. (c) @ = 0,  m = 
1.0. (d) $J = 4 2 ,  m = 0. (e) @ = -n/2, m = 0.5. ( f )  @ = - ~ / 2 ,  m = 
1.0. (@ is the  phase delay r&(Io, fm) (19) and m is the IM index.) 

stantaneous  frequency  deviation 

{Af (-1 +4$), O < t < -  T 2 

-Af(3- 4$), r < t < T  2 

v( t )  = (3 5 )  

where Af = I,,, Hf(Io, 0), showing  a piecewise linear  frequency 
sweep. 

By integration  of (35) the  modulation  function  becomes 

r ,  

(3 7) 

It  is shown  in Fig. 8 (a)-(c)  as full  lines. 

C. Square Wave Modulation 
This case  is often considered for  coherent applications and is 

known as frequency  shift  keying  (FSK)  modulation.  Here f ( t )  
is  given  as 

T 

With hf given by (34), v(t)  becomes 

where Af is defined as before. 
The  modulation  function is then 

(3 9) 

m(t) = 

(40) 
again with the FM index j3 defined as usual. 

In  this case  we expect  the  spectrum to be  confined to narrow 
regions around fj3. This is confirmed  by  the numerical  exam- 
ples. As in  the earlier cases the skewness of the  spectrum  in- 
creases  with  increasing IM index.  The final  example to be 
presented  here, Fig.  9(a)-(c), makes  it possible to  compare the 
three  types  of  modulation we  have considered.  These figures 
show  three  pure FM spectra  with j3 = 10 and sinusoidal, saw- 
tooth,  and  square wave modulation.  The  limit  distribution  for 
large j3 is included  in Fig.  9(a) and (b), while it consists  of two 

Even in this case  we see that it is possible to define  an FM index 
j3 = Af/fm (= Af T ) ,  where Af is the peak  frequency  deviation. 

Numerical  examples of  the  power  spectrum associated  with 
(36) are  shown  in Fig.  S(a)-(c). This is also a  broad-band case 
with j3 = 100,  and we see, as expected,  that  the  sidebands of 
highest level form  a  flat  spectrum  due to the linear  frequency 
sweep of v(t) .  With increasing IM there is the same  skewness 
tendency as for sinusoidal modulation,  and also the  spectrum 
is confined to  the region  between -0 and j3. The  limit  distribu- 
tion (28) is in  this case  given to including O(m) as 

6 functions  at +j3 in Fig. 9(c). We see that  the square wave 
spectrum is clearly concentrated  at  the edges  while there  are no 
significant  differences  between the sinusoidal and  the  sawtooth 
spectrum.  Apparently,  the  two  latter cases require  a  higher 
j3 value to approach the limit  distribution. 

IV. MEASUREMENT RESULTS 
This  section  presents  measurement  results  of  modulated 

power  spectra  for  a CSP injection laser emitting  at 832 nm. 
The laser had a  threshold  current  of 77 mA. It was placed in 
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Fig. 7. Broad-band  modulation  power  spectra  for  sinusoidal  modula- 
tion p = 100, 0 = 0. (a) m = 0. (b) m = 0.5. (c) m = 1.0.  Limit dis- 
tributions  for large p included as full lines. 

an isolated box  and  mounted  on  a  copper  heat  sink  connected 
to a  cooling/heating  finn via a  Peltier  element.  During the 
measurements the laser was temperature  stabilized to  within 
0.01”C and  kept  at 24.OO0C.  All measurements were taken 
using a  scanning  confocal  mirror type  Fabry-Perot  interferom- 
eter  (FPI). In  the  Appendix  the  connection  between  the 
spectrum  displayed on  the oscilloscope and  the  “true” spec- 
trum is given. 

The FPI had  a free  spectral  range  FSR = 2 GHz and  a finesse 
F -  150 when  used  for  measurements  with  low FM index 
@ < 5) .  In  this case the  condition off, >> 2Af1,z (see Ap- 
pendix)  allows a true oscilloscope  display  of the  spectrum. 
For  broad-band FM measurements (0 >> 5) the  FPI  had  FSR = 
7.5 GHz and F - 100.  Here the  conditions  for  a  true display 
of the spectral  envelope  (A24),  (A25)  were  fulfilled  in all 
cases. The  measurement examples  comprise  sinusoidal, saw- 
tooth,  and square wave modulation as presented  in  the  pre- 
vious section. 

A. Sinusoidal Modulation 
Our  first  example  of Fig. 10 shows an  FM index 0 2.4. 

The  detailed  data for  the  measurement are f, = 150 MHz, 
Io& = 1.21, m = 0.24.  The  spectrum displays  first,  second, 
and  third  order sidebands  clearly and  the  amplitude of the 
lower  sidebands is higher than  that  of  the  upper sidebands. 

Z0 020 - I 
$ 0 0 1 5  m=O 0 

m=O 5 

HARMONICS  N O  

( 4  

Fig. 8. Broad-band  modulation  power  spectra  for  sawtooth  modulation, 
p = 100. (a) m = 0. (b) m = 0.5. (c) m = 1.0. Limit  distributions 
for large p included as full lines. 

From  the skewness  of the  spectrum  compared to  Fig. 6 of 
the previous  section,  it  appears that we have a @ value  close 
to 0. This is in qualitative  agreement  with the results for 
modulus  and phase of  the  transfer  function  for  a CSP laser 
Hf(Io, f) shown  in  Fig. 5(a), (b). 

For  a slightly  higher value of 0, p 3.8 (where the first 
order  sidebands  disappear  in  pure FM cases) we obtain Fig. 11 
with the additional  parameters f, = 100 MHz, I&, = 1.22, 
m = 0.28. Again we have  a  skew  spectrum [-@ N 0 in Fig. 
5(b)]  with  clearly  displayed  peaks for  the  carrier  and  second, 
third,  and  fourth  order sidebands  where the  lower sidebands 
have the largest  magnitude. 

Next, we consider  a  broad-band  case with  parameters 0 - 
140, f, = 10 MHz, Io/&, = 1.17, m = 0.50 (Fig.  12).  Here, we 
obtain from the FPI measurement  only  a display  of the  spectral 
envelope  (32).  There is a  good  qualitative  agreement  with the 
case considered in Fig. 7(b). For  this figure and  the measure- 
ment result we have (32)  a  ratio between  the limiting  distribu- 
t i on fo r f= fo -   Afandf=f+Afof3 :1 .  

As an example of  broad-band  modulation  with  a weak IM 
component we show Fig. 13  with = l o 5 ,  f, = 10 kHz, 
Io/&, = 1.16, m = 0.05. Here we have, as expected, @ = 0 
and good  qualitative  agreement  with Fig. 7(a) of the previous 
section  with m = 0. The skewness of  the  spectrum is less 
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Fig. 9. Comparison of modulation power spectra  with p = 10.0  (pure 

FM). (a) Sinusoidal  modulation.  (b) Sawtooth  modulation. (c) 
Square wave modulation.  Limit distribution  for large p included as 
the full lines in (a) and  (b)  (for (c) the limit distribution consists of 
two 6 functions). 

Fig. 11. Measured power spectrum  for sinusoidal modulation p Y 3.8. 
Experimental  parameters: I,/Ith = 1.22, Zm = 4.8 mAo-p. fm = 100 
MHz, rn = 0.28.  Horizontal axis: 200 MHz/div. 

Fig. 12. Measured broad-band  power spectrum  for sinusoidal  modula- 
tion, p E 140.  Only a  spectral  envelope is displayed. Experimental 
parameters: Io/Ith = 1.17, Im = 6.5 mA,-p, f, = 10 MHz, rn = 0.50. 
Horizontal axis: 400 MHz/div. 

Fig. 13. Measured broad-band power spectrum  for sinusoidal modula- 
tion p N lo5. Separate peaks are displayed for each crossing of the 
instantaneous laser frequency  through the FPI passband. Experimen- 
tal parameters: Zo/Zth = 1.16, I ,  = 0.60 mA,+, fm = 10 kHz, m = 
0.05. Horizontal axis: 400 MHz/div. 

Fig. 10. Measured power spectrum for sinusoidal modulation p Y 2.4 
showing almost complete  extinction of the carrier. Experimental 
parameters:Z,/Zth = 1.21,Zm = 3.9 mA,-p,fm = 150 MHz,rn = 0.24. 
Horizontal  axis: 200 MHz/div. 

pronounced  than  in  the  spectrum  of Fig. 12.  In  this case the 
individual  peaks  displayed are connected  with  the scanning 
of  the  FPI (see the Appendix),  and  they  cannot be  directly 
related to  spectral  sidebands.  However, the envelope of  the 
figure  is in  agreement  with the spectral  envelope  since  (A24) 
and  (A25)  are  fulfilled. 

B. Sawtooth  Modulation 
An  example  of  a  broad-band  sawtooth  modulation  spectrum 

is shown in Fig. 14 (/3 2: 1.9 X lo5,  f, = 8 kHz, Zo&, = 1.17, 

m = 0.07).  Due to  the  low IM component  the  spectrum has 
only  a  slight  skewness  and an almost  equal  distribution  between 
f ,  - Af and f, t Af in  agreement  with the calculated  results  of 
Section 111-I3 [Fig, 8(a)]. 

C Square Wme Modulation 
We have  exemplified  square wave modulation  by  choosing in 

Fig. 15 the  parameters /3 6.3 X lo4,  f, = 30 kHz, Io/Zth = 
1.17, m = 0.07. We have, as expected  from Fig.  9(c) in Sec- 
tion 111-C, an  almost  symmetrical  spectral  distribution  with  a 
concentration  of significant  spectral components near the edges 
of  the  spectrum. Deviations  from the “ideal” spectrum of 
Fig. 9(c) may  be  attributed to the  finite rise- and  fall-times of 
~ ( t )  (39)  and  the  nonuniform  frequency response o f H p  
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Fig. 14. Measured  broad-band power spectrum for sawtooth modula- 
tion p r 1.9 . 10’. Individual  peaks  are connected with different 
passages as for Fig. 13. The peak envelope is almost flat over  a wide 
range indicating the more  linear frequency sweep than in the case of 
Fig. 13. Experimental  parameters: zo/zth = 1.17, I, = 0.86 rnA,+, 
f, = 8 kHz, m = 0.07. Horizontal axis: 500 MHz/div. 

Fig. 15. Measured broad-band power spectrum for square  wave modu- 
lation (FSK) p c 6.3 . lo4. Individual  peaks  are connected with dif- 
ferent passages as for Fig. 13. The spectrum  is concentrated in the 
regions near fo f Af. Experimental parameters: zo/zth = 1.17, I ,  = 
0.9 mA,+ fm = 30 kHz, rn = 0.07. Horizontal axis: 500 MHzldiv. 

V. CONCLUSION 

This  paper  has  presented  a  detailed  theoretical  and  experi- 
mental  investigation  of the spectral  behavior  of  a  current 
modulated  injection  laser. 

In  the  theoretical analysis  a  general  formulation is presented 
for  the laser  field  obtained from  a  combined  intensity  and 
frequency  modulation (IM + FM). The  theory is based on  the 
knowledge of  the  current-to-frequency  modulation  transfer 
function (CF-MTF) for  the laser. The general  formulas  for 
the resulting  power  spectrum  show that it is obtained  from  a 
translation  of  the  spectrum for the  modulation  function to  the 
center  frequency  of  the laser  followed by  a  convolution  with 
the spectral  line  shape of  the  unmodulated laser. 

Numerical  examples have been  presented  dealing  with  sinu- 
soidal, sawtooth,  and  square wave (FSK)  modulation.  From 
the results it is obvious that  the  pure FM spectral  shape is 
strongly  influenced  by  the IM index  and  the phase  delay  be- 
tween the IM and  the FM part  of  the  modulating signal.  In 
the case of  zero phase  delay the spectrum  becomes  more  and 
more  asymmetric  (skew) for increasing IM index  with  a relative 
increase  of the lower  sidebands. For  a phase  delay between 0 
and -n/2 a  similar  conclusion is drawn  although  the skewness 
tendency is less pronounced  for decreasing  phase  delay  values. 
For  a phase  delay  of -n/2 the  spectrum remains  symmetrical 
for  increasing IM index, whereas the relative  sideband  magni- 
tude changes  significantly from  the  pure FM case. When the 
phase delay  lies between -n/2 and -71 we obtain  a reverse 

situation to  the  one for  a  delay  between 0 and -n/2, resulting 
in  a  relative  increase  of  higher  sidebands. 

Measurements of the power  spectrum  for  a  temperature 
stabilized CSP injection  laser were taken using a  Fabry-Perot 
interferometer  (FPI).  In  such  measurements  a  detailed  under- 
standing  of the characteristics of  the FPI and  the  detection 
system is essential  in  order to  interpret  the results correctly. 
A  thorough  consideration  of  this  problem  has  been given and 
is outlined in the Appendix.  Taking the characteristics into 
account  the measurements have confirmed  qualitatively our 
calculation  results,  where we have  considered  broad-band and 
narrow-band FM cases for  sinusoidal  modulation as well as 
broad-band  cases  for  sawtooth  and  square wave modulation. 
The  results  are  in  agreement  with  an  earlier measurement of 
modulus  and phase of  the  CF-MTF  for  this  type  of  injection 
laser [ 161. The  present  investigation may serve as an  impor- 
tant  tool  for  the  understanding of the behavior of  current- 
modulated  injection  lasers  when  applied  in  coherent or  hetero- 
dyne  communication systems [3] , [6], [7], [16] . Also, it 
could be of  importance  when  considering  in  detail  the  effect 
of using such  a  laser  injection  locked to  another laser, whereby 
a  reduction  of  the IM appears [8], or phase  modulation (PM) 

The  main  limitations of the  presented  model are the need 
for  knowledge of  the  complete  complex  CF-MTF of the laser 
and  the neglect  of  transient IM effects,  causing  problems  at 
high  modulation  frequencies & 2 500 MHz). The  modulus 
of the  CF-MTF  can be measured up  to  several GHz and  can 
also be predicted  from  a  rate  equation  analysis [6]. So far, 
the phase  delay  has  only  been  measured up  to  approximately 
500 MHz. In future work it  could  be  analyzed  if  the  phase 
delay  can also be obtained  from  the  rate  equations  or  from 
the  information  contained  in  the  modulus. Also, it  could  be 
of interest to extend  the  measurement  of  the phase  delay to 
higher  frequencies.  Transient IM effects  might be incorporated 
in the present theory  by  introducing  a  transfer  function  from 
current to  intensity  modulation. 

occurs [21]. 

APPENDIX 

WITH A FABRY -PEROT INTERFEROMETER (FPI) 
MEASUREMENT O F  MODULATED LASER SPECTRA 

Spectral  measurements  with  an FPI are often  modified by 
the characteristics  of the  interferometer  and  the  detection 
system. A  thorough  understanding of  this  influence is neces- 
sary  for  a  correct interpretation  of  the  obtained results. 

The FPI will in  most cases be a scanning  confocal  spherical 
mirror  type [22]. The mirrors  are  coated  with  highly  reflect- 
ing  dielectric  material and  the  incoming light  beam  is  therefore 
reflected several times  inside the cavity.  If the wavelength of 
the light  matches  the  cavity  length,  constructive  interference 
will take place and an  amplified  light  beam is transmitted 
through  the  FPI  to  the  detector. 

The  intensity  transfer  function  of  the FPI  may be written 
[221 

1 
HFP1(f)= 1 + ( 2 F / 3 ~ ) ~  sin2 [n(f/FSR)] 

where F and  FSR are the finesse and  the free  spectral  range  of 
the FPI,  respectively. The  resolution of the FPI is then given as 

- =  
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The finesse is limited  by  the  mirror reflectivity,  surface  rough- 
ness of  the mirrors,  diffraction  losses,  pinhole  size,  etc. [23]. 
For-simplicity, we  will define an effective  mirror  reflectivity 
R so that 

This  allows  us to  write the field  amplitude  transfer  function as 

k=O 

where T is equal to 1/FSR. The  relation  betweenHFpI(f)  and 
AFPI(f)  is  given by 

HFPI(f) = IAFPI(f )I’ * (A51 
The  impulse  response  corresponding to  (A4) is 

aFpI(t) = (1  - R) Rk6(t - k ~ ) .  
m 

k=O 

With the  input field given by (4), the  output field from  the 
FPI  becomes 

E,,,(t) =: (1  - R )  RkE(t - k ~ )  
W 

k=O 

In the following we shall  calculate the FPI  spectrum, as it will 
be displayed on an  oscilloscope, in two limiting cases. 

A. The High-Frequency Region f, >> 2Af1l2 
For m(t) we use the  Fourier  expansion (22). In  practice  the 

oscilloscope  display and  the  multiple FPI  scans give rise to  an 
ensemble-averaged  intensity 

. (1 - R)’ R ~ + ’  ( r ( t  - kT)r*(t - 17)) 
w a r  

k=O 1=0 

-j2n(k - Z ) f o ~  -jzn(kn -Zm)fm7 - e  e 

As r(t) is assumed to be a stationary process we get 

(r(t - kT)r*(t - 17)) = R,((k - I )  7) 

where we have also  assumed that So(f) is an even function of 
f, so that Ro(7) is a real and even function  of T. 

Next,  we  introduce  the  detection  bandwidth B and we will 
assume that B << f,. In  this case Id ( t )  will be  time-averaged 
over several periods and we find 

’ S t  e j2n(n-m)fmt dt = 6,, (A1   1 )  
Td t-Td 

where Td = 1/B and 6,, is the  Kronecker  delta symbol. 
The  expression (A9) then simplifies to 

- 2 2 ~  e k+l -j2n(.fo+nfm)(k-Z)7 R,((k - 1 ) ~ ) .  ( A 1 2 )  
k=O Z=O 

Using (3) we obtain 

where HkpI(f) is a modified  transfer  function  for the  FPI 
which is the original one (Al) convolved  with the  spectral 
line  shape So( f ). 

Until now  the scanning of the  FPI cavity  length  has  been 
neglected.  During  this  scan  a  particular  transmission  peak of 
HkPI(f) will sweep across the  spectrum S,(f). With the 
assumption f, >> 2AflI2 only  one sideband  at  a  time will fall 
within the peak.  Each  spectral component is  therefore dis- 
played  separately  with  the  correct  amplitude  relative to  the 
others  and  a  shape given by HbPI(f) (Figs. 10 and 11) .  For 
lower modulation frequencies the sidebands will start over- 
lapping  and a spectral  “envelope” will be  displayed (Fig. 12). 

B. The Low Frequency Region f, << 2Afilz 

In  this case the basic assumption is that  the  modulation 
function m(t) can be regarded as a  pure  sine wave with  “frozen” 
amplitude  and  frequency  during  the  measurement  time  of  the 
FPI (TFPI = 1/(2Afllz)). We therefore write 

m(t) Im(t(%f))l e 
j27Wd(t).f 

( A 1  4) 

where vd(t)  is the  instantaneous  frequency  deviation (13)  and 
Im(t(vd))l is the  amplitude of m(t) at  the  time where the fre- 
quency  deviation  equals vd. 

The  approximate  field  expression  becomes 
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Proceeding as before we find  the FPI output  intensity 

Id(t )  = (IE(t) @ a F P I ( t ) 1 2 )  

Im(t(vd))12 (1 - R)2 

* -f f R k + ’  <r(t - k7)r *(t - 17)) 
k=O Z=O 

- e  -izdfo+vd(t))(k-07 

= Im(t(vd)>12 . LS0(f) @ H F P I ( f  11 f=f,+vd(t)  

= Im(t(vd))12 HkPdfo ud(t))-  (A 16) 

The spectrum, which is displayed  on the oscilloscope, will only 
under  certain  conditions  resemble  the  theoretical  limit  distri- 
butioqof (28). The  actual  picture is determined  by 

1) the scanning  speed of  the FPI, duFpI/dt, 
2) the derivative  of the laser  frequency Idvd/dtl, and 
3)  the  detection  bandwidth B. 
If  the laser  frequency f, t vd were constant,  a  peak  with  the 

shape and  amplitude given by (A16)  would be displayed  during 
the scan  of the  FPI.  The  combined  effect of the  FPI scanning 
and  the laser  frequency  change is a  “pulse  compression”  of 
the transmission peak  with  the  factor 

However, for small values of dud/dt, where the rise time  of  the 
pulse is greater than  the  detector  time  constant Td (All)   the  
peak  amplitude is independent  of dud/dt. It  should  be  noted 
that  the peaks  are no longer  associated  with the sidebands  of 
the  true  spectrum. 

For higher  modulation  frequencies  and/or  peak  frequency 
deviations, the response  of the  detection system  becomes  im- 
portant  and  the  detected signal is found  by  convolution 

id(t)  = Id(t )  @ hd(t) 

Im(t(vd))12 . b % ? P I ( f ,  vd(t)) @ hd(t)l  (A18) 

For simplicity the impulse  response hd(t) of the  detection 
system is taken  to be 

hd(t)  = {f , O < t < T d  

elsewhere. 

The  convolution  in  (A18)  then  yields 

(A201 

where f ’ =dvd/dt .  t’ and B’ = dud/dt . Td . If B’ >> 2Afip., 
the pulse  amplitude  of id(t)  will be inversely  proportional to  

B’, i.e., to  the time  interval  in  which the  instantaneous  fre- 
quency is in  the  FPI transmission band [ 141 . 

From (A20) the connection to  the probability  distribution 
of the instantaneous  frequency is established.  The  probability 
that  the  instantaneous  frequency falls  within  a  narrow  band of 
width 6v around f, t vd is equal to  the fraction  of  time  in 
which  this  occurs. All frequency  values  between  the  extrema 
will be passed (at least)  twice  during one  period so the  proba- 
bility  density  becomes 

10, elsewhere. 

Here Tis the  modulation  period  and  the  summation covers the 
number  of passages off during  one  period  of m(t). 

In  the case of  a  significant IM content in the  modulation, 
combined  with  a phase  delay  different from  zero,  the  intensity 
will be different  for the different passages. The  contributions 
to  the sum  in  (A21)  are therefore weighted  with the corre- 
sponding  intensity Im(t(vd))12 so that  the following  limit dis- 
tribution arises 

lo ,  elsewhere. 

For  the FM index 0 approaching infinity  this  distribution  cor- 
responds to  the average of the  true  spectrum S m ( f )  over  a 
narrow  frequency  band  (which  still  contains  several  sidebands) 
[20]. Only  in the case of equal  intensity  for  each passage 
(A22) can be simplified to 

Experimentally,  it will often  be possible to  distinguish the  two 
contributions  to  the sum in (A22)  in  the FPI  spectrum. 
According to (A20) the associated  peaks  are  displayed  sepa- 
rately, as they  do  not  occur simultaneously. An example  of 
the  time variations  of vd(t) and v F p I ( t )  and crossings  are shown 
in [ 141, Fig. 2  for  the case of  square wave modulation. 

The  conditions to be fulfilled for  obtaining  a  correct display 
of  the  broad-band  spectral envelope may  now be stated as 

and 

T,,, is the  ramp  duration  of  the FPI. 
The  first condition (A24)  assures that  the  instantaneous laser 

frequency will cross the FPI  passband  several  times  during one 
scan,  while the  second  one  (A25) assures that  the  time  spent 
by the  instantaneous  frequency  in  the FPI  passband is much 
less than  the  detection  time  constant. 
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Iff,  is not too high and  (A25) is valid, the FPI will display 
separate  peaks  for  each passage of vd(t) with a height given by 
(A20) (Figs. 13-15). The  peak envelope will then resemble 
S,i,(f) (A23) in  two cases, either 1) if  one of the passages in 
a  period  has  a small  derivative Idvd/dtI compared to  the  others, 
or 2) if all passages  have  derivatives of  nearly  equal  magnitude. 
Near the edges of the  spectrum,  where  the  direction  of fre- 
quency  change is  reversed, (825)  may  not be  valid. At higher 
modulation frequencies the peaks will start overlapping  each 
other, which gives an averaging similar to (A22) and improves 
the  agreement  with this  expression.  Eventually only the  peak 
envelope will be  displayed  (Fig.  12). 

The foregoing analysis has  clarified the  relation  between  the 
experimental  and  theoretical  spectrum.  The  conditions (A24)- 
(A25)  may always be  checked  in  practical cases to assure a 
correct  measurement. Even  if these  conditions are not satisfied 
the  width of the  spectrum  may still  be  correctly  determined. 
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